
Universal-Stability Results and Performance Bounds for
Greedy Contention-Resolution Protocols

MATTHEW ANDREWS

Bell Labs, Lucent Technologies

BARUCH AWERBUCH

Johns Hopkins University, Baltimore, Maryland

ANTONIO FERNÁNDEZ, TOM LEIGHTON, AND ZHIYONG LIU

Massachusetts Institute of Technology, Cambridge, Massachusetts

JON KLEINBERG

Cornell University, Ithaca, New York

Abstract. In this paper, we analyze the behavior of packet-switched communication networks in which
packets arrive dynamically at the nodes and are routed in discrete time steps across the edges. We

This work was supported by Army grant DAAH 04-95-1-0607 and ARPA contract N00014-95-1-1246.
A preliminary version of this work appeared in Proceedings of the 1996 IEEE Symposium on
Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, Calif.
The work of M. Andrews was performed while a student at MIT, supported by National Science
Foundation (NSF) contract 9302476-CCR.
The work of A. Fernández was supported in part by the Spanish Ministry of Education.
The work of J. Kleinberg was supported in part by a David and Lucile Packard Foundation
Fellowship, an Alfred P. Sloan Research Fellowship, an ONR Young Investigator Award, and NSF
Faculty Early Career Development Award CCR 97-01399. This work was initiated while J. Kleinberg
was a student in the MIT Laboratory for Computer Science, supported by an ONR Graduate
Fellowship.
Z. Liu was on leave from the Institute of Computing Technology, Academia Sinica, Beijing, China. Z.
Liu was supported by the K. C. Wong Education Foundation, Hong Kong.
Authors’ present addresses: M. Andrews, Bell Laboratories, 600 –700 Mountain Avenue, Murray Hill,
NJ 07974, e-mail: andrews@research.bell-labs.com; B. Awerbuch, Department of Computer Science,
Johns Hopkins University, Baltimore, MD 21218, e-mail: baruch@cs.jhu.edu; A. Fernández, Escuela
Superior de Ciencias Experimentales y Technologia, Universidad Rey Juan Carlos, 28933 Mostoles,
Madrid, Spain, e-mail: anto@eui.upm.es; J. Kleinberg, Department of Computer Science, Cornell
University, Ithaca, NY 14853, e-mail: kleinber@cs.cornell.edu; T. Leighton, Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 01219, e-mail: ftl@math.mit.edu; Z.
Liu, Institute of Computing Technology, Academia Sinica, Beijing, China.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2001 ACM 0004-5411/01/0100-0039 $05.00

Journal of the ACM, Vol. 48, No. 1, January 2001, pp. 39 –69.

focus on a basic adversarial model of packet arrival and path determination for which the
time-averaged arrival rate of packets requiring the use of any edge is limited to be less than 1. This
model can reflect the behavior of connection-oriented networks with transient connections (such as
ATM networks) as well as connectionless networks (such as the Internet).

We concentrate on greedy (also known as work-conserving) contention-resolution protocols. A
crucial issue that arises in such a setting is that of stability—will the number of packets in the system
remain bounded, as the system runs for an arbitrarily long period of time? We study the universal
stability of networks (i.e., stability under all greedy protocols) and universal stability of protocols (i.e.,
stability in all networks). Once the stability of a system is granted, we focus on the two main
parameters that characterize its performance: maximum queue size required and maximum end-to-
end delay experienced by any packet.

Among other things, we show:

(i) There exist simple greedy protocols that are stable for all networks.
(ii) There exist other commonly used protocols (such as FIFO) and networks (such as arrays and

hypercubes) that are not stable.
(iii) The n-node ring is stable for all greedy routing protocols (with maximum queue-size and packet

delay that is linear in n).
(iv) There exists a simple distributed randomized greedy protocol that is stable for all networks and

requires only polynomial queue size and polynomial delay.

Our results resolve several questions posed by Borodin et al., and provide the first examples of (i) a
protocol that is stable for all networks, and (ii) a protocol that is not stable for all networks.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design—packet-switching networks; store and forward networks; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Problems—sequencing and scheduling

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Adversarial queueing theory, end-to-end delay, network stability,
packet scheduling

1. Introduction

We study the behavior of packet-switched communication networks in which
packets arrive dynamically at the nodes and are routed in discrete time steps
across the edges. A crucial issue that arises in such a setting is that of
stability—will the number of packets in the system remain bounded, as the system
runs for an arbitrarily long period of time? The answer to this question typically
depends on the rate at which packets arrive into the system, and on the
contention-resolution protocol that is used when more than one packet wants to
cross a given edge in a single time step.

These issues have been investigated in a number of overlapping areas. Within
the context of packet routing, there has been recent work focusing on the
problem of stability in common interconnection networks; typically, this work
assumes that packets are generated according to independent Poisson or Ber-
noulli processes at the nodes, and they must be routed to random destinations.1

In related work, Awerbuch and Leighton [1994] presented a stable packet-
routing algorithm that could be used to provide a local-control approximation for
the multicommodity-flow problem. The problem of continuous packet arrivals

1 See, for example, Leighton [1990], Stamoulis and Tsitsiklis [1994], Mitzenmacher [1994], Harchol-
Balter and Black [1994], Kahale and Leighton [1995], Harchol-Balter and Wolfe [1995], Broder and
Upfal [1996], Scheideler and Vöcking [1996], and Broder et al. [1996].

40 ANDREWS ET AL.

and routing has also been a major topic of study within the field of queueing
theory [Kleinrock 1975; Kelly 1979]. Typical assumptions here are that packets
are generated according to a Poisson process, and that the time to traverse an
edge is an exponentially-distributed random variable, rather than a fixed con-
stant. See Borodin et al. [2001] for a review of previous work on these models.

In this paper, we work within a model of continuous packet arrivals proposed
by Borodin et al. [2001], in which probabilistic assumptions are replaced by
worst-case inputs. The underlying goal is to determine whether it is feasible to
prove stability results even when packets are injected by an adversary, rather than
an oblivious randomized process. The framework was termed adversarial queue-
ing theory in Borodin et al. [2001], to reflect the fact that the emphasis is on
stability—the central issue of queueing theory—with respect to an adversarial
model of packet generation and path determination.

The model of Borodin et al. [2001] considers the time evolution of a
packet-routing network as a game between an adversary and a protocol. In each
time step, the adversary injects a set of packets at some of the nodes; for each
packet it specifies a sequence of edges that it must traverse, after which the
packet will be absorbed. If more than one packet wishes to cross an edge e in the
current time step, then the protocol chooses one of these packets to send across
e; the remainder of these packets wait in a queue at the tail of e. This game then
advances to the next time step. The protocol is said to be stable against the
adversary if there is a constant C (possibly depending on the underlying network
and the load) so that there are never more than C unabsorbed packets in the
system, regardless of how long the game is played. In this paper, as in Borodin et
al. [2001], we will only consider greedy (also known as work-conserving) proto-
cols—those that advance a packet across an edge e whenever there is at least one
packet waiting to use e.

A crucial parameter of the adversary is its rate. Borodin et al. [2001] defined a
single request by the adversary to be a set of packets requesting edge-disjoint
paths; in their terminology, an adversary injects at rate r if for all t, no more than
rt requests are made in any interval of t steps. Among other results, Borodin et
al. [2001] showed that against any adversary with rate at most 1, (i) any greedy
protocol is stable on any DAG, and (ii) the Farthest-to-Go protocol is stable on
the ring.

A different but related model of worst-case packet injection was proposed in
earlier work of Cruz [1991a; 1991b]. In this model, one assumes that packets are
injected by k sessions, each with a fixed path and a fixed rate (with some
burstiness allowed), subject to the requirement that the total rate of all sessions
using a given edge is strictly less than 1. Cruz [1991b] proves the stability of every
greedy protocol on every layered DAG. Tassiulas and Georgiadis [1996] also
work within this model, and show that every greedy protocol on the ring is stable.
In related work, Rabani and Tardos [1996] developed a randomized algorithm
for static routing problems, and applied it to dynamic problems. They obtain an
algorithm for which every packet is absorbed in a polynomial number of steps
with high probability. Their algorithm is different from those we consider here in
that it is not greedy and it allows packets to be discarded: the algorithm is
allowed to pre-emptively remove a packet from the system with inverse polyno-
mial probability. The bounds of Rabani and Tardos were later tightened by
Ostrovsky and Rabani [1997].

41Greedy Contention-Resolution Protocols

Any set of k sessions in Cruz’s model corresponds to an adversary of rate
strictly less than 1 in the model of Borodin et al. [2001]; hence, a stability result
in the latter model implies an analogous result in the former. However, the
converse direction does not hold: there exist adversaries in the model of Borodin
et al. [2001] that cannot be captured by the framework of Cruz. (For example,
one needs the more general model of Borodin et al. [2001] to represent
connections of limited duration.)

A number of fundamental open questions were raised in Borodin et al. [2001]
concerning the relationship between rate and stability. In particular they asked,

(i) Is any greedy protocol stable against every adversary of rate less than 1, for
every network?

(ii) Is any greedy protocol stable with small queue size against every adversary
of rate less than 1, for every network?

(iii) Does the n-node unidirectional ring have the property that every greedy
protocol is stable against every adversary of rate less than 1?

(iv) Does every network have this property (namely that every greedy protocol is
stable against every adversary of rate less than 1?)

These questions highlight a very basic algorithmic question: when is a given
contention-resolution protocol stable in a given network, against a given adver-
sary? More specifically, the questions are based on the following definitions,
which will be central to the work we do here.

Definition 1.1. We say that a protocol 3 is stable on a network G against an
adversary ! if there is a constant C (which may depend on G and !) such that,
starting from an empty configuration, the number of packets in the system at all
times is bounded by C.

Definition 1.2. We say that a graph G is universally stable if every greedy
protocol is stable against every adversary of rate less than 1 on G.

Definition 1.3. We say that protocol 3 is universally stable if it is stable against
every adversary of rate less than 1, on every network.

We noted above that Borodin et al. [2001] showed directed acyclic graphs to be
universally stable; but for graphs with directed cycles, the following two extremes
were both left open as possibilities: (a) every graph is universally stable; or (b) no
graph containing a directed cycle is universally stable. It was also left open
whether or not any or all greedy protocols are universally stable.

However, from a practical standpoint, stability is not enough. In order to
evaluate the performance of a stable system we use two parameters: maximum
queue size required and maximum end-to-end delay (delay for short) any packet
can experience. The size of a queue is the number of packets waiting to cross the
edge associated with the queue. The delay experienced by a packet is the time
the packet is in the system (i.e., time from injection until absorption).

1.1. BOUNDED ADVERSARIES. All the stability results shown in this work hold
for a broader class of bounded adversaries, which we define as follows: The rate
of an adversary in our work will be specified by a pair (b, r), where b $ 1 is a
natural number and 0 , r , 1. The requirement on the adversary is the
following: of the packets that the adversary injects in any interval I, at most

42 ANDREWS ET AL.

r uI u 1 b can have paths that contain any one edge. Such a model allows for
adversarial injection patterns that are “bursty.” In one time step, an adversary
can inject a large number of packets that all request the same edge, provided
simply that this does not result in more than r uI u 1 b packets requesting this
edge over any interval I. Observe that the maximum number of packets injected
in the same time step requesting a given edge is b, since for an interval I with
uI u 5 1, r uI u 1 b , b 1 1. This implies, for instance, that b $ 1.

The restrictions imposed in our bounded adversaries are realistic in the sense
that they are derived from the bucket-based techniques used for the shaping of
traffic in packet-switched networks. In order to shape the traffic injected in
session-oriented networks, for each session i there is a “bucket” of some size bi,
initially full of “tokens.” New tokens are generated and placed into the bucket
every 1/ri steps, where ri is the rate of the session; if the bucket is already full the
new tokens are lost. In order to inject a new session-i packet in the network, a
token has to be removed from the bucket. If the bucket is empty, the packet has
to wait for a new token to be placed there before being injected.

Since we do not want to restrict ourselves to session oriented systems, we have
defined the adversary requirements as if each edge in the network had an
associated bucket of size b. New tokens appear in each bucket every 1/r steps.
The adversary, in order to inject a new packet p in the system, has to remove one
token from each bucket associated with the edges traversed by p. If any of these
are empty, the injection has to wait.

Clearly, the adversaries defined in this way are more powerful than the
single-request based adversaries defined in Borodin et al. [2001], since they allow
for some burstiness in the packet injections. Furthermore, they are also more
powerful than the window-based adversaries defined in a previous version of this
work [Andrews et al. 1996]. There, the rate was specified by a pair (w, r), where
w (the window size) was a natural number and 0 , r , 1. The requirement on
the adversary was the following: of the packets that the adversary injects in any
interval of w steps, at most rw can have paths that contain any one edge. Figure
1 compares the power of the three classes in terms of the number of packets the
adversary could inject in a period of time that have to cross a given edge e. In
this figure, we take the same value of r for the three classes, and we assume that
b 5 rw. Clearly, our class of adversaries can inject at least as many packets as
the other two at all times.

1.2. OUR RESULTS. In this paper, we resolve the open questions of Borodin
et al. [2001] described above, and provide additional results on stability and
performance bounds. In particular, we show that

(i) There exist commonly used simple greedy protocols that are universally
stable.

(ii) There exists a simple distributed randomized greedy protocol that is univer-
sally stable with bounds on queue size and delay that are polynomial in d log
m, where d is the maximum path length and m is the number of edges in the
network. For many common networks, these bounds are therefore polyloga-
rithmic.

(iii) The n-node ring is universally stable, with maximum queue-size and delay
that are linear (in n).

43Greedy Contention-Resolution Protocols

(iv) There exist commonly used graphs and protocols that are not universally
stable.

We first show that several natural protocols are universally stable; we will refer
to them as Farthest-to-Go (FTG), Nearest-to-Source (NTS), Longest-in-System
(LIS), and Shortest-in-System (SIS). FTG gives precedence to the packet whose
distance to its destination is maximal; NTS gives precedence to the packet whose
distance (in number of edges) traversed is minimal; LIS gives precedence to the
packet injected the earliest; and SIS gives precedence to the packet most recently
injected.

Although these protocols are stable, we show that three of them (FTG, NTS,
and SIS) can require queues and delays of exponential size in the worst case. For
the fourth protocol, LIS, the best upper bounds on queue size and delay that we
can show are exponential, though we do not know of matching lower bounds.
Thus, it is natural to ask whether there exists a protocol with queues and delays
of polynomial size. We show that there is a simple distributed randomized
protocol with polynomial bounds on queue size and delay; as is standard, we say
that the queue size (respectively, delay) of a randomized algorithm in this setting
is polynomially bounded if the probability of its having a large queue (respec-
tively, delay) at any point in time is exponentially small. Our algorithm is based
on the Longest-in-System priority rule, with random perturbations, and it has a
very simple local-control implementation.

Our examples of instability (result (iv) above) hold even for an adversary that
injects at most one set of disjoint paths in each time step. The greedy protocols
that turn out to be unstable are FIFO, LIFO, Nearest-to-Go (NTG), and
Farthest-from-Source (FFS). FIFO and LIFO maintain the edge queues in
First-in-First-out and Last-in-First-out order respectively; the NTG protocol
always advances a packet whose distance to its destination is minimal; the FFS

FIG. 1. Number of packets injected over time requiring a given edge for each class of adversaries.

44 ANDREWS ET AL.

protocol always advances a packet whose distance to its source is maximal. The
FIFO protocol is widely used and NTG has at times been proposed for routing in
array-based parallel machines. Curiously, we show that these protocols can be
unstable on many common networks, including arrays and hypercubes.

We mentioned above that universal stability is a very basic algorithmic
problem for graphs; hence, we have the following natural question: Given a
graph G, is it universally stable? Our results (iii) and (iv) above show the
nontriviality of universal stability as a property; and it is not initially clear that it
should even be a decidable property, since it is asking whether every greedy
protocol is stable against every bounded adversary on G. For undirected graphs
with bi-directional edges, however, we show that universal stability is a decidable
property; and in fact it can be decided in polynomial time. To prove this, we
show that the set of universally stable graphs is closed under the taking of
minors; polynomial-time decidability then follows from results of Robertson and
Seymour [1986; 1990].

1.3. PRELIMINARIES. It is straightforward to formalize the model we have
been discussing above. In every time step t, the current configuration # t of the
system is a collection of sets {Se

t ;e [G}, such that Se
t is the set of packets

waiting in the queue for e at the end of step t. From the configuration # t, we
obtain the configuration # t11 for the next time step as follows. (1) We add new
packets to some of the sets Se

t , each of which has an assigned path in G; and (2)
for each nonempty set Se

t , we delete a single packet p [Se
t (as specified by a

contention-resolution protocol) and insert it into the set Sf
t11, where f is the edge

following e on its assigned path. (If e is the last edge on the path of p, then p is
not inserted into any set.) A time-evolution of G, of rate (b, r), is simply a
sequence of such configurations #1, #2, . . . , such that for all edges e and all
intervals I, no more than r uI u 1 b packets are introduced during I with an
assigned path containing e.

However, we prefer to keep the definitions slightly informal for the sake of
readability. We, therefore, will phrase results in terms of an adversary that adds
packets to the system, and a protocol that moves packets across edges. By the
system (G, !, 3) we simply mean the time-evolution of G induced by adversary
! and protocol 3. We view each time step t of this system as consisting of three
phases.

(i) Packets are injected by !.
(ii) Packets are moved by 3.

(iii) Packets that reach their destinations in Phase (ii) are absorbed.

Finally, we give some additional definitions.

Definition 1.4. A packet is said to require an edge e at time t if e lies on the
path from its position at time t to its destination.

For simplicity, we will assume that when a packet is injected, its assigned path
is simple; namely, it does not contain any edge more than once.

Definition 1.5. We say that ! is a bounded adversary, of rate (b, r), if for all
edges e and all intervals I, it injects no more than r uI u 1 b packets during I that
require edge e at their time of injection.

45Greedy Contention-Resolution Protocols

Note that a system is stable if and only if both the maximum number of packets
in any queue and the maximum end-to-end delay of any packet are bounded. The
following easy result shows that there is a close relation between these two
quantities.

THEOREM 1.6. Let (G, !, 3) be a system, where G is a graph with m edges, 3
is any greedy protocol, and ! is an adversary of rate (b, 1 2 «), 0 , « , 1. Suppose
there are never more than k packets in any queue, where mk . b. Then any packet
that is injected with a path of length d will be absorbed in at most 2mkd/« steps.
Conversely, if the maximum delay experienced by any packet is at most s, then there
are never more than s packets in any queue.

PROOF. Suppose there are never more than k packets in any queue at any
time. Then, there are never more than mk packets in the system. Consider a
queue q at time t. We claim that q becomes empty sometime in the next 2mk/«
steps. For if not, then a packet must leave q on each of the next 2mk/« time
steps. But there are only mk packets in the system at time t, and no more than

~1 2 «!
2mk

«
1 b 5

2mk

«
2 2mk 1 b

,
2mk

«
2 mk

packets arrive into q over the next 2mk/« time steps—this contradicts the
assumption that a packet leaves q in every one of these time steps.

From this it follows that a packet crosses at least one edge in 2mk/« time
steps. Hence, if a packet must cross d edges before being absorbed, it will be
absorbed in at most 2mkd/« time steps.

Now suppose that the maximum packet delay is at most s. If there were ever a
set of more than s packets in some queue q, the last packet in this set to leave q
would experience a delay of more than s, a contradiction.

2. Universal Stability of Protocols

In this section, we focus on the issue of universal stability for protocols: given a
contention-resolution protocol 3, is it stable on every network G, against every
bounded adversary !? We first present four simple protocols for which the
answer is affirmative. Our upper bounds on queue size and end-to-end delay for
all these protocols are exponential in the maximum path length d; thus, while the
bounds are large in general, they are fairly good when all packets require only
short paths. (In Section 4.2, we will present a randomized protocol with bounds
on queue size and delay that are polynomial in d log m.) After our upper
bounds, we show in Section 2.2 that several simple and very common protocols
are not universally stable. Table I summarizes the universal-stability properties of
the protocols studied in this section.

2.1. UNIVERSALLY STABLE PROTOCOLS. In this section, we show the universal
stability of four simple protocols. To do that, we upper bound the number of
packets waiting in any queue at any time (and therefore the number of packets in

46 ANDREWS ET AL.

the system at any time) and the end-to-end delay that any packet can experience.
These bounds are summarized in Table II.

2.1.1. SIS Is Universally Stable. Here we show that the Shortest-in-System
(SIS) protocol, which at every queue gives priority to the packet that was injected
most recently, is universally stable. Let G be a directed network, and ! some
bounded adversary of rate (b, 1 2 «), with « . 0. We will show the stability of
the system (G, !, SIS). We first show the following lemma:

LEMMA 2.1. Let p be a packet waiting in the queue of edge e at time t and
suppose there are currently k 2 1 other packets in the system requiring e that have
priority over p. Then p will cross e within the next (k 1 b)/« steps.

PROOF. Assume p does not cross e in the next (k 1 b)/« steps. Then, a
distinct packet crosses e in each of the (k 1 b)/« steps. But any packet in the
system during this time that has priority over p, and requires edge e, must either
be one of the k 2 1 packets existing at time t, or one of the (at most) (1 2
«)(k 1 b)/« 1 b packets requiring e that were injected during this time. Thus,
at most k 2 1 1 (1 2 «)(k 1 b)/« 1 b , (k 1 b)/« packets have priority over
p during this time, a contradiction.

We now define the numbers k1, k2, . . . by the recurrence k1 5 b, kj11 5
(kj 1 b)/«.

LEMMA 2.2. When a packet p arrives at the queue of the jth edge ej on its path
there are at most kj 2 1 packets requiring any edge e in the path of p with priority
over p.

PROOF. We use induction to prove the claim. It holds for j 5 1, since for any
edge e, the only packets requiring e that initially could have priority over p are
the (at most) b 2 1 packets injected in the same time step as p. Now, suppose
that the claim holds for some j. Then by the above lemma, p will arrive at the tail
of ej11 in at most another (kj 1 b)/« steps, during which time at most another
(1 2 «)(kj 1 b)/« 1 b packets requiring any edge e arrive with priority over p.
Thus, when p arrives at the tail of ej11, at most

kj 2 1 1
~1 2 «!~kj 1 b!

«
1 b 5 kj11 2 1

packets requiring an edge e have priority over p, and hence the claim holds.

TABLE I. UNIVERSAL STABILITY OF THE SIMPLE PROTOCOLS CONSIDERED

47Greedy Contention-Resolution Protocols

THEOREM 2.3. The system (G, !, SIS) is stable, no queue ever contains more
than kd packets, and no packet spends more than (db 1 (i51

d ki)/« steps in the
system, where d is the length of the longest simple directed path in G.

PROOF. First, assume there are kd 1 1 packets at some point all requiring
the same edge; the one of these with the lowest priority contradicts the claim of
the previous lemma.

Combining both lemmas above, a packet p takes at most (kj 1 b)/« steps to
cross the jth edge in its path, once it is in the queue for this edge. The delay
bound follows. e

2.1.2. LIS Is Universally Stable. The Longest-in-System (LIS) protocol gives
priority to the packet that has been in the system the longest. Let G be a directed
network, and ! an adversary of rate (b, 1 2 «), with « . 0. We show that the
system (G, !, LIS) is stable.

Let us denote by class , the set of packets injected in step ,. A class , is said to
be active at the end of step t if and only if at that time there is some packet in the
system of class ,9 # ,. Consider now some packet p, injected at time T0, and
whose path crosses edges e1, e2, . . . , ed, in this order. We use Ti to denote the
step in which p crosses edge ei, and t to denote some step in [T0, Td). Let ct

denote the number of active classes at the end of step t, and define c 5
maxt[[T0, Td) ct.

LEMMA 2.4. Td 2 T0 # (1 2 «d)c 1 (1 2 «d)/(1 2 «)b.

PROOF. The packet p reaches the tail of edge ei at time Ti21. Since p is still
in the system, all classes in [T0, Ti21] are active at the end of that step. Thus,
from the definition of c, there are at most c 2 (Ti21 2 T0) active classes of
packets that can block p in the queue of ei. Note that, by definition, all the active
classes are consecutive. Hence, there are at most (1 2 «)(c 1 T0 2 Ti21) 1 b
packets in these classes. Since p is one of these packets, at most (1 2 «)(c 1
T0 2 Ti21) 1 b 2 1 packets can block p. Therefore,

Ti # Ti21 1 ~1 2 «!~c 1 T0 2 Ti21! 1 b

5 «Ti21 1 ~1 2 «!~c 1 T0! 1 b.

TABLE II. UPPER BOUNDS ON QUEUE SIZE AND END-TO-END DELAY FOR THE SIMPLE

UNIVERSALLY STABLE PROTOCOLS CONSIDERED

48 ANDREWS ET AL.

Thus, solving the recurrence, we obtain

Td # ~~1 2 «!~c 1 T0! 1 b! O
i50

d21

« i 1 «dT0

5 ~~1 2 «!~c 1 T0! 1 b!
1 2 «d

1 2 «
1 «dT0

5 ~1 2 «d!c 1
1 2 «d

1 2 «
b 1 T0

and the claim follows. e

THEOREM 2.5. There are never more than b/(1 2 «)«d active classes in the
system (G, !, LIS), where d is the length of the longest simple directed path in G.

PROOF. Let c 5 b/(1 2 «)«d and assume that the end of step t is the first
time there are exactly c 1 1 active classes. Hence, at the end of step t, there are
packets that have been in the system for c 1 1 steps, and during the first c of
these steps no more than c classes were active.

However, from the above lemma, any packet that has at most c active classes
while in the system (except, maybe, the last step), is absorbed in at most

~1 2 «d!c 1
1 2 «d

1 2 «
b 1 1 5 c 1 1 2

b 2 ~1 2 «d!b

1 2 «
, c 1 1

steps, and we reach a contradiction. The inequality follows from the facts that
b $ 1 and « . 0.

COROLLARY 2.6. The system (G, !, LIS) is stable, there are never more than
b/«d 1 b packets in any queue and no packet spends more than b/(1 2 «)«d steps in
the system, where d is the length of the longest simple directed path in G.

2.1.3. FTG Is Universally Stable. The Farthest-to-Go (FTG) protocol gives
priority to the packet that still has to cross the largest number of edges. Let G be
a directed network, and ! a bounded adversary of rate (b, 1 2 «), with « . 0.
Let m be the number of edges and d be the length of the longest simple directed
path in the graph G. Let us define ki 5 0 for i . d and ki 5 mki11 1 mb for
1 # i # d.

THEOREM 2.7. The system (G, !, FTG) is stable, there are never more than k1
packets in the system, no queue ever contains more than k2 1 b packets, and no
packet spends more than 1/«(db 1 (i52

d ki) steps in the system.

PROOF. We prove by a backwards induction that, for all i, the number of
packets in the system that still have to cross at least i edges is at most ki.

This is trivial for i . d since each packet has to cross at most d edges. Now
consider a particular edge e and let Xi(t) be the set of packets in the queue of e
that still have to cross at least i edges at time t. Let t be the current time, and let
t9 be the most recent time step preceding t in which Xi(t9) was empty. Any
packet in Xi(t) must either have had at least i 1 1 edges to cross at time t9 or

49Greedy Contention-Resolution Protocols

else it must have been injected after time t9. But, from the definition of the
protocol, at every step t0 between times t9 and t a packet from Xi(t0) must have
been chosen to cross edge e. Hence, by the inductive hypothesis,

uXi~t! u # ki11 1 ~t 2 t9!~1 2 «! 1 b 2 ~t 2 t9!

5 ki11 2 «~t 2 t9! 1 b.

The above inequalities have three consequences. First, the number of packets
in the system that still have to cross i or more edges is always at most mki11 1
mb 5 ki and so the inductive step holds. Second, by making i 5 1, they give a
bound of k2 1 b on the maximum queue size. And third, t 2 t9 cannot be
greater than (ki11 1 b)/«. Hence, this expression gives the maximum amount of
time that a packet with i edges still to cross takes to cross the next edge.
Therefore, under FTG, the maximum number of packets in the system is
bounded by k1 and the maximum amount of time that any packet spends in the
system is bounded by (db 1 (i52

d ki)/«.

2.1.4. NTS Is Universally Stable. The Nearest-to-Source (NTS) protocol gives
priority to the packet that has crossed the smallest number of edges. Let G be a
directed network, and ! a bounded adversary of rate (b, 1 2 «), with « . 0. Let
m be the number of edges and d be the length of the longest simple directed
path in the graph G. Let us define ,0 5 0 and , i 5 m, i21 1 mb for i . 0. Note
that ,d2i11 5 ki, for i # d 1 1 and ki defined as in the previous section. We
can use a proof similar to the one of Theorem 2.7 to show that the number of
packets in the system that have crossed less than i edges is never larger than , i,
and that all of them will cross at least one edge in the next (, i21 1 b)/« steps.
Hence, we have the following result:

THEOREM 2.8. The system (G, !, NTS) is stable, there are never more than ,d

packets in the system, no queue ever contains more than ,d21 1 b packets, and no
packet spends more than (db 1 (i51

d21 ,i)/« steps in the system.

2.2. PROTOCOLS THAT ARE NOT UNIVERSALLY STABLE. In this section, we
show the instability of commonly-used protocols (namely, FIFO, LIFO, NTG,
and FFS) on simple networks, thus proving that these protocols are not
universally stable.

For lower bounds of the type we are interested in obtaining in this section, it is
advantageous to have an adversary that is as weak as possible. Thus, for the
purposes of this section, we say that an adversary ! has rate r if for every t $ 1,
every interval I of t steps, and every edge e, it injects no more than rt packets
during I that require e at the time of their injection.

We will present our lower bounds for systems that start from a nonempty
initial configuration. This implies instability results for systems with an empty
initial configuration, by the following simple lemma:

LEMMA 2.9. Let G be a graph, 3 be a greedy protocol, and ! an adversary of
rate r, and suppose the system (G, !, 3) is unstable starting with some nonempty
initial configuration. Then, there exists a system (G9, !9, 3) that is unstable starting
with an empty initial configuration, where !9 is an adversary of rate r.

50 ANDREWS ET AL.

PROOF. For each node of v [G, which in the system (G, !, 3) begins with
kv packets, we define a tree Tv rooted at v and otherwise disjoint from G. We
choose all Tv sufficiently large that there is an adversary !9 of rate r that can
inject kv packets into Tv such that

(i) Each packet is injected into øvTv in a different time step.
(ii) No packets in øvTv meet until they reach their roots in v.

(iii) Under any greedy protocol, all packets arrive at their roots in G in the same
time step t*. (This is possible by property (ii).)

Starting from time step t*, !9 behaves like !.

2.2.1. Instability of FIFO. Now, we define the graph G to be a four-node
directed cycle, with vertices v0, w0, v1, w1, and two parallel edges between wi

and v12i. G has edges ei from vi to wi, and edges f i, f9i from wi to v12i, see
Figure 2.

THEOREM 2.10. Let r $ 0.85. There is a nonempty initial configuration and an
adversary ! of rate r such that (G, !, FIFO) is unstable.

PROOF. We break the construction of ! into phases. Our induction hypothe-
sis will be as follows: At the beginning of Phase j, there will be at least s0 1 j
packets in the queue of ei, for i 5 0 or 1 (depending on whether j is even or
odd) and a large enough constant s0.

To start out, we have s0 packets queued at node v0. Then, the induction
hypothesis for Phase 0 is certainly met. For a general Phase j (suppose j is even),
we will show that, if at the beginning of j the queue of e0 contains a set S of s #
s0 packets, then at the start of Phase j 1 1, there will be more than s packets in
the queue of e1.

The sequence of injections in Phase j is as follows: For simplicity, we will omit
floors and ceilings, and sometimes will count steps and packets roughly; by

FIG. 2. Graph G used to show instability for FIFO and NTG.

51Greedy Contention-Resolution Protocols

carrying these through the computations one loses some additive constants,
which are offset by the fact that s0 is a large enough constant.

(1) For the first s steps, we inject a set X of rs packets that want to traverse
edges e0f90e1. These are blocked by the packets in S.

(2) For the next rs steps, we inject a set Y of r2s packets that want to traverse
edges e0f0e1. These are blocked by the packets in X.
We also delay the flow of packets in X through f90 using single-edge
injections. The new packets get mixed with the packets in X. In the process,
rs/(r 1 1) packets of X cross f90 and the size of X shrinks to r2s/(r 1 1).

(3) For the next r2s steps the packets in X and Y move forward, and merge at v1.
At the same time, r3s new packets that want to traverse edges e1 are injected
in v1. Since r2s packets cross e1, after these r2s steps the queue of e1
contains r3s 1 r2s/(r 1 1) packets.

This ends Phase j. Since r3s 1 r2s/(r 1 1) . s, we meet the induction
hypothesis for Phase j 1 1.

2.2.2. Instability of NTG. An adversary similar to the one described above
can be used to prove the instability of the Nearest-to-Go (NTG) protocol on the
same network G at any rate r . 1/=2. To do that, we change the claim in the
proof above so that we no longer force packets in S be in the queue of ei at the
beginning of Phase j; they can be anywhere in the network, but still require edge
ei. Note that single-edge injections have the highest priority under the NTG
protocol. Now, at the end of the second subphase the size of the set X has only
shrunk to r2s, and the claim follows, since uX u 1 uY u 5 2r2s . s. Note that we
no longer need the third subphase above.

2.2.3. Instability of FFS. The proof of instability for the Farthest-from-Source
(FFS) protocol is very similar to that of NTG. Note that in any phase j, under
FFS, the packets in the initial set S have priority over the packets in set X.
Therefore, the first subphase works exactly the same.

However, to block the packets of X during the second subphase we use packets
that traverse a two-edge linear array (incident to the node vi) before the edge f9i.
Hence, at the end of Phase j the set X will contain r(rs 2 2) packets, and the
resulting initial set for Phase j 1 1 contains 2r2s 2 2r packets. This is larger
than s for r . 1/=2 when s is large.

2.2.4. Instability of LIFO. We can also show the instability of the LIFO
protocol by slightly modifying the proof for NTG. Let us define the network G9
to be an eight-node cycle with some parallel edges. (See Figure 3.) The vertices
of G9 are denoted v0 to v7, and there is an edge leaving vi denoted ei.
Additionally, v3 and v7 have outgoing edges e93 and e97, respectively. G9 also has
four extra edges incoming to nodes v1, v2, v5, and v6, respectively. The edge
incident to node vi will be denoted f i. These f-edges are considered “faster” than
the e-edges, i.e., given an f-edge and an e-edge incoming to the same vertex v, if
one packet crosses each of them in the same step, the packet that crossed the
e-edge arrives later to v than the packet that crossed the f-edge.

THEOREM 2.11. Let r . 1/=2. There is a nonempty initial configuration and an
adversary ! of rate r such that (G9, !, LIFO) is unstable.

52 ANDREWS ET AL.

PROOF. The proof is similar to the proof of Theorem 2.10. We use induction
and show that, if there is a large enough set S of s packets requiring edges e0e1 at
the beginning of some phase j (for j even), at the end of the phase there will be
more than s packets requiring edges e4e5. For j odd, the argument is symmetric.

The subphases of Phase j are now as follows:

(1) For the first s steps, we inject a set X of rs packets that want to traverse
edges f1e1e2e93e4e5. Since f1 is a fast edge, at any step the packet of S
crossing e0 always arrives to v1 after the packet from X crossing f1 (if any),
and blocks it.

(2) For the next rs steps, we inject a set Y of r2s packets that want to traverse
edges f2e2e3e4e5. Since f2 is fast, the rs packets of X initially at the tail of e1
block the packets in Y at the queue of edge e2.

Also, we block the packets of X at the queue of e93 with single-edge injections.
(New injections always arrive later in the step, and block other packets.) At the
end of this subphase, there will be r2s of them there.

This is the end of Phase j, there are 2r2s . s packets at the tail of e2 and e93,
and the induction hypothesis for Phase j 1 1 holds.

We will show in Section 3.2 that these instability results also hold for any
network that topologically contains any of the graphs used here. This includes
k-dimensional arrays, hypercubes, and most other common networks except trees
and cycles. As a consequence, we can conclude that FIFO, NTG, FFS, and LIFO
are unstable for all these networks.

3. Universal Stability of Networks

We now consider the universal stability of networks. We begin our study with the
case of the n-node ring, since it is situated between the class of directed acyclic
graphs—which are known to be universally stable by a result of Borodin et al.
[2001]—and the simple cyclic graphs of Section 2.2, which are not universally
stable. Thus, it is natural to ask whether there is any universally stable network
that contains a directed cycle. In what follows, we establish that cyclicity itself is
not the obstacle, by showing that the ring is universally stable.

FIG. 3. Graph G9 used to show instability for LIFO.

53Greedy Contention-Resolution Protocols

A natural next question is whether one can characterize the set of universally
stable graphs. We show that for undirected graphs, there is a polynomial-time
algorithm that decides universal stability.

3.1. THE RING IS UNIVERSALLY STABLE. Let G denote the n-node ring. We
use the numbers 1, . . . , n to denote the edges, and vi to denote the queue at the
tail of edge i. Fix arbitrary b $ 0 and « . 0. Our goal is to show that any greedy
queueing discipline 3 is stable against any adversary of rate (b, 1 2 «).
Roughly, the proof will proceed as follows: We fix a large number Q9, and
suppose by way of contradiction that there comes a (first) time at which there is
a set S of Q9 1 1 packets in the system, all requiring a common edge e. For the
interval of time between the injection of the first and last of the packets in S,
there are no more than Q9 packets requiring any common edge; from this we
obtain the contradiction that for Q9 sufficiently large, one of the packets in S
must have crossed e before the last packet in S was injected.

We now give the proof in detail; we begin by developing some general facts
about the behavior of 3. Let us consider some packet p in the system (G, !, 3).
We suppose it was injected in step T0, at node vi0

, with destination n. Let T9 .
T0 be some time at which it has not yet been absorbed. Let vi0

, . . . , vi01s be the
nodes through which p passes in the interval [T0, T9]. We write ik 5 i0 1 k. For
k 5 0, . . . , s, let Tk denote the time at which p first reaches vik

(i.e. when it
crosses edge i0 1 k 2 1, if k . 0); by abuse of notation, we will also write
Ts11 5 T9.

By the definition of the edges i0, . . . , is, we have

LEMMA 3.1. For each k 5 0, . . . , s, and each t [(Tk, Tk11], some packet
crosses edge ik in step t.

PROOF. For 0 # k # s 2 1, the packet p crosses ik in step Tk11; and at step
Ts11 5 T9, either p or some other packet crosses is. Since p waits at the tail of
ik for every step t [(Tk, Tk11], and 3 is a greedy protocol, it follows that some
packet crosses edge ik in every step t [(Tk, Tk11].

For j, an edge of G, and t [[T0, T9], we define Pj, t to be the number of
packets in the system at the end of step t that require edge j. Note the following
basic property of Pj, t.

LEMMA 3.2. Let t and t9 be such that t9 # t. Then

Pj, t # Pj, t9 1 ~1 2 «!~t 2 t9! 1 b 2 z,

where z is the number of packets that cross edge j in the interval (t9, t].

We define

Q 5 max
j[G, t[[T0,T9)

Pj, t .

For j and t as before, we now define the function f as f(j, T0) 5 Q 1 (b 1
1)(j 2 i0), and f(j, t) 5 Q 2 «(t 2 T0) 1 (b 1 1)(1 1 j 2 i0), for t . T0.
We note the following properties of this function f:

54 ANDREWS ET AL.

LEMMA 3.3

(i) f(j, t) 5 f(j, T0) 2 «(t 2 T0) 1 b 1 1, for t . T0.
(ii) f(j, t) 5 f(j, t9) 2 «(t 2 t9), for t . t9 . T0.

(iii) f(j 1 1, t) 5 f(j, t) 1 b 1 1.

Definition 3.4. If j is an edge of G and t is a time step, we say that the pair
(j, t) is applicable if either

—j 5 ik for some k, and t [[T0, Tk11], or
—j . is and t [[T0, T9].

Note the following basic property of applicability:

LEMMA 3.5. If (j, t) is applicable and (j 2 1, t) is not, then j 5 ik for some k,
and t [(Tk, Tk11].

The crux of our analysis is the following lemma:

LEMMA 3.6. For all applicable pairs (j, t), we have Pj,t # f(j, t).

PROOF. We prove the lemma by induction on j $ i0, and for fixed j by
induction on t. First, the basis of the induction for any fixed j is easily proved as
follows: If (j, T0) is applicable, then f(j, T0) $ Q, and by assumption we have
Pj, t # Q for all t [[T0, T9).

Now, consider any applicable pair (j, t), with t . T0. If, for the past t 2 T0
consecutive steps, a packet has crossed edge j in each step, then by Lemmas 3.2
and 3.3, and the induction hypothesis, we have

Pj, t # Pj, T0
1 ~1 2 «!~t 2 T0! 1 b 2 ~t 2 T0!

5 Pj, T0
2 «~t 2 T0! 1 b

f~ j, T0! 2 «~t 2 T0! 1 b

, f~ j, t! .

Otherwise, there is some step t9 [(T0, t] in which no packet crosses edge j. Let
us take the most recent such step preceding t. Note that the pair (j, t9) is
applicable. We claim that in this case the pair (j 2 1, t9) is also applicable. For
suppose not; then by Lemma 3.5, j 5 ik for some k, and t9 [(Tk, Tk11]— but
this contradicts Lemma 3.1. Thus, (j 2 1, t9) is applicable, and so is (j 2 1,
t9 2 1). Since 3 is greedy, the queue vj is empty at the end of step t9 2 1, and
hence Pj21, t921 $ Pj, t921. Again applying Lemmas 3.2 and 3.3, and the
induction hypothesis, we have

Pj, t # Pj, t921 1 ~1 2 «!~t 2 t9 1 1! 1 b 2 ~t 2 t9!

Pj21, t921 1 b 1 1 2 «~t 2 t9 1 1!

f~ j 2 1, t9 2 1! 1 b 1 1 2 «~t 2 t9 1 1!

5 f~ j, t9 2 1! 2 «~t 2 t9 1 1!

5 f~ j, t! .

55Greedy Contention-Resolution Protocols

Using this lemma, we now prove the main two results of this section.

THEOREM 3.7. (G, !, 3) is stable, and there are never more than (b 1 1)n/«
packets in the system that require any given edge.

PROOF. The second statement implies the first, so we will concentrate on
proving the second statement. Set Q9 5 (b 1 1)n/«, and suppose that the
theorem is not true. Let T9 be the first time at which Q9 1 1 packets in the
system require a given edge, say edge n without loss of generality; let T0 , T9
denote the time at which the first of these was injected. Note that Q # Q9. In
interval [T0, T9] at most

~T9 2 T0 1 1!~1 2 «! 1 b

packets can be injected requiring any edge. Therefore,

Q9 # ~T9 2 T0 1 1!~1 2 «! 1 b,

and hence

T9 2 T0 $
Q9 2 b

1 2 «
2 1 $ Q9.

By our assumption we have Q9 , Pn, T9, and by Lemma 3.6, we have Pn, T9 #
f(n, T9). But since T9 2 T0 $ Q9, we have

Q9 , f~n, T9!

5 Q 2 «~T9 2 T0! 1 ~b 1 1!~1 1 n 2 i0! # Q9 2 «Q9 1 ~b 1 1!n 5 Q9,

a contradiction.

THEOREM 3.8. The maximum number of steps a packet spends in the system is
O(bn«22).

PROOF. Suppose that a packet p is injected at time T0, with origin i0 and
destination n, and suppose it is still not absorbed at time T9, where T9 5 T0 1
(b 1 1)n(«21 1 «22). Then, by Theorem 3.7, we can apply Lemma 3.6 with
Q 5 (b 1 1)n/«, and we have

Pn , T9 # f~n, T9!

5 Q 2 «~T9 2 T0! 1 ~b 1 1!~1 1 n 2 i0!

5 «21~b 1 1!n 2 «~b 1 1!n~«21 1 «22! 1 ~b 1 1!~1 1 n 2 i0!

0

which is a contradiction.
One can show that packet delays of V(bn) and V(n«22) can be realized for

most common protocols, which means that our bounds are nearly tight in the
general case.

3.2. DECIDING UNIVERSAL STABILITY OF NETWORKS. In Sections 3.1 and 2.2,
we have seen that the property of universal stability holds for some graphs, but

56 ANDREWS ET AL.

not for others. We therefore turn to the problem of characterizing those graphs
that are universally stable. Initially, it is not at all clear that universal stability
should be a decidable property, since we are implicitly quantifying over all
adversaries and all protocols. Our main result here is that universal stability is
decidable, and in fact by an algorithm running in time O(n2). We note, however,
that this result requires tools from the Graph-Minors work of Robertson and
Seymour, and hence we do not exhibit an explicit characterization of the set of
graphs that are universally stable.

We remark that, subsequent to the initial appearance of these results, an
explicit algorithm to decide universal stability of a graph was obtained by Goel
[1997]. Goel presents three simple graphs H1, H2, H3 and shows that a directed
graph G is universally stable if and only if none of H1, H2, H3 is a minor of G.
In work following this, Gamarnik [1998] has demonstrated how universal stability
results for networks can also be derived using fluid models, an approach that has
proved useful in the analysis of stochastic queueing networks.

In this section, we assume that the input is an undirected graph G, which may
have self-loops and parallel edges. The network on which packets will be routed
is a copy of G, which we call Gd, in which each undirected edge e 5 {u, v} is
replaced by two directed edges e1 5 (u, v) and e2 5 (v, u). We require the
adversary to inject only packets that traverse simple paths in G—namely, paths
that do not cross the same edge e of G twice. We then say that G is universally
stable, as before, if every greedy protocol is stable against every such bounded
adversary. Given these definitions, universal stability holds for the (undirected)
cycle, by the result of Section 3.1, and for every tree, by a slight variant of results
of Borodin et al. [2001]. (Note that for the ring, if the injected paths are simple
then the packets can be divided into two classes with no interaction, each class
running on a unidirectional ring.) However, the undirected version of the graph
in Section 2.2 is not universally stable. We required the injected paths to be
simple in order to conclude that cycles and trees are universally stable as
undirected (rather than directed) graphs.

The crucial fact we show here is that the family of universally stable graphs is
a minor-closed set; this is what allows us to apply the results of Robertson and
Seymour [1995]. We first give some preliminary definitions.

Definition 3.9. Let G be an undirected graph, e an edge of G, and v1, v2 the
vertices incident to e. We define T(G, e) to be the graph obtained from G by
removing the edge e and merging both vertices v1, v2 into a single vertex v. The
edges incident to v in the resulting graph will be the union of the edges incident
to v1 and v2, except for the deleted edge e.

We say that a graph H is a minor of a graph G if it can be obtained from a
subgraph of G by zero or more applications of transformation T. A set of graphs
& is said to be minor-closed if whenever G [&, every minor of G is also in &.
Our objective is to show that the set of universally stable graphs is minor-closed.
We will do this essentially as follows: If H is not universally stable, then there is
a bounded adversary ! and a protocol 3 such that the system (Hd, !, 3) is not
stable; then, given a graph G such that H is a minor of G, we use ! and 3 to
construct a bounded adversary !9 and protocol 39 such that the system (Gd, !9,
39) is unstable.

57Greedy Contention-Resolution Protocols

First, the following fact is immediate, since one can always define an adversary
that only makes injections on a subgraph of the given network.

LEMMA 3.10. If H is a subgraph of G and H is unstable, then G is also unstable.

We now want to show that stability is propagated through applications of the
transformation T; to prove this, we argue by contraposition that if H 5 T(G, e)
is not universally stable, then G is not universally stable. Thus, with G and H
defined in this way, let ! be an adversary of rate (b, r), r , 1, and 3 a greedy
protocol such that (Hd, !, 3) is unstable. We need to present a bounded
adversary !9 of rate (b9, r9), r9 , 1, and a protocol 39 such that (Gd, !9, 39)
is unstable.

The transformation T contracts edge e of G, collapsing vertices v1, v2 into a
single vertex v0 in H. Let D i denote the number of edges incident to vi, and D 5
D1 1 D2. Then, in Gd there are D i incoming edges to vi and D i outgoing edges
from vi. Let e1 be the directed edge from v1 to v2 and e2 the directed edge from
v2 to v1 in Gd. For the sake of readability, we will speak of edges e Þ e1, e2 and
vertices v Þ v1, v2 as belonging to both G and H (rather than talking about the
implicit isomorphism underlying this).

Now, for a path P in Hd, represented as a sequence of edges, we define the
transformed path g(P) in Gd as follows: Whenever an edge e Þ e1, e2 incident to
v1 appears directly before (respectively, after) an edge e9 Þ e1, e2 incident to v2,
we insert the edge e1 (respectively, e2) between them.

We first derive a new adversary !G for the graph Gd from the original
adversary ! for H as follows: When ! injects a packet in H with path P, !G

injects a packet in G with path g(P). Note that for any edge e9 common to Hd

and Gd, the number of packets injected by !G at any given step requiring e9 is
exactly the same as the number injected by !. For edges e1 and e2, we have the
following:

LEMMA 3.11. In the system (Gd, !G, 30), with 30 an arbitrary protocol, the
number of packets in the queue for ei (i 5 1, 2) at the end of step t is at most D more
than the number at the end of step t 2 1.

PROOF. Without loss of generality, we consider the case ei 5 e1. The lemma
follows from the fact that at most D1 # D packets requiring e1 cross incoming
edges to v1 during each step, and the fact that !G never injects a packet in v1
that requires e1.

However, the number of packets injected by !G requiring edges ei has the
following property:

LEMMA 3.12. The number of packets injected by !G requiring edge ei in t
consecutive steps is at most (rt 1 b)D/2.

PROOF. Again, we consider e1. A packet injected by !G that requires e1 has
to require also one incoming edge to v1 and one outgoing edge from v2. We have
D1 such incoming edges to v1 and D2 such outgoing edges from v2. Since in t
steps !G injects at most rt 1 b packets requiring any of these edges, and a
packet requiring e1 requires one edge from each group, the total number of
packets injected requiring e1 is at most min{(rt 1 b)D1, (rt 1 b)D2} # (rt 1
b)D/ 2.

58 ANDREWS ET AL.

We now present another adversary !9 and a new protocol 39, and we will show
that (Gd, !9, 39) is unstable. The behavior of !9 and 39 in the interval of steps
[(D 1 1)(t 2 1) 1 1, (D 1 1)t], for any t . 0, is described in the two
following phases:

(1) In step (D 1 1)(t 2 1) 1 1, the adversary !9 behaves exactly like !G in
step t, and 39 behaves exactly like 3 in step t (with arbitrary policy for the
edges ei).

(2) In each of the other D steps, !9 injects a packet pe for each edge e Þ e1, e2
of Gd; the packet pe requires only edge e. In these steps, 39 gives maximum
priority to the packets { pe}, and uses an arbitrary policy for the edges ei.

We claim that the system (Gd, !9, 39) evolves in essentially the same way as
the system (Hd, !, 3), with D 1 1 steps in the former substituting for one step
in the latter. Phase 1 represents the original step of (Hd, !, 3), while Phase 2 is
used to move packets across the gap v1, v2 if necessary, while the rest of the
system is blocked. If we assume both systems are initially empty, we can show the
following lemma. Let {SG, e

t ;e [G} and {SH, e
t ;e [H} denote the configura-

tions of (Gd, !9, 39) and (Hd, !, 3) respectively, at the end of time step t.

LEMMA 3.13. Let e Þ e1, e2 be an edge common to H and G, and let t be any
time step. Then SH,e

t 5 SG,e
(D11)t. Also, Sei

(D11)t 5 f.

PROOF. We use induction on t. Since initially both systems are empty, the
claim is true for t 5 0. Now suppose the lemma holds for t, and consider time
t 1 1. In step (D 1 1)t 1 1, the adversary !9 performs injections according to
!G (Phase (1) above), and hence at the end of this time step, the only difference
between the configurations of (Gd, !9, 39) and (Hd, !, 3) is that certain
packets which should be in the queue for an edge leaving v1 (respectively, v2) are
instead in the queue of edge e2 (respectively, edge e1). However, by the
induction hypothesis, the queue for ei is empty at the end of step (D 1 1)t, and
so by Lemma 3.11 there are at most D packets in the queue for ei. Thus, over the
next D steps (Phase (2) above), all these packets will cross edge ei. No other
packet that appears in both Gd and Hd will cross any edge during these D steps,
since all are blocked by the single-edge injections. Hence, at the end of step
(D 1 1)(t 1 1), the queues for e1 and e2 are empty, and all other edge queues
are the same in Gd and Hd.

The above lemma shows that the system (Gd, !9, 39) is unstable. However,
we still have to argue that !9 is a bounded adversary.

LEMMA 3.14. If ! has rate (b, r), then !9 has rate ((r 1 b)((D/2) 1 1) 1 1,
(D 1 r)/(D 1 1)); since (D 1 r)/(D 1 1) , 1, !9 is therefore bounded.

PROOF. Since ! is an adversary of rate (b, r), in t consecutive steps no more
that rt 1 b packets are injected in (Hd, !, 3) requiring any edge. We study the
behavior of !9 over an interval I of length t. Such an interval I contains at most
t/(D 1 1) 1 1 steps corresponding to Phase 1 of our construction, and at most
Dt/(D 1 1) 1 1 steps corresponding to Phase 2.

Thus, by Lemma 3.12, the number of packets injected requiring edges e1 or e2
in these steps is at most (r(t/(D 1 1) 1 1) 1 b)D/ 2. For any other edge e, at
most r(t/(D 1 1) 1 1) 1 b packets are injected in steps corresponding to Phase

59Greedy Contention-Resolution Protocols

1, and exactly one packet is injected in every one of the at most Dt/(D 1 1) 1 1
steps corresponding to Phase 2. Thus, the total number of packets injected
during interval I that require e is at most t(D 1 r)/(D 1 1) 1 r 1 b 1 1.

Therefore, in any t consecutive steps, no more than t(D 1 r)/(D 1 1) 1 (r 1
b)((D/ 2) 1 1) 1 1 packets are injected requiring any one edge, and hence !9 is
an adversary of rate ((r 1 b)((D/ 2) 1 1) 1 1, (D 1 r)/(D 1 1)).

By the previous two lemmas, we have

LEMMA 3.15. If H 5 T(G, e) is not universally stable, then G is not universally
stable.

Now by Lemmas 3.10 and 3.15, we find that universal stability is indeed a
minor-closed property.

THEOREM 3.16. If G is universally stable, and H is a minor of G, then H is
universally stable.

Finally, we discuss the algorithmic consequences of Theorem 3.16. Robertson
and Seymour, via their proof of Wagner’s Conjecture, have shown that if & is an
arbitrary minor-closed set of graphs, then there is a finite list of graphs H1, . . . ,
Hk such that G [& if and only if none of H1, . . . , Hk is a minor of G. That is,
any minor-closed set of graphs is defined by the exclusion of a finite set of graphs
as minors. They also provide an O(n3) time algorithm to test whether any fixed
graph H is a minor of an arbitrary n-node graph [Robertson and Seymour 1995].
It follows from these two facts that there is an O(n3) time algorithm to test for
membership in any minor-closed set of graphs. Finally, when the minor-closed
family & does not contain all planar graphs, results of Robertson and Seymour
[1986; 1990] (see also Robertson and Seymour [1995]) imply that one can test for
membership in & in time O(n2).

Thus, in our case, the minor-closed family of graphs we are dealing with is the
set of universally stable graphs, and by Theorem 2.10, this family does not
contain all the planar graphs. Hence, we have

THEOREM 3.17. There is an algorithm with running time O(n2) that decides if a
graph is universally stable.

Gamarnik [1999] has subsequently considered a related network model in
which each edge is undirected and can carry a single packet in one step. (This is
in contrast to the bi-directed edges considered above, each of which can carry a
single packet in each direction.) He obtained a simple characterization theorem
for universal stability of networks in this model.

4. Bounds on Queue Size and Delay for Universally-Stable Protocols

The maximum queue size and end-to-end delay required by a protocol are the
main parameters determining its performance. The issue of stability asks whether
these parameters can become unbounded; but among universally stable proto-
cols, it is important to identify those that maintain the smallest possible queues
and delays.

Ideally, we would like to have a protocol that never holds more than a constant
number of packets in any queue, and therefore no packet is delayed more than a
constant times its path length. However, since we are dealing with adversarial

60 ANDREWS ET AL.

packet injection, it is easy to construct examples of networks and adversaries for
which any greedy protocol will require queues of super-constant size.

Now, it is interesting to observe that for all four of the universally stable
protocols presented in Section 2.1, we have only been able to show exponential
upper bounds on the maximum queue size and maximum end-to-end delay. In
Section 4.1, we show that three of the protocols presented there actually require
exponential queue size and delay, for some network G and some adversary !.

In Section 4.2, we then present a simple distributed randomized greedy
protocol that requires only polynomially-bounded queues, with high probability.
Therefore, the end-to-end delay under this protocol is also polynomially
bounded.

4.1. SIS, FTG, AND NTS REQUIRE EXPONENTIAL QUEUE SIZE AND DELAY.
We now show that under the protocols SIS, FTG, and NTS the queue sizes can
become exponential. This trivially implies that some packet has to wait an
exponential number of steps to reach its destination.

In order to make the result more general, we use the type of adversary
considered in Section 2.2. We say that an adversary ! has rate r 5 1 2 «, if for
every t $ 1, every interval I of t steps, and every edge e, ! injects no more than
rt packets during I that require e at the time of injection.

4.1.1. The Bound for FTG. We note that it is easy to get an exponential lower
bound on queue sizes under FTG for any rate r . 1/=2. The proof is based on
the instability result for NTG presented in Section 2.2. The network used is
simply the network G used there (see Figure 2) with a directed (away from G)
linear array of length n attached to each of its four nodes. We use these “tails”
appended to G to force under FTG the priorities in the proof of instability for
NTG during Q(n) phases.

To do so, in some Phase j, we want the packets in the initial set S to block the
packets injected during the phase (which will form the initial set for Phase j 1
1). To do so, the packets in S instead of being absorbed at node wi, go down the
tail that starts at wi for an appropriate number of edges. This number of edges is
n 2 1 for the first phase, and decreases by 2 every phase. Similarly, a single-edge
injection that was supposed to be absorbed at node v12i under NTG now goes all
the way down the tail that starts at v12i. That gives it the highest priority (as with
NTG).

Therefore, we can apply roughly n/ 2 phases of a process similar to that
presented in Section 2.2.2. In each phase the number of packets in G increases
by a factor , . 1, and therefore after the Q(n) phases some queue in G will
contain ,V(n) packets.

4.1.2. The Bound for NTS. We can show an exponential lower bound for NTS
using a similar construction. The graph G from Section 2.2 is expanded with a
linear array of length n to each of its four nodes. At the beginning of Phase j
(assume j even) we assume that the initial set S is already in the system, and will
start crossing edge e0 in exactly k steps (i.e., the packets in S will cross e0 in steps
k to k 1 s 2 1 after the beginning of the phase). We also assume that e0 is at
most the k 1 1st edge in their path.

Then, in the first subphase (of s steps) we inject the set X of rs packets in the
linear array incident to v0, at a distance of k 1 1 from v0. These packets will

61Greedy Contention-Resolution Protocols

reach the queue of edge e0 roughly at the same time the packets in S do, but
under NTS these new packets have lower priority to cross e0, since this is their
k 1 2nd edge, and will be blocked there.

The second subphase (of rs steps) starts immediately after the first (the
packets injected in the first may still be traveling down the linear array). The set
Y of r2s packets is injected in the same node as X. We also inject r2s packets
requiring edge f90 in the linear array incident to w0, at distance k from w0, which
will eventually meet those of X and block them.

This ends Phase j. After another k 1 3 steps a train of about 2r2s packets (the
initial set for Phase j 1 1) will arrive to v1, therefore meeting the initial
conditions for the next phase. We can repeat this process for about Q(n/3)
phases. If each phase increases the size of the initial set by a factor of , . 1, at
the end we have a set of at least ,V(n) packets queued at the nodes of G.

4.1.3. The Bound for SIS. The proof for SIS is more involved and is presented
now. First, we define the graph G on which the proof works. Consider first the
linear array L with m 1 2 nodes 0, 1, . . . , m 1 1, with two parallel edges, ei

0

and ei
1, from node i to node i 1 1, for 0 # i # m 2 1, and with an edge em

from node m to node m 1 1. Choose an « # 1/(m 1 2) and an s $ 2m 1 1,
and construct a tree T such that an adversary ! with rate 1 2 « can inject (1 2
«)s packets during an interval of s steps with the following property. They are
injected at the leaves of T and they all reach the root of T in the last step of the
interval. By a similar argument to the proof of Lemma 2.9, if s 5 O(m), then T
can be constructed with O(m2) edges. The graph G is obtained by connecting L
and T, making the node 0 of L the root of T.

We now construct an adversary ! with rate 1 2 « that injects packets in phases
of s steps each. We number the first 2m phases from 0 to 2m 2 1. For some fixed
i [{0, . . . , 2m 2 1}, let bm21 . . . b0 be the m-bit binary representation of i.
Then, in Phase i the adversary injects (1 2 «)s packets at the leaves of the
subgraph T of G, all requiring edges e0

b0 e1
b1 . . . em21

bm21 em, so that all of them
reach node 0 in the last step of Phase i. It also injects (1 2 «)s packets requiring
only edge ej

b# j, for all 0 # j # m 2 1.
Let us define k0 5 (1 2 «)s, and kj 5 2kj21 2 «s2 j21 for 1 # j # m. The

crucial fact is the following:

LEMMA 4.1. For all j [{0, . . . , m}, let ij [{0, 1, . . . , 2m2j 2 1} and bm2j21
. . . b0 be the (m 2 j)-bit binary representation of ij. Then, at the end of Phase 2j(ij 1
1) 2 1, there are at least kj packets in the system (G, !, SIS) still requiring edges
ej

b0ej11
b1 . . . em21

bm2j21 em. All these packets are in nodes of the subgraph L of G.

PROOF. We shall use induction on j. The claim is trivially true for j 5 0 since,
by the definition of !, at the end of Phase i there are (1 2 «)s 5 k0 packets in
node 0 all requiring edges e0

b0e1
b1 . . . em21

bm21 em, where bm21
. . . b0 is the m-bit

binary representation of i.
Let us now assume the result holds for some j and consider some i j11 whose

(m 2 j 2 1)-bit binary representation is bm2j22
. . . b0. Let i j

0 5 2i j11 and let
i j
1 5 2i j11 1 1. Then, the (m 2 j)-bit binary representation of i j

0 is bm2j22
. . .

b00 and the (m 2 j)-bit binary representation of i j
1 is bm2j22

. . . b01.
From the induction hypothesis, at the end of Phase 2 j(i j

0 1 1) 2 1, there are
kj packets in the nodes of L requiring ej

0ej11
b0 . . . em21

bm2j22 em. Since i j
0 1 1 is an

62 ANDREWS ET AL.

odd number, the m-bit binary representation bm21 . . . b0 of any i [{2 j(i j
0 1

1), . . . , 2 j(i j
0 1 1) 1 2 j 2 1} has the bit bj 5 1. Hence, during these 2 j phases

all the packets injected requiring ej
0 are single-edge injections. Therefore, during

these 2 j phases, there are (1 2 «)s2 j packets injected that require the single
edge ej

0. Under SIS new injections have higher priority; hence at the end of
Phase 2 j(i j

0 1 1) 1 2 j 2 1 5 2 j(i j
1 1 1) 2 1 there are at least kj 2 s2 j 1 (1 2

«)s2 j 5 kj 2 «s2 j packets in the nodes of L still requiring edges ej
0ej11

b0 . . .
em21

bm2j22 em.
Also by the induction hypothesis, at the end of Phase 2 j(i j

1 1 1) 2 1 there are
at least kj packets in nodes of L requiring edges ej

1ej11
b0 . . . em21

bm2j22 em. Therefore,
there are at least 2kj 2 «s2 j 5 kj11 packets in the nodes of L requiring edges
ej11

b0 . . . em21
bm2j22 em at the end of Phase 2 j(i j

1 1 1) 2 1 5 2 j11 (i j11 1 1) 2 1.

THEOREM 4.2. At the end of Phase 2m 2 1, there are at least (2m 1 1)2m21

packets in the system (G, !, SIS) requiring edge em, and there are at least 2m21

packets in some queue of the system.

PROOF. From Lemma 4.1 with j 5 m and i j 5 0, at the end of Phase 2m 2
1, there are at least km packets in the nodes of L requiring edge em. Then, the
theorem follows, since km 5 2mk0 2 m«s2m21 5 s2m21 (2 2 «(m 1 2)) $
(2m 1 1)2m21. There are only 2m 1 1 queues where these packets can be held,
hence some queue contains at least 2m21 packets.

Note that the construction for SIS uses an adversary of rate 1 2 Q(1/m).

4.2. A RANDOMIZED GREEDY PROTOCOL WITH POLYNOMIAL QUEUE SIZE AND

DELAY. In Table III, we present the asymptotic bounds we have found for the
simple protocols studied. Note that FTG, NTS and SIS require exponential
queue size and delay, while we have not been able to prove otherwise for LIS.

In this section, we present a randomized greedy protocol with polynomially
bounded queues, and hence polynomially bounded delays. We say that a
randomized protocol 3 has polynomially bounded queues if there is a polynomial
p[such that for any network G with m edges, any adversary !, any t . 0, and
any g . 1, the probability that at time t there are more than gp(m) packets in
any queue of the system (G, !, 3) is exponential in 2g.

The bound we obtain for our protocol is polynomial in d log m; thus, for
systems in which only short paths are used, this bound is polylogarithmic in the
network size.

4.2.1. The Definition of the Protocol. Let ! be an adversary of rate (b, r). Let
d denote the length of the longest simple directed path and m the number of
edges in G. Below, we will define some parameters T, T9, and m in terms of m,
r, and d. When a packet p is injected at time t, it is assigned a label of value
T9t/T 1 l(p), where l(p) is an integer chosen uniformly at random from the

TABLE III. ASYMPTOTIC BOUNDS FOR THE SIMPLE UNIVERSALLY STABLE PROTOCOLS CONSIDERED

63Greedy Contention-Resolution Protocols

interval [1, m]. At any edge queue, the packet with the smallest label is advanced;
this packet’s label is then incremented by 1.

The remainder of this section is devoted to defining the parameters T, T9, and
m appropriately, and then analyzing the resulting protocol.

4.2.2. Schedules and Suffixes. The following lemma will be useful. If X is a set
of packets in a graph G, each with a fixed path to traverse, a schedule for X is a
function s giving, for each packet p [X and each edge e in the path of p, the
time at which p crosses e. (We assume throughout that time values are
nonnegative integers.) We require that no two packets cross the same edge at the
same time. The makespan of s is the largest absorption time of any packet in X,
under the schedule s.

We say that a greedy schedule s9 is a suffix of s if s9 can be obtained from s as
follows. First, position each packet p [X at some vertex on its path. Now
inductively construct s9 as follows: at a given edge e and time t 5 0, 1, . . . ,
advance the packet in the queue of e that crosses e first under s.

LEMMA 4.3. If s9 is a suffix of s, then the makespan of s9 does not exceed that
of s.

PROOF. We prove by induction on t that for any packet p [X, p is at least as
far along its path at time t under s9 as it is under s. For suppose this is false, and
consider the smallest t for which there is a packet p that is farther along under s
than under s9. Then by the minimality of t, we know that p did not move at time
t under s9—suppose it waited in the queue for edge e—and that p crossed e at
time t under s.

Since s9 is a greedy schedule, it must be that some packet q Þ p traversed the
edge e at time t. By the inductive definition of s9, q must have crossed edge e
strictly before time t under s. Thus, at time t 2 1, q has not yet crossed e under
s9, but has crossed e under s; this contradicts the minimality of t.

4.2.3. A Static Protocol. In setting up the analysis of our dynamic protocol, it
is helpful to consider first a randomized (nongreedy) protocol for the static
routing problem—that is, the problem of routing a set of N packets, all initially
in the system, in the network G. This protocol is derived from a distributed
randomized algorithm presented for this problem by Leighton et al. [1994].

Let us first assume that we have a set of N packets to be routed in a network G
such that no packet has to traverse a path of more that d edges (dilation) and no
edge is in more than c packet paths (congestion). Leighton et al. [1994]
presented a distributed randomized algorithm that routes all the packets in
O(c 1 d log(Nd)) steps, with high probability. Here we slightly modify the
parameters of the algorithm so the routing takes (1 1 e)c 1 O(d log(mcd))
steps, for any e . 1.

The algorithm for the static problem works as follows. First, each packet p is
assigned an integer value l(p) chosen randomly, independently, and uniformly
from [1, ac/log(mcd)], where a is a (small) constant. Let us define b 5 1 1 e
and divide the routing time into intervals of b/a log(mcd) consecutive steps. A
packet p waits in its initial queue for l(p) intervals, and then traverses its path
one edge per interval. We say that the algorithm fails if more than b/a log(mcd)
packets try to cross some edge e in some interval i.

64 ANDREWS ET AL.

The probability that the algorithm fails can be bounded using Chernoff
bounds. Let Ne, i be the random variable denoting the number of packets trying
to cross edge e in interval i. The expected value of Ne, i is at most log(mcd)/a .
Thus

PrFNe, i .
b

a
log~mcd!G # expS1 2

1

b
2 ln bDb

a
log~mcd!

5 ~mcd!b~1 2 ln b! 2 1/a ln 2.

The probability that the algorithm fails can be crudely upper-bounded by
multiplying the above expression by the number of possible choices of e (at most
m) and by the number of possible choices of i (at most d 1 ac/log(mcd)). Thus,
assuming c, d $ 2 and a # 1, the failure probability is at most

~mcd!~b~1 2 ln b! 2 1!/a ln 2 1 1;

having chosen b, we can choose a small enough that

b~1 2 ln b! 2 1

a ln 2
1 1 , 21, (1)

and hence force the probability of failure to be at most (mcd)21.
Therefore, with probability at least 1 2 (mcd)21, the number of steps taken

to route with the static protocol is at most

S d 1
ac

log~mcd!
D b

a
log~mcd! 5 bc 1

db

a
log~mcd!.

4.2.4. The Analysis of the Dynamic Protocol. Let us now go back to the
dynamic problem and consider an adversary ! of rate (b, r). We may assume
without loss of generality that r $ 1/ 2, since an adversary of rate (b, r9) with
r9 , 1/ 2 is also an adversary of rate (b, 1/ 2). We will also assume that m $ 2
and d $ 2.

We define b 5 1 1 (1 2 r)/8r and then choose a small enough relative to b
as in the preceding subsection. Note that

b2 , 1 1
1 2 r

2r
,

1

r
.

Finally, we choose a value of T large enough so that

T . bSb~rT 1 b! 1
db

a
log~md~rT 1 b!!D.

It is easy to check that we may choose such a T that is Q(d log m/(1 2 r)), and
we will assume the constant of proportionality in the Q[is chosen large enough
that T(1 2 (1/b)) $ 4.

We picture time as being divided into blocks of length T, and consider the set
of packets Xi injected in the ith block of time, i 5 1, 2, We would

65Greedy Contention-Resolution Protocols

essentially like to run the static algorithm defined above on each set Xi in turn;
note that the congestion of the packets in Xi is at most rT 1 b. Thus, in the
definition of the protocol at the beginning of this section, we set m 5 a(rT 1
b)/log(md(rT 1 b)), and T9 . m 1 d. The effect of this definition of T9 is the
packets in Xi will always have priority over those in Xj for j . i. Let us say that
Xi is successful if the set of random labels chosen for the packets in Xi, when
used in the static algorithm above, causes it to terminate within time

b21T . b~rT 1 b! 1
db

a
log~md~rT 1 b!!.

By the above analysis, each Xi is successful with probability at least 1 2
(md(rT 1 b))21.

A best-case scenario would be the following: The packets in X1 are successful
and hence absorbed by time 2T (note that the last packet in X1 only arrives at
time T). This gives priority to the packets in X2. The packets in X2 are also
successful and hence absorbed by time 3T. This gives priority to the packets in
X3, and so on.

Unfortunately, the analysis of the static algorithm shows that there is a positive
probability of any given set Xi being unsuccessful, and this is what we consider
below. Let t i denote the time at which the last packet in X1 ø X2 ø . . . Xi is
absorbed under the dynamic protocol, and d i 5 t i 2 (i 1 1)T. Thus, d i tells
how much “behind schedule” the absorption of the sets preceding Xi11 was. We
now claim the following:

LEMMA 4.4. If di $ T(1 2 1/b), and Xi11 is successful, then di11 # di 2 T(1 2
1/b).

PROOF. Consider the set of packets in Xi11 at time t i; from this time until
they are absorbed, these packets have higher priority than any other packet in
the system. Consider the schedule s9 on this set of packets defined by their
positions and labels at time t i. Also, consider the schedule s defined by the
initial labels of the packets in Xi11, assuming that they were all released from
their sources at the same time. The schedule s9 is a suffix of the schedule s; thus,
by Lemma 4.3 and our assumption that Xi11 is successful, the packets in Xi11
will be absorbed by time t i 1 T/b. Hence, t i11 2 t i # T/b, and the lemma
follows.

Finally, we can show that the protocol has polynomially bounded queues.
When the random variable d i exceeds T(1 2 1/b), it goes down by T(1 2 1/b)
with probability at least 1 2 (md(rT 1 b))21; and otherwise it goes up by at
most cd # d(rT 1 b). Thus, the expected change in d i is less than or equal to

2S1 2
1

md~rT 1 b!
DTS1 2

1

b
D 1

1

m

2
3

4
z 4 1

1

2

, 22.

66 ANDREWS ET AL.

Thus, the sequence of random variables d1, d2, d3, . . . exhibits the following
properties. The quantity d i11 2 d i is never greater than d(rT 1 b); and when d i

exceeds the constant T(1 2 1/b), the expected value of d i11 2 d i is less than
22. Now a standard result in stochastic processes (see Hajek [1982] and Kahale
and Leighton [1995]) implies that the probability of d i exceeding gd(rT 1 b) is
exponential in 2g, independent of i.

Since T $ rT 1 b, it follows that at any time t, the probability of there being
more than gd nonempty sets of packets Xi is exponential in 2g, and hence the
protocol has polynomially bounded queues.

5. Remarks and Open Questions

We have classified many of the standard simple greedy protocols known to us in
terms of their universal stability. However, it would be interesting to study other
simple protocols from the point of view of stability, as well as to study the
behavior of the protocols of this paper in more detail. We suggest the following
three sets of open questions.

First, we do not know of a deterministic, distributed queueing protocol with
polynomially-bounded queues and end-to-end delays. We feel it is of consider-
able interest to determine whether such a protocol exists. (We note that the
randomized protocol of Section 4.2 can be converted into a deterministic,
centralized protocol with polynomially bounded queues; thus, the emphasis is on
finding a protocol that is both deterministic and distributed.) In recent work,
Andrews and Zhang [2000] show that LIS can produce delays of V(ed). More
generally they show that for any deterministic protocol that selects the packet to
advance independently of the packet routes, the delay bound cannot be better
than O(e=d). Hence, a deterministic, distributed protocol with polynomially
bounded end-to-end delays must take the packet routes into account.

Throughout most of this paper, our focus has been on adversaries with rates
arbitrarily close to 1. But it is interesting to study the behavior of protocols
against adversaries of rates bounded away from 1. In Section 2.2, we showed that
LIFO, NTG, and FFS can be unstable at any injection rate greater than 1/=2; a
recent result of Borodin et al. [2001] shows that there exist adversaries of
arbitrarily small positive rates that cause these protocols to be unstable. How-
ever, an analogous result is not known for FIFO, and so we can ask: does there
exist a rate r0 . 0 such that FIFO is stable against every adversary of rate
(b, r0), for every b and every network? Similarly, does one of FTG, NTS, or SIS
become polynomially bounded when the injection rate is made small enough?

Finally—the assumption that a packet is injected with a prespecified path
through the network is fairly standard within the context of queueing theory;
however, for packet-routing problems, an alternative approach is to consider an
adversarial model of adaptive routing. Here, an adversary injects packets with
only their destinations specified, subject to a rate restriction that, say, requires
there to be a feasible integral multicommodity flow from the newly injected
sources to their destinations. The contention resolution protocol is then free to
route each packet on an arbitrary path to its destination. This model is closer to
the setting of the Awerbuch and Leighton [1994] multicommodity-flow algo-
rithm. In recent work, following the initial appearance of these results, Aiello et
al. [1998] and Gamarnik [1999] have examined this problem; they present

67Greedy Contention-Resolution Protocols

adaptive routing algorithms that achieve stability in all networks, against all
bounded adversaries.

ACKNOWLEDGMENTS. We thank Allan Borodin for helpful discussions.

REFERENCES

AIELLO, W., KUSHILEVITZ, E., OSTROVSKY, R., AND ROSÉN, A. 1998. Adaptive packet routing for
bursty adversarial traffic. In Proceedings of the 30th Annual ACM Symposium on Theory of
Computing (Dallas, Tex., May 23–26). ACM, New York, pp. 359 –368.

ANDREWS, M., AWERBUCH, B., FERNÁNDEZ, A., KLEINBERG, J., LEIGHTON, T., AND LIU, Z. 1996.
Universal stability results for greedy contention-resolution protocols. In Proceedings of the 37th
Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los
Alamitos, Calif., pp. 380 –389.

ANDREWS, M., AND ZHANG, L. 2000. The effects of temporary sessions on network performance.
In Proceedings of the 11th Annual ACM–SIAM Symposium on Discrete Algorithms (San Francisco,
Calif., Jan. 9 –11). ACM, New York, pp. 448 – 457.

AWERBUCH, B., AND LEIGHTON, F. T. 1994. Improved approximations for the multi-commodity
flow problem and local competitive routing in networks. In Proceedings of the 26th Annual ACM
Symposium on Theory of Computing (Montreal, Que., Canada, May 23–25). ACM, New York, pp.
487– 498.

BORODIN, A., KLEINBERG, J., RAGHAVAN, P., SUDAN, M., AND WILLIAMSON, D. P. 2001. Adver-
sarial queueing theory. J. ACM 48, 1 (Jan.), 13–38.

BRODER, A., AND UPFAL, E. 1996. Dynamic deflection routing on arrays. In Proceedings of the 28th
Annual ACM Symposium on Theory of Computing (Philadelphia, Pa., May 22–24). ACM, New York,
pp. 348 –355.

BRODER, A. Z., FRIEZE, A. M., AND UPFAL, E. 1996. A general approach to dynamic packet
routing with bounded buffers. In Proceedings of the 37th Annual IEEE Foundations of Computer
Science. IEEE Computer Science Press, Los Alamitos, Calif.

CRUZ, R. L. 1991a. A calculus for network delay. Part I: Network elements in isolation. IEEE
Trans. Inf. Theory 37, 1 (Jan.) 114 –131.

CRUZ, R. L. 1991b. A calculus for network delay. Part II: Network analysis. IEEE Trans. Inf.
Theory 37, 1 (Jan.) 132–141.

GAMARNIK, D. 1998. Stability of adversarial queues via fluid models. In Proceedings of the 39th
Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los
Alamitos, Calif. pp. 60 –70.

GAMARNIK, D. 1999. Stability of adaptive and non-adaptive packet routing policies in adversarial
queueing networks. In Proceedings of the 31st Annual ACM Symposium on Theory of Computing
(Atlanta, Ga., May 1– 4). ACM, New York, pp. 206 –214.

GOEL, A. 1997. Stability of networks and protocols in the adversarial queueing model for packet
routing. Tech. Rep. STAN-CS-97-59, Stanford Univ. Stanford, Calif.

HAJEK, B. 1982. Hitting-time and occupation-time bounds implied by drift analysis with applica-
tions. Adv. Appl. Prob. 14, 502–525.

HARCHOL-BALTER, M., AND BLACK, P. E. 1994. Queueing analysis of oblivious packet-routing
algorithms. In Proceedings of the 5th Annual ACM–SIAM Symposium on Discrete Algorithms (San
Francisco, Calif., Jan. 9 –11). ACM, New York, pp. 448 – 457.

HARCHOL-BALTER, M., AND WOLFE, D. 1995. Bounding delays in packet-routing networks. In
Proceedings of the 27th Annual ACM Symposium on Theory of Computing (Las Vegas, Nev., May
29 –June 1). ACM, New York, pp. 248 –257.

KAHALE, N., AND LEIGHTON, T. 1995. Greedy dynamic routing on arrays. In Proceedings of the 6th
Annual ACM–SIAM Symposium on Discrete Algorithms (San Francisco, Calif., Jan. 22–24). ACM,
New York, pp. 558 –566.

KELLY, F. P. 1979. Reversibility and Stochastic Networks. Wiley, New York.
KLEINROCK, L. 1975. Queueing Systems. Wiley, New York.
LEIGHTON, T. 1990. Average case analysis of greedy routing algorithms on arrays. In Proceedings of

the 2nd Annual ACM Symposium on Parallel Algorithms and Architectures (Island of Crete, Greece,
July 2– 6). ACM, New York, pp. 2–10.

LEIGHTON, F. T., MAGGS, B. M., AND RAO, S. B. 1994. Packet routing and job-shop scheduling in
O(congestion 1 dilation) steps. Combinatorica 14, 2, 167–186.

68 ANDREWS ET AL.

MITZENMACHER, M. 1994. Bounds on the greedy routing algorithm for array networks. In Proceed-
ings of the 6th Annual ACM Symposium on Parallel Algorithms and Architectures (Cape May, N.J.,
June 27–29). ACM, New York, pp. 346 –353.

OSTROVSKY, R., AND RABANI, Y. 1997. Universal O(congestion 1 dilation 1 log11e N) Local
Control Packet Switching Algorithm. In Proceedings of the 29th Annual ACM Symposium on Theory
of Computing (El Paso, Tex., May 4 – 6). ACM, New York, pp. 644 – 653.

RABANI, Y., AND TARDOS, É. 1996. Distributed packet switching in arbitrary networks. In Proceed-
ings of the 28th Annual ACM Symposium on Theory of Computing (Philadelphia, Pa., May 22–24).
ACM, New York, pp. 366 –375.

ROBERTSON, N., AND SEYMOUR, P. D. 1986. Graph minors. V. Excluding a planar graph. J. Com-
binat. Theory, Ser. B 41, 92–114.

ROBERTSON, N., AND SEYMOUR, P. D. 1990. Graph minors. IV. Tree-width and well-quasi-
ordering. J. Combinat. Theory, Ser. B 48, 227–254.

ROBERTSON, N., AND SEYMOUR, P. D. 1995. Graph minors. XIII. The disjoint paths problem.
J. Combinat. Theory, Ser. B 63, 65–110.

SCHEIDELER, C., AND VÖCKING, B. 1996. Universal continuous routing strategies. In Proceedings of
the 8th Annual ACM Symposium on Parallel Algorithms and Architectures (Padua, Italy, June 24 –26).
ACM, New York, pp. 142–151.

STAMOULIS, G. D., AND TSITSIKLIS, J. N. 1994. The efficiency of greedy routing in hypercubes and
butterflies. IEEE Trans. Commun. 42, 11 (Nov.), 3051–3061.

TASSIULAS, L., AND GEORGIADIS, L. 1996. Any work-conserving policy stabilizes the ring with
spatial re-use. IEEE/ACM Trans. Netw. 4, 2 (Apr.), 205–208.

RECEIVED JANUARY 1999; REVISED AUGUST 2000; ACCEPTED AUGUST 2000

Journal of the ACM, Vol. 48, No. 1, January 2001.

69Greedy Contention-Resolution Protocols

