Generalized Algorithm for Parallel Sorting on Product Networks

Antonio Fernandez,

MIT Laboratory for Computer Science

545 Technology Square
Cambridge, MA 02139

Abstract

If G is a connected graph with N nodes, its r di-
mensional product contains N7 nodes. We present
an algorithm which sorts N7 keys stored in the r-
dimensional product of any graph G in O(r’S(N))
time where S(N) depends on G. We show that for
any graph G, S(N) is bounded above by O(N), estab-
lishing an upper bound of O(r?N) for the time com-
plexity of sorting N" keys on any product network.
When r s fized, this leads to the asymptotic complea-
ity O(N) to sort N" keys, which is optimal for several
mstances of product networks. There are graphs for
which S(N) = O(Log?N) which leads to the asymp-
totic running time of O(Log®N).

Keywords: sorting, interconnection networks, product
networks, algorithms, odd-even merge.

1 Introduction

In [1], Batcher presented two efficient sorting net-
works. Algorithms derived from these networks have
been presented for a number of different parallel ar-
chitectures, like the shuffle-exchange network [10], the
grid [11, 5], the cube-connected cycles [8], and the
mesh of trees [6].

In this paper we generalize Batcher’s algorithm to
merge N sorted sequences into a single sorted se-
quence. From this multiway-merge operation we de-
rive a sorting algorithm, and we show how to use this
approach to obtain an efficient sorting algorithm for
any homogeneous product network. Among the main
results of this paper, we show that the time complex-
ity of sorting N” keys for any r dimensional N"-node
product graph is bounded above as O(r?N). We also
illustrate special cases of product networks with run-
ning times of O(r?), or O(N), or O(Log?N).

2 Definitions and Notations

Let G be a N-node connected graph. We define its
r-dimensional homogeneous product as follows.

Definition 1 Guwen a graph G with vertex set Vg =
{0,1,--- (N = 1)} and arbitrary edge set Fg, the r-
dimensional product of G, denoted PG, is the graph
whose verter set is Vpg = {0,1,--- (N — 1)} and
whose edge set is Epg, defined as follows: two vertices
T = XpXp_1---x1, and Yy = YrYr_1 - -y1 are adjacent

Nancy Eleser, and Kemal Efe
Center for Advanced Computer Studies
University of Southwestern Louisiana

Lafayette, LA 70504

wm PG, if and only iof both of the following conditions
are true:

1. x and y differ in exactly one symbol position,

2. if i is the differing symbol index, then (x;,y;) €
Fa.

Note that we can split the r-dimensional product
network into N copies of » — 1 dimensional product
networks by erasing all the edges at an arbitrary di-
mension. When we do so, the uth copy obtained is
denoted as [u]PG%_; where ¢ is the dimension being

erased. For example, if ¢ = r (i.e. the highest di-
mension) then we obtain N copies of [u] PG’ _,, each
isomorphic to PG,_1. Similarly, we can split the PG,
into N? copies of smaller product networks, each iso-
morphic to PG,_5 by erasing all the edges in two of
the dimensions. In this case we extend the notation as
[u, v] PG, ,, where ¢ and j denote the dimensions of
edges being erased, and the pair [u, v] uniquely identi-
fies a copy obtained. This notation can be extended to
erasing multiple dimensions in the obvious way, with
the order of terms in square brackets corresponding to
the order in superscripts.

When we focus on a k-dimensional subgraph of the
r-dimensional product network, where k& < r, it some-
times gets too long to write all the dimensions being
erased, and 1t may be easier to just specify the dimen-
sions of edges not erased. In particular, we will have
occasion to refer to subgraphs obtained by erasing all
dimensions but one, and thus the remaining subgraph
will be isomorphic to the factor graph G. We will use

PG‘l{Z’} to denote such a subgraph, where ¢ denotes the
dimension of edges not erased. We also extend this

notation similarly to above case, and use PG;Z’]} to
denote a two-dimensional subgraph with ¢ and 7 indi-
cating the dimension of edges not erased.

For an arbitrary factor graph G, vertex labels
0---N—1 can define the ascending order of data when
sorted. However we need to define an order for the
nodes of PG, , which will determine the final location
of the sorted keys. The order defined is known as
“snake” order.

Definition 2 (Snake Order) for the r-dimensional
product graph:
1. If r = 1, snake order corresponds to the order

defined for .

2. Ifr > 1, suppose that snake order has been already
defined for PG,_1. Then,

(a) [W]PGT_, has the same order as PGr_1 if u
1s even, and reverse order if u is odd.

(b) ifu < v then any value in [u]PGT_, precedes
any value in [v]PGy_,.

The hamming weight of a vertex s is defined as
Wi(s) = >i_, si, where s; is the symbol value at po-
sition i of the vertex label s. If the symbol at ith
index position is the don’t care symbol “*” then this
symbol position is omitted when computing the Ham-
ming weight. Depending on the parity of its Hamming
weight, we say that a vertex is even or odd.

Similarly, we can define a Hamming weight for the
PG‘l{l} subgraphs of the product graph, by simply
starting the summation from 2 when computing the
Hamming weight. If the Hamming weight of a PG{l}
is even, we say that it is an even subgraph. Otherw1se
it is an odd subgraph. We can also compute the Ham-

ming weight for a PGél’z}

even or odd.
Just like the definition of snake order for vertices,

subgraph and say that 1t is

we can also define snake order for subgraphs PG‘l{l} or

PGél’z} in the obvious way. This will be useful later.

Suppose that a sorted sequence is stored in some
r-dimensional product network in snake order. The
following lemma shows how to split the sequence into
N subsequences such that the subsequence u contains
every Nth term beginning with uth term.

Lemma 1 Let S be a sorted sequence stored in some
r-dimensional product network in snake order. By re-

versing the values at odd PG‘l{l} subgraphs and then
erasing the lowest-dimension edges from the product
network, we obtain N copies of the product network
with r — 1 dimensions. The uth copy (where u €
{0--- N —1}) will contain every Nth term of the orig-
mal sequence beginning with the uth value.

Proof is omited due to space limitations. The in-
terested reader can refer to [4].

3 Sorting Algorithm

The heart of the proposed sorting algorithm
is the multiway-merge operation. The multiway-
merge algorithm combines N sorted sequences A; =
(ai0,@i1,...,an-1),fori=0,..., N—1, into asingle
sorted sequence J = (jo,j1,...,jaN—1). For simplic-
ity, we assume n to be a power of N, N”, where r > 1.

To merge N sequences of N7 keys each, we initially
assume the existence of an algorithm which can sort
N? keys. We make no assumption about the efficiency
of this algorithm as yet. In Section 5 we discuss sev-
eral possible ways to obtain efficient algorithms for
this purpose. The purpose of this assumption is to
maintain the generality of discussions, independent of
the factor network used to build the product network.

3.1 Multiway-Merge Algorithm

Here we consider how to merge N sorted sequences,
A = (ai0,ai1,. .., 04, 0-1), for e =0,...,N — 1, into
a single large sorted sequence.

The merge operation consists of the following steps:

1. Distribute the keys of each sorted sequence
A; among N sorted subsequences B;;, for
¢t = 0,...,.N —1 and 5 = 0,...,N —
1. The subsequence B;; will have the form
(ai,]aaz,]+Naaz,]+2Na~~ az,]+(n—N)) for ¢« =
0,...,N—1andj:0,...,N—1. This is equiv-
alent to picking every Nth element of A; starting
with the jth element and putting them in B; ;.
Note that each subsequence B;; is sorted since
we put the elements in the same order as they
appeared in A;.

2. Merge the N subsequences B;; into a single
sorted sequence Cj, for j =0,..., N —1. This is
done with a recursive call to the multiway-merge
process if the total number of keys in B; ; is at

least N?. If the number of keys in B;; is N, a

sorting algorithm for sequences of length N? is
used to obtain a single sequence, because a re-
cursive call to the merge process would not make
much progress in this case (this point will be clear
by the end of this subsection).

3. Interleave the sequences Cj into a single sequence

= (do,dy, -, dyr+1_1). The first N terms of

the sequence D'is obtamed by readmg the first

element from each C;, j = 1---N. The next

set of N terms in D are obtained by reading the

second value from each C;, j = 1---N, and so
on.

We prove below that D is now “almost” sorted;
the potential dirty area (window of keys not

sorted) has length no larger than NZ.

4. Clean the dirty area. To do so we start by di-
viding the sequence D into N"~! subsequences of
N? consecutive keys each. That is, the first N?
terms of D are labeled as F;, the next N? terms
are labeled as E5, and so on.

We then independently sort the F; subsequences
in alternate orders by using the algorithm which
we assumed available for sorting N? keys. E; is
transformed into a sequence F; where F; contains
the keys of E; sorted in non-decreasing order if ¢
is even or in non-increasing order if z i1s odd, for
i=0,..., N1 1.

Now, we apply two steps of odd-even trans-
position between the sequences F;, for i =
0,...,N"7! — 1. In the first step of odd-even
transposition, each pair of sequences F; and Fj 1,
for ¢ even, are compared element by element. Two
sequences G; and G4 are formed where g; ; =
min(fix, fiv1x) and gig1 x5 = maz(fix, fit10)-
In the second step of the odd-even transposition,
G; and Gjy1 for ¢ odd are compared in a similar
manner to form the sequences H; and H;41.

Finally, we sort each sequence H; in non-
decreasing order, generating sequences I;, for i =
0,...,N"=! — 1. The final sorted sequence J is
the concatenation of the sequences I;.

We need to show that the process described actually
merges the sequences. To do so we use the well-known
zero-one principle.

Lemma 2 When sorting an input sequence of zeroes
and ones, the sequence D obtained after the comple-
tion of step 3 s sorted except for a dirty area which is
never larger than N2.

Proof: Assume that we are merging sequences of ze-
roes and ones. Let z; be the number of zeroes in se-
quence A;, for i =0,..., N — 1. The rest of elements
in A; are ones. Step 1 breaks each sequence A; into
N subsequences B; ;, j =0,...,N — 1. The number
of zeroes in a subsequence B; ; is |z /N | + ¢i;, where
qi; = 1if j < 2z mod N and ¢;; = 0 otherwise. Ob-
serve that, for a given ¢, the sequences B; ; can differ
from each other in their number of zeroes by at most
one.

At the start of step 2, each column j is composed
of the subsequences B;; for ¢ = 0,..., N — 1. At
the end of step 2, all the zeroes are at the beginning
of each sequence C;. The number of zeroes in each
sequence Cj; is the sum of the number of zeroes in B; ;
for fixed j and ¢ = 0,---, N — 1. Thus, two sequences
C; can differ from each other by at most N zeroes.
In step 4 we interleave the N sorted sequences into
the sequence D by taking one key at a time from each
sequence (. Since any two sequences C; can differ in
their number of zeroes by at most N, and since there
are N sequences being interleaved, the length of the
window of keys where there is a mixture of ones and
zeroes is at most N2,]

Lemma 3 Step 4 cleans the dirty area.

Proof: We know that the dirty area of the sequence
D, obtained in step 4, has at most length N2, If we
divide the sequence D into consecutive subsequences,
F;, of N? keys each, the dirty area can either fit in
exactly one of these subsequences or be distributed
between two adjacent subsequences.

If the dirty area fits in one subsequence F; then,
after the initial sorting and the odd-even transposi-
tions, the sequences H; contain exactly the same keys
as the sequences E;, for j = 0,..., N"~!. Then, the
last sorting in each sequence H; and the final concate-
nation yield a sorted sequence J.

However, if the dirty area is distributed between
two adjacent subsequences, E; and F;y1, we have two
subsequences containing both zeroes and ones. After
the first sorting, the zeroes are located at one side of
F; and at the other side of Fy 1.

One of the two odd-even transposition steps will
not affect this distribution, while the other step is go-
ing to move zeroes from the second sequence to the
first and ones from the first to the second. After these
two steps, H; is filled with zeroes or H;iq is filled

with ones. Therefore, only one sequence contains ze-
roes and ones combined. The last step of sorting will
sort this sequence. Then, the entire sequence J will
be sorted.]

The reader can observe that, at the end of Step
3, the dirty area will still have length N? even when
we are merging N sequences of length N each. Thus,
we do not make much progress when we apply the
multiway-merge process in this case. Here we assume
the availability of a special sorting algorithm designed
for the two-dimensional version of the product net-
work. In subsequent sections we discuss several meth-
ods to obtain such algorithms as we consider more
specific product networks.

3.2 Application of Merging Algorithm to
Sort

Using the above algorithm, and an algorithm to sort
sequences of length N2, it is easy to obtain a sorting
algorithm to sort a sequence of length N7, for r > 2.

First divide the sequence into subsequences of
length N? and sort each subsequence independently.
Then, apply the following process until only one se-
quence remains:

1. Group all the sorted sequences obtained into sets
of N sequences each. (If we are sorting N"t1 keys,
then initially there will be N"~2 groups, each con-
taining N sequences of length N?2.)

2. Merge the sequences in each group into a single
sorted sequence using the algorithm shown in the
previous section. If now there is only one sorted
sequence then terminate. Otherwise go to Step 1.

4 Implementation in
Product Networks

Here we mainly focus on the implementation of the
multiway-merge algorithm in PG, in detail. The sort-
ing algorithm trivially follows from the merge oper-
ation as described above. The initial scenario is N
sorted sequences, of N™~1 keys each, stored in the N
subgraphs [u] PGL_, in snake order. Before the sort-
ing algorithm starts, each processor holds one of the
keys to be sorted. During the sorting algorithm, each
processor needs enough memory to hold at most two
values being compared.

Homogeneous

Step 1: To explain how this step can be imple-
mented, we refer to Lemma 1. By Lemma 1, if we

reverse the order in “odd” PG‘l{l} subgraphs, then we
obtain the sequence B, , in the subgraph [u, v]PG:’_l2
sorted in snake order.

Reversing the order in a G subgraph can be per-
formed by a permutation routing algorithm available

for GG.

Step 2 This step is implemented by merging to-
gether the sequences in subgraphs [u,v]PG:’_l2 with
the same u value into one sequence in [v]PG}l_;. If

r—1 = 2, the merging is done by directly sorting with
an algorithm for PGs. If » — 1 > 2, this step is done
by a recursive call to the multiway-merge algorithm.

Step 3 No movement of data is involved in this step,
and we obtain a sequence sorted almost completely
except for a small dirty area, as shown.

Step 4 This step cleans the dirty area. The PGél’z}
subgraphs are ordered by the snake order. In this step

we independently sort the keys in PGél’z} subgraphs,
where the sorted order alternates in “consecutive” sub-
graphs. We now perform two steps of odd-even trans-
position between these subgraphs. In the first step,

the nodes in the “odd” PGél’z} subgraphs are com-
pared with corresponding nodes in their “predecessor”
subgraphs. The values are exchanged if the value in
the predecessor subgraph is larger. In the second step
of odd-even transposition, the values in the nodes of

the “even” PGél’z} subgraphs are compared (and pos-
sibly exchanged) with those of their predecessor sub-

graphs. A final sorting within each of the PGél’z}
subgraphs ends the merge process.

One point which needs to be examined in more de-
tail here is that, depending on the factor graph G, the
two elements that need to be compared and possibly
exchanged with each other may or may not be adja-
cent in PG,.. If G has a hamiltonian path, then the
nodes of (G can be labeled in the order they appear
on the hamiltonian path to define the sorted order for
(. Then, the two steps of odd-even transposition sort
1s easy to implement since it involves communication
between adjacent nodes in PG,.. If however (G is not
Hamiltonian (e.g. a complete binary tree), the two ele-
ments that need to be compared may not be adjacent,
but they will always be in a common G subgraph. In
this case permutation routing within G may be used
to perform the compare-exchange step as follows: two
nodes that need to compare their values send their
values to each other. Then, depending on the result
of comparison, each node can either keep its original
value if the values were already in correct order, or
they drop the original value and keep the new value if
they were out of order.

4.1 Analysis of Time Complexity

To analyze the time taken by the sorting algorithm
we will initially study the time taken by the merge
process in a k-dimensional network. This time will be
denoted as Mp(N). Also let Sa(N) denote the time
required for sorting in PG5 and R(N) denote the time
required for permutation routing in G'.

Lemma 4 Merging N sorted sequences of N*~" keys
in PG, takes M(N) = 2(k—2)S2(N)+3(k—2)R(N)+
Sa2(N) time steps.

Proof: The time taken by step 1 of the merge process
is just the time to reverse the order of the keys in

PG‘l{l}—subgraphs. This process can be done with a
permutation routing algorithm for GG, that takes time
R(N). Step 2is a recursive call to the merge procedure

for k — 1 dimensions, and hence will take My_1(N)
time. Step 3 does not take any computation time.
Finally, step 4 takes the time of one sorting in PG,
two permutation routings in G (for the steps of odd-
even transposition), and one more sorting in PGo.

Therefore, the value of My(N) can be recursively
expressed as:

Mi(N) = My_1(N) + 282(N) + 3R(N)

with initial condition

M(N) = S3(N)

that yields
Mi(N) =2(k —2)S2(N)+ 3(k — 2)R(N) + S2(N)

Theorem 1 For any factor graph G, the time com-
plexity of sorting N” keys in PG, is O(r?S2(N)).

Proof: By the algorithm of Section 3.2 the time taken
to sort N7 keys in PG, is the time taken to sort in
a 2-dimensional subgraph and then merge blocks of
N sorted sequences into increasing number of dimen-
sions. The expression of this time is as follows:

Se(N) = Sa(N)+ Ma(N)+- Ma(N)4+ -+ My (N)+ M (V)

r

= (r— 1)S2(N) + (252(N) + 4R(N)) Z(i ~2)
= (r— 1)2Sy(N) + L.5(r — 1)(r — 2)R(N).
Since Sa(N) is never smaller than R(N), the time
obtained is S,(N) = O(r?S2(N)). [|

The following corollary presents the asymptotic
complexity of the algorithm and one of the main re-
sults of this paper.

Corollary 1 If G is a connected graph, the time com-
plexity of sorting N” keys in PG, is at most O(r*N).

Proof: The basic observation is that, if G is a con-
nected graph, it is always possible to obtain an algo-
rithm for PGz with complexity So(N) = O(N). To do
so we simply emulate the 2-dimensional grid in PG5
with constant dilation and congestion [2]. Then, the
O(N) algorithm presented by Schnorr and Shamir [9]
for sorting N? keys on two-dimensional N x N grid
can be emulated by PGy with complexity O(N), lead-
ing to S2(N) = O(N). Hence, any arbitrary N"-node
r-dimensional product network can sort with complex-
ity O(r’N). []

5 Application to Specific Networks

In this section we obtain the time complexity of
sorting for several product networks in the literature.
To do so, we obtain upper bounds for the value of
S2(N) for each network. Using this value in Theorem
1 will yield the desired running time.

Grid: Schnorr and Shamir [9] have shown that it is
possible to sort N2 keys in a N2-node 2-dimensional
grid in O(N) time steps. This value of S3(N) im-
plies that our algorithm will take O(r?>N') time steps
to sort N” keys in a N"-node r-dimensional grid. If
the number of dimensions r is bounded, this expres-
sion simplifies to O(N). This algorithm is asymptot-
ically optimal when r is fixed since the diameter of
the grid with bounded number of dimensions is O(N),
and a value may need to travel as far as the diameter
of the network.

Mesh connected trees (MCT): This network was
introduced in [3] and extensively studied in [2]. Tt
is obtained as the product of complete binary trees.
Due to Corollary 1 we can sort in the N"-node r-
dimensional mesh connected trees in O(r?N) time
steps. If r is bounded, we again have O(N) as the
running time. This running time is optimal when »
is fixed, because the bisection width of r-dimensional
MCT is O(N"~!) as shown in [2], and in the worst
case we may need to move O(N") values across the
bisection of the network.

Hypercube: From the above analysis given for
grids and the fact that the hypercube is a special case
of grid with N = 2 fixed, it follows that the time to
sort in the hypercube with our algorithm is O(r?).
This running time is same as the running time of the
well-known Batcher’s algorithm for hypercubes. In
fact, Batcher’s algorithm is a special case of the pro-
posed algorithm.

Petersen Cube: Petersen cube is the r-dimensional
product of Petersen graphs. Product graphs obtained
from the Petersen graph are studied in [7]. Like the
hypercube, the product of Petersen graphs has fixed
N, and therefore the only way the graph grows is by
increasing the number of dimensions. Since the Pe-
tersen graph is hamiltonian, its two-dimensional prod-
uct contains the 10 x 10 grid as a subgraph. Thus, we
can use any grid algorithm for sorting 100 keys on the
two-dimensional product of Petersen graphs in con-
stant time. Consequently the r-dimensional product
of Petersen graphs can sort 10" keys in O(r?) time.

Product of de Bruijn and shuffle-exchange net-
works: To sort in their two-dimensional instances
we can use the embeddings of their factor networks
presented in [3] which have small constant dilation and
congestion. In particular, N?-node shuffle-exchange
network can be embedded onto the two dimensional
N x N product of shuffle-exchange networks with di-
lation 4 and congestion 2. Also N?-node de Bruijn net-
work can be embedded onto the two dimensional N x
N product of de Bruijn networks with dilation 2 and
congestion 2. Sorting n = N? keys in shuffle-exchange
or de Bruijn networks requires in O(log2 n) time by the
Batcher’s algorithm. Thus, we can sort on the two-
dimensional product of shuffle-exchange or de Bruijn
networks by emulation of N2-node shuffle-exchange

or de Bruijn networks in Sy(N) = O(log’ N?) =
O(log® N) time steps. Using this in Theorem 1, our

algorithm will take O(r?log® N) time steps to sort N”
keys. Again, if r is bounded the expression simplifies

to O(log” N).

References

[1] K. Batcher, “Sorting Networks and their Ap-
plications,” in Proceedings of the AFIPS Spring

Joint Computing Conference, vol. 32, pp. 307-
314, 1968.

[2] K. Efe and A. Fernandez, “Computational Prop-
erties of Mesh Connected Trees: Versatile Archi-
tecture for Parallel Computation,” in Proceedings
of the 1994 International Conference on Parallel
Processing, vol. I, (St. Charles, IL), pp. 72-76,
CRC Press Inc., Aug. 1994.

[3] K. Efe and A. Ferndndez, “Products of Networks
with Logarithmic Diameter and Fixed Degree,”
IEFEE Transactions on Parallel and Distributed
Systems, 1994. Accepted for publication. Also
available as Technical Report 93-8-1, CACS, Uni-
versity of SW. Louisiana, Lafayette, LA, Feb.
1993.

[4] A. Fernandez, N. Eleser, and K. Efe, “General-
ized Algorithm for Parallel Sorting on Product
Networks,” Tech. Rep. 95-1-1, CACS, University
of SW. Louisiana, Lafayette, LA, Sept. 1995.

[5] D. Nassimi and S. Sahni, “Bitonic Sort on
a Mesh-Connected Parallel Computer,” [EEE
Transactions on Computers, vol. C-27, pp. 2-7,
Jan. 1979.

[6] D. Nath, S. N. Maheshwari, and P. C. P. Bhatt,
“Efficient VLSI Networks for Parallel Processing
Based on Orthogonal Trees,” IEEE Transactions
on Computers, vol. C-32, pp. 569-581, June 1983.

[7] S.R.Ohring and S. K. Das, “The Folded Petersen
Cube Networks: New Competitors for the Hyper-
cube,” in Proceedings of the 5th IEEE Symposium
on Parallel and Distributed Computing, pp. b82—
589, Dec. 1993.

[8] F. Preparata and J. Vuillemin, “The Cube-
Connected Cycles: A Versatile Network for
Parallel Computation,” Communications ACM,

vol. 24, pp. 300-309, May 1981.

[9] C. P. Schnorr and A. Shamir, “An Optimal Sort-
ing Algorithm for Mesh Connected Computers,”
in Proceedings of the 18th Annual ACM Sympo-
sium on Theory of Computing, (Berkeley, CA),
pp. 255-263, May 1986.

[10] H. Stone, “Parallel Processing with the Per-
fect Shuffle,” IEEE Transactions on Computers,
vol. C-20, pp. 153-161, Feb. 1971.

[11] C. D. Thompson and H. T. Kung, “Sorting on a
Mesh-Connected Parallel Computer,” Communi-

cations ACM, vol. 20, pp. 263-271, Apr. 1977.

