
Source Routing and Scheduling in Packet Networks

MATTHEW ANDREWS

Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey

ANTONIO FERNÁNDEZ

LADyR, GSyC, Universidad Rey Juan Carlos, Madrid, Spain

ASHISH GOEL

Department of Management Science and Engineering and (by courtesy) Department of Computer
Science, Stanford University, Stanford, California

AND

LISA ZHANG

Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey

Abstract. We study routing and scheduling in packet-switched networks. We assume an adversary
that controls the injection time, source, and destination for each packet injected. A set of paths for
these packets is admissible if no link in the network is overloaded. We present the first on-line routing
algorithm that finds a set of admissible paths whenever this is feasible. Our algorithm calculates a path
for each packet as soon as it is injected at its source using a simple shortest path computation. The
length of a link reflects its current congestion. We also show how our algorithm can be implemented
under today’s Internet routing paradigms.

When the paths are known (either given by the adversary or computed as above), our goal is to
schedule the packets along the given paths so that the packets experience small end-to-end delays. The

This work was partially supported by DIMACS funding.
A preliminary version of this article appeared in Proceedings of the 42nd IEEE Annual Symposium
on Foundations of Computer Science (FOCS), IEEE Computer Society Press, Los Alamitos, Calif.,
2001.
The work of A. Fernández was partially supported by the Spanish MCyT under grant TIC2001-1586-
C03-01, the Comunidad de Madrid under grant 07T/0022/2003, and the Universidad Rey Juan Carlos
under grant PPR-2004-42.
The work of A. Goel was partially supported by a National Science Foundation (NSF) Career Award
and an Alfred P. Sloan faculty fellowship.
Authors’ addresses: M. Andrews and L. Zhang, Bell Laboratories, 600–700 Mountain Avenue, Murray
Hill, NJ 07974, e-mail: {andrews, ylz}@research.bell-labs.com; A. Fernández, Universidad Rey Juan
Carlos, C/Tulipán S/N, 28933 Móstoles, Madrid, Spain, e-mail: antonio.fernandez@urjc.es; A. Goel,
Stanford University, Stanford, CA 94305, e-mail: ashishg@stanford.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 0004-5411/05/0700-0582 $5.00

Journal of the ACM, Vol. 52, No. 4, July 2005, pp. 582–601.

Source Routing and Scheduling in Packet Networks 583

best previous delay bounds for deterministic and distributed scheduling protocols were exponential
in the path length. In this article, we present the first deterministic and distributed scheduling protocol
that guarantees a polynomial end-to-end delay for every packet.

Finally, we discuss the effects of combining routing with scheduling. We first show that some
unstable scheduling protocols remain unstable no matter how the paths are chosen. However, the
freedom to choose paths can make a difference. For example, we show that a ring with parallel links
is stable for all greedy scheduling protocols if paths are chosen intelligently, whereas this is not the
case if the adversary specifies the paths.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Packet-switching networks; store and forward networks; F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—Sequencing
and scheduling

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Adversarial queuing theory, end-to-end delay, packet routing,
packet scheduling, network stability

1. Introduction

Two of the most important problems in the control of packet-switched networks
are routing and scheduling. The goal of routing is to assign a path to a packet from
its source to its destination. The goal of scheduling is to deal with the contention
that occurs when two or more packets wish to cross a link simultaneously. Each
link must have a scheduler that resolves this contention by deciding which packet
to advance.

The scheduling problem typically assumes that the paths of the packets are given
as part of the input. The goal is then to schedule the packets along their paths
in such a way that they all reach their destinations in a short time. Much recent
work has focused on the Adversarial Queuing Model, for example, Borodin et al.
[2001], Andrews et al. [2001], and Gamarnik [1998]. We follow their conven-
tion and assume that all packets are unit size and each link processes one packet
per time step. In this Adversarial Queuing Model, the adversary chooses the injec-
tion time, source, destination, and route for each packet injected. A sequence of
injections is called (w, r)-admissible for a window size w and injection rate r < 1,
if in any time interval of length w the total number of packets injected into the
network whose paths pass through any link e is at most wr . These paths are also
called (w, r)-admissible. Previous work has examined the performance of a num-
ber of simple scheduling protocols in this model. A packet-scheduling protocol is
said to be universally stable if it guarantees bounded buffer sizes and packet trans-
mission delays for any (w, r)-admissible injections. In Andrews et al. [2001], it
was proved that several natural protocols (Longest-In-System, Shortest-In-System,
Furthest-To-Go) are universally stable, whereas several others (First-In-First-Out,
Last-In-First-Out, Nearest-To-Go) are not.

In this article, we study both routing and scheduling. The adversary no longer
specifies the route of each packet; it merely specifies the source and destination.
However, we are guaranteed that (w, r)-admissible paths for the injections do exist.
The problem is now twofold. We first need to find some (W, R)-admissible paths,
possibly for a different window size W and a different R < 1. These admissible
paths combined with a universally stable scheduling scheme, such as the ones in
Andrews et al. [2001] or the one presented in Section 3 of this article, result in a
universally stable protocol for routing and scheduling.

584 M. ANDREWS ET AL.

1.1. SOURCE ROUTING FOR STABILITY

1.1.1. Our Result. In Section 2 of the article, we present the first online
algorithm for assigning admissible routes to packets. If the adversary can assign
(w, r)-admissible routes, then our algorithm finds a set of (W, R)-admissible routes
where R ∈ (r, 1) is of our choice and W ≥ w is determined by the choice of R.
The algorithm makes use of the knowledge of w and r .

Hence, if the parameter of merit is the window size w , then our algorithm is a
W/w-approximation algorithm (modulo a small increase in the rate). Moreover, our
algorithm is online in that it assigns routes to packets as soon as they are injected
into the network. Hence it can also be regarded as a W/w-competitive algorithm
for this problem. This is the first approximation algorithm/competitive algorithm
for this problem. Once the routes are chosen, we can use any “good” scheduling
protocol in the Adversarial Queuing Model.

Our algorithm is based on the ε-approximation algorithm for fractional maximum
multicommodity concurrent flow given by Garg and Könemann [1998], which in
turn builds upon the work of Plotkin et al. [1994] and Young [1995]. In the maximum
multicommodity concurrent flow problem, the demands for each commodity remain
constant as the algorithm progresses. In our setting, the demands between source-
destination pairs correspond to the packets injected by the adversary, which can
change over time. Even though the algorithm of Garg and Könemann [1998] is an
offline algorithm that assigns fractional paths to a fixed set of commodities, in our
setting we are able to convert it into an online algorithm that assigns an integral
path to each packet as soon as it is injected.

1.1.2. Implementation under Internet Routing Paradigms. At a high level, our
algorithm works as follows: Each link maintains a measure of congestion that
represents how many packets have been routed through it in the recent past. Packets
are then routed on shortest paths with respect to this congestion measure. Hence,
we need a mechanism for distributing congestion information from the links to the
source nodes. We also need a mechanism by which a source node can inform a link
whenever it routes a packet through that link.

The first requirement could be satisfied by something akin to the OSPF (Open
Shortest Path First) link state flooding protocol. (See, e.g., Keshav [1997].) This is
a protocol that is used for flooding link state information to the nodes in a network
so that packets may be routed along shortest paths. The second requirement may
be satisfied by the MPLS (Multi-Protocol Label Switching) protocol that is gaining
increasing acceptance in the Internet. (See, e.g., Rosen et al. [2001].) With this
protocol, a source node can compute an explicit route to each destination and then
distribute a label for the route to each of the links that comprise the route. In
combination with this label distribution, the source can also specify how much
traffic it is going to send on the route.

In Section 2, we first assume that this control information is transmitted instanta-
neously and does not contribute to the congestion in the network. We then consider a
model in which the control information is transmitted in-band through the network
and must contend with the data traffic. The overhead due to the control information
is negligible compared to the “slack” w(1 − r) as the window size increases, so the
extra control information has no qualitative impact on our results.

1.1.3. Relation to Previous Work. Routing and scheduling as a combined prob-
lem has been studied in the past. For example, Aiello et al. [1998] presented a

Source Routing and Scheduling in Packet Networks 585

distributed algorithm motivated by the Awerbuch–Leighton multicommodity flow
algorithm [Awerbuch and Leighton 1994]. Gamarnik [1999] gave a solution based
on an approximation algorithm for static routing. Neither algorithm requires knowl-
edge of the system parameters (like ours do). However, both these algorithms require
a dependence between how a packet is routed and how it is scheduled. Hence, their
routing schemes only work in association with their specific scheduling schemes,
but not with generic scheduling algorithms. Neither routing algorithm can be used
to provide packets with admissible paths at injection time. Using networking termi-
nology, these routing algorithms correspond to active routing [Tennenhouse et al.
1997], where intermediate routers need to actively participate in determining routes
for each individual packet. In contrast, our algorithm corresponds to source routing,
where the entire path of a packet is known at the source.

1.2. DETERMINISTIC DISTRIBUTED SCHEDULING WITH POLYNOMIAL DELAYS.
In Section 3 of the article, we study the scheduling problem in isolation, assuming
that (w, r)-admissible paths are given (and that w and r are known). In recent years,
a number of scheduling algorithms have been proposed that guarantee network sta-
bility, that is, the number of packets in the network remains bounded and the
end-to-end delay experienced by packets remains bounded. For example, the
Longest-In-System protocol that always gives priority to the packet injected into
the system earliest, was shown in Andrews et al. [2001] to guarantee a delay bound
of O(w/(1 − r)dmax), where dmax is the maximum length of a path assigned to any
packet. Note however, that this bound is exponential in dmax. It has been an open
problem whether or not any deterministic, distributed scheduling protocol has a
polynomial delay bound in the Adversarial Queuing Model. Indeed, Andrews et al.
[2001] remarked that “it is of considerable interest to determine whether such a
protocol exists”.

A randomized protocol based on Longest-In-System can guarantee that each
packet experiences a delay of poly(w, 1/(1 − r), dmax, log m) with high probabil-
ity [Andrews et al. 2001], where m is the number of links in the network. (This
protocol, like ours, makes use of the knowledge of the system parameters.) In
essence, for most of the time, the protocol is successful and keeps all delays small.
However, even if the failure probability is small, if the algorithm is run for an ex-
tended period of time then the algorithm is likely to make some random choices that
are bad. This causes packets to violate the delay bound. Moreover, if one packet
violates the delay bound then other packets injected along the same path at similar
times are also likely to violate the delay bound. Hence, all of the packets that make
up a single file transfer could be excessively delayed. Although this randomized
protocol can be derandomized in a centralized manner, it seems hard to convert
it into a deterministic, distributed protocol. This is because the “success condi-
tion” involves packets injected at multiple source nodes and hence it cannot be
verified locally.

1.2.1. Our Result. In Section 3, we present the first deterministic, distributed
scheduling protocol with a polynomial delay bound. It guarantees that all packets
reach their destination within poly(w, 1/(1 − r), m) steps of their injection. We
start by presenting a randomized protocol in which the “success condition” can
be verified at the source nodes independently. This allows us to derandomize the
protocol in a distributed fashion. Like the randomized protocol of Andrews et al.

586 M. ANDREWS ET AL.

[2001], our deterministic distributed protocol makes use of the knowledge of (some
bound on) w and r . Removing this requirement remains an interesting open problem.

1.3. THE EFFECTS OF COMBINING SOURCE ROUTING WITH SCHEDULING. In
the final part of the article, we consider the following question: Is it possible for
unstable scheduling protocols to become stable if paths can be chosen by a routing
algorithm as opposed to being dictated by the adversary? We first present a network
and a sequence of packet injections such that, regardless of how the routes for these
packets are chosen, many greedy protocols (including FIFO) remain unstable. Thus,
we cannot hope to achieve stability using FIFO, even if we have the freedom to
choose routes. However, we also present an example in which the ability to select
the routes does make a difference. We show that in a “ring” with multiple parallel
links, if we are allowed to choose the routes intelligently then we can ensure that
all greedy scheduling protocols are stable. However, if the adversary dictates the
routes then many scheduling protocols (including FIFO) are unstable.

1.4. OTHER RELATED WORK. Much traditional work on routing focuses on the
problem of routing flows online, for example, Awerbuch et al. [1993, 1994]. Each
flow requests a bandwidth from a source to a destination, and we must choose
a path for each accepted flow without violating any link capacity. The goal is to
maximize the online acceptance rate. However, this work does not consider packet-
level behavior.

The problem of choosing routes for a fixed set of packets was studied by
Srinivasan and Teo [1997] and Bertsimas and Gamarnik [1999]. For example,
Srinivasan and Teo [1997] present an algorithm that minimizes the congestion and
dilation of the routes up to a constant factor. This result complemented the paper
of Leighton et al. [1994], which showed that packets could be scheduled along a
set of paths in time O(congestion+dilation).

2. Source Routing for Stability

For convenience, we use the following weaker notion of admissibility in this section.
We say that a set of packet paths is weakly (w, r)-admissible if we can partition
time into windows of length w such that for each window in the partition and each
link e, the number of paths that pass through e and correspond to packets injected
during the window is at most wr . However, this distinction is not important due to
Lemma 2.1. Moreover, all of the delay bounds that have been derived in the past
for the Adversarial Queuing Model apply to weakly (w, r)-admissible paths.

LEMMA 2.1. If a set of paths is (w, r)-admissible, then it is also weakly (w, r)-
admissible. Conversely, weak (w, r)-admissibility implies (w ′, r ′)-admissibility for
some w ′ ≥ w and r ′ ∈ [r, 1).

PROOF. Suppose the injections are weakly (w, r)-admissible. We show that
they are (w ′, r ′)-admissible for r ′ = (1 + r)/2 and w ′ ≥ 4rw/(1 − r). Due to weak
admissibility and our choice of r ′, the number of injections during w ′ steps for any
link e is at most, (

w ′

w
+ 2

)
rw ≤ r ′w ′.

The other direction is trivial.

Source Routing and Scheduling in Packet Networks 587

FIG. 1. Procedure to find routes for packets injected during one phase.

We assume an adversary that injects weakly (w, r)-admissible packets into the
network.1 Our aim is to choose weakly (W, R)-admissible routes for these packets
where R ∈ (r, 1) is of our choice and W ≥ w is determined by the choice of R.

2.1. THE BASIC ROUTING PROTOCOL. We first assume that control information
is communicated instantaneously. Whenever a source node chooses a route for a
packet, this information is instantaneously transmitted to all the links on the route.
Whenever the congestion on a link changes, this fact is instantaneously transmitted
to all the source nodes. Later, on we relax these assumptions. As mentioned in the
Introduction, the algorithm is based on the Garg–Könemann offline approximation
algorithm for fractional maximum concurrent flow. However, in our setting, we can
convert it into an online algorithm that chooses integral paths for the packets.

2.1.1. Protocol. We route every packet injected along the path whose total
congestion is the smallest under the current congestion function c(·), that is, we
route along shortest paths with respect to c(·). Initially, the congestion along every
link is set to δ where δ is defined in (2). For every link e along the chosen route,
its congestion c(e) is updated to c(e)(1 + µ/w) where µ is defined in (1). We reset
the congestion of every link to its initial value of δ at the beginning of each phase.
A phase terminates in t windows of w steps, where t is an integer defined in (3).
Figure 1 illustrates the procedure for one phase. The values of µ, δ and t are defined
as follows: Let m be the number of links in the network. For any R ∈ (r, 1) of our
choice, let

µ = 1 −
(r

R

)1/3
(1)

δ =
(

1 − rµ

m

)1/rµ

(2)

t =
⌊

1 − rµ

rµ
ln

1 − rµ

mδ

⌋
+ 1. (3)

Clearly, this routing algorithm requires knowledge of (some bound on) the value
of the parameters w and r . Our objective is to show,

THEOREM 2.2. For all packets injected during one phase, at most twR of their
routes chosen by our procedure go through the same link. In other words, these
routes are weakly (tw, R)-admissible.

1 In fact, as will be seen later, we only need to assume that the adversary can choose fractional paths
that are weakly (w, r)-admissible.

588 M. ANDREWS ET AL.

2.1.2. Analysis. To prove Theorem 2.2, let us examine an integer program for-
mulation for routing the set of packets injected during a window of w time steps.
Let Pj be the set of possible routes for the j th packet, and let variable x j (p) ∈ {0, 1}
indicate whether or not route p ∈ Pj is chosen for packet j . The following linear
relaxation of the integer program (LP) has an optimal solution λ ≥ 1 since the
injections are weakly (w, r)-admissible. We present both the primal and the dual.

Primal
max λ

subject to : ∑
p∈Pj

x j (p) ≥ λ ∀ j

∑
j

∑
p:e∈p,p∈Pj

x j (p) ≤ rw ∀e

x j (p) ≥ 0 ∀ j, ∀p ∈ Pj

Dual
min

∑
e rw · c(e)

subject to : ∑
e∈p

c(e) ≥ z(j) ∀ j, ∀p ∈ Pj∑
j

z(j) ≥ 1

c(e) ≥ 0 ∀e

z(j) ≥ 0 ∀ j

For any non-negative congestion function c(·), let D = ∑
e c(e) be the total con-

gestion of all links. For packet j , let q j be the least congested path in terms of c. We
use α = ∑

j

∑
e∈q j

c(e) to represent the total congestion of these least congested
paths. It can be shown that the dual is equivalent to,

min
c

rw · D/α.

The congestion found at the end of window i by our protocol (see Figure 1) defines
a valid solution to this reformulated dual for window i . We exploit this connection
to prove Theorem 2.2. The key here is to bound the total link congestion since
the link congestion increases only when a path goes through it. In particular, the
following three lemmas show that the total link congestion is no more than 1 at
the end of a phase. Let ci (e), Di and αi represent the values of c(e), D and α at the
end of the i th window.

LEMMA 2.3. Di/αi ≥ 1/rw for 1 ≤ i ≤ t .

PROOF. Since the injections are (w, r)-admissible, the primal LP for window
i has max λ ≥ 1. Since the congestion ci found by our protocol defines a dual
solution, our lemma follows from duality.

LEMMA 2.4. Di ≤ Di−1

1−rµ
.

Source Routing and Scheduling in Packet Networks 589

PROOF. It suffices to show Di ≤ Di−1 + αi · µ/w since Di/αi ≥ 1/rw
by Lemma 2.3. Let cij be the congestion function after routing the j th packet
injected during the i th window and let Dij be defined in terms of cij. Suppose
path p j is chosen for the j th packet injected during the i th window. By definition,
we have,

Dij =
∑

e

cij(e)

=
∑
e/∈p j

ci, j−1(e) +
∑
e∈p j

ci, j−1(e)(1 + µ/w)

= Di, j−1 +
∑
e∈p j

ci, j−1(e) · µ/w .

Now we repeatedly apply the recurrence above. We also observe that the congestion
function c only increases. Hence, if q j is the least congested path for j under ci ,
then

∑
e∈p j

ci, j−1(e) is necessarily no more than
∑

e∈q j
ci (e). (We emphasize that

p j and q j may be two different paths. The path p j is least congested with respect
to ci, j−1 and q j is least congested with respect to ci .) We have,

Di = Di−1 +
∑

j

∑
e∈p j

ci, j−1(e)µ/w

≤ Di−1 + αi · µ/w .

LEMMA 2.5. Dt ≤ 1.

PROOF. By definition D0 = mδ where m is the number of links in the network.
By applying Lemma 2.4, we have,

Dt ≤ mδ

(1 − rµ)t

= mδ

1 − rµ

(
1 + rµ

1 − rµ

)t−1

≤ mδ

1 − rµ
e

rµ(t−1)
1−rµ

≤ 1.

The second inequality follows from 1 + x ≤ ex for x ≥ 0. The last inequality
follows from the definition of t in (3).

We are now ready to prove Theorem 2.2.

PROOF OF THEOREM 2.2. Consider any link e. For every w paths routed through
e, the congestion of e is increased by a factor at least 1 + µ, since

(
1 + µ

w

)w
=

w∑
i=0

(w

i

) (µ

w

)i
= 1 + µ +

w∑
i=2

(w

i

) (µ

w

)i
≥ 1 + µ.

590 M. ANDREWS ET AL.

FIG. 2. Procedure to find routes for packets injected during one phase with fewer updates.

Initially, c0(e) = δ. Since Dt ≤ 1, ct (e) ≤ 1. Hence, the total number of paths that
are routed through e in a phase is at most w log1+µ 1/δ. It suffices to show that this
quantity is no more than wtR.

w log1+µ 1/δ

wtR
≤ ln 1/δ

ln(1 + µ)
· rµ

1 − rµ
· 1

ln 1−rµ

mδ

· 1

R

= r

R
· µ

ln(1 + µ)(1 − rµ)2

≤ r

R
· (1 − µ)−3

= 1.

The first inequality and the first equality follow from the definitions of t and δ,
respectively. The second inequality follows from the fact that r < 1 and ln(1 +
µ) ≥ µ − µ2/2. The last equality follows from the definition of µ. Our proof is
complete.

2.2. ROUTING WITH LESS FREQUENT UPDATES. In this section, we show that
Theorem 2.2 still holds even if the congestion function c is updated less frequently.
In particular, we only update the congestion at the end of each window, not for each
packet injection. Hence, the source nodes only need to communicate with the links
at the end of each window. For this new protocol, we redefine µ to be

1

m

(
1 −

(r

R

)1/3
)

. (4)

Suppose Ni (e) packets are routed through link e during the i th window, then we
update c(e) to c(e)(1 + Ni (e) · µ/w). See Figure 2.

We prove that Theorem 2.2 remains true. We first show that Lemma 2.4 still
holds. As before, we show Di ≤ Di−1 +αi ·µ/w . For any packet j injected during
the i th window, let p j be the path chosen for j .

Di =
∑

e

ci (e)

=
∑

e

ci−1(e)(1 + Ni (e) · µ/w)

= Di−1 +
∑

e

ci−1(e)Ni (e) · µ/w

= Di−1 +
∑

j

∑
e∈p j

ci−1(e) · µ/w

≤ Di−1 + αi · µ/w .

Source Routing and Scheduling in Packet Networks 591

Hence, Dt ≤ 1. Now, for every mw paths routed through e, the congestion on e is
increased by a factor at least 1 + mµ. Therefore, the congestion on any link at the
end of a phase is at most,

mw log1+mµ 1/δ

wtR
≤ ln 1/δ

ln(1 + mµ)
· rµ

1 − rµ
· 1

ln 1−rµ

mδ

· 1

R

= r

R
· mµ

ln(1 + mµ)(1 − rµ)2

≤ r

R
· (1 − mµ)−3

= 1,

with the revised definition of µ in (4).

2.3. IMPLEMENTATION USING IN-BAND SIGNALING. In the previous sections,
we assumed that sources can communicate with the links on their chosen routes
via instantaneous setup messages. In turn, we also assumed that the links can
instantaneously broadcast their congestion to the sources. In this section, we
first extend our result in Section 2.2 to the case where each of these commu-
nications takes τ time steps. We then give an upper bound on τ for which the
communication may be carried out in-band using packets transmitted through the
network.

Assume, without loss of generality, that w > 2τ (since admissibility for a small
window implies admissibility for a large window). Each source only updates the
link congestion at the end of every window. Since the congestion does not change
during a window, all the packets for a given source-destination pair (s, t) are routed
along the same path p. At the end of window [w(i − 1), wi), a control packet of
unit size is sent along path p that contains the number of (s, t)-packets injected
during window [w(i −1), wi). This packet takes time τ to traverse the path. Hence,
at time wi + τ , each link can update its congestion due to all the packets injected
during [w(i − 1), wi). Then, by time wi + 2τ ≤ w(i + 1), this new congestion can
be distributed via control packets to all the sources.

Note that, at the end of window [wi, w(i + 1)), every link has updated its con-
gestion according to the injections in window [w(i − 1), wi). The exact form of
this update is as follows. Let Ni (e) be the number of packets routed through e that
were injected during [w(i − 1), wi). Let ci (e) be the congestion of e at the end of
window [w(i − 1), wi). We update ci (e) by,

ci+1(e) = ci (e) + ci−1(e)Ni (e) · µ

w
,

for

µ = 1

2m

(
1 −

(r

R

)1/3
)

. (5)

592 M. ANDREWS ET AL.

To show that Theorem 2.2 remains true, we observe,

Di+1 =
∑

e

ci+1(e)

=
∑

e

ci (e) + ci−1 Ni (e) · µ

w

= Di +
∑

e

ci−1(e)Ni (e) · µ

w

= Di +
∑

j

∑
e∈p j

ci−1(e) · µ

w

≤ Di + αi,i+1 · µ

w
.

Here αi,i+1 is the sum of the congestion along the paths chosen for packets injected
during [w(i−1), wi) with respect to ci+1(e). This is sufficient to imply Dt ≤ 1. Note
also that for every 2mw (noncontrol) packets routed through a link, the congestion
function of the link increases by at least a factor 1 + 2mµ. The remainder of the
analysis follows through for the revised definition of µ in (5).

To ensure that the transmission time of the control packets is upper bounded, the
scheduling protocol always gives priority to control packets. Observe that a total
of at most n2 + mn control packets can be sent out during one window, where
m is the number of links and n is the number of nodes in the network. If we let
τ = n3 + mn2, the transmission of a control packet takes at most τ time steps.
Without loss of generality, we assume that w ≥ 2τ and w(1 − r)/2 ≥ n2 + mn.
The latter condition ensures that together with the control packets the injections are
(w, (1 + r)/2)-admissible.

3. A Scheduling Protocol with Polynomial Delay Bounds

In this section, we assume that (w, r)-admissible paths are known (either given by
the adversary or computed as in Section 2). Hence, in order to achieve network
stability, we can use any of the scheduling protocols that are known to be sta-
ble for Adversarial Queuing. However, the best previous delay bounds known for
distributed, deterministic protocols are exponential in the maximum packet path
length. In this section, we present a deterministic, distributed scheduling protocol
with a polynomial delay bound.

In Andrews et al. [2001], a randomized protocol was presented for which the
delay bound is O(dmax

ε
log m) with high probability, where ε = 1 − r and dmax

is the length of the longest simple path in the network. This protocol is hard to
derandomize because its success depends on a condition that can only be checked
globally. In this section, we first present a new randomized protocol and then show
how to derandomize it in a distributed manner. The key idea of this protocol is that
the conditions that determine the “success” of the protocol only depend on packets
that share the same initial link. This allows derandomization in a distributed manner.

Our new randomized protocol is defined in terms of two parameters M and T
which are defined below. We partition time into intervals of length M , which we
call M-intervals. We save up all packets that are injected into the network during
each M-interval and then schedule these packets during the next M-interval. We

Source Routing and Scheduling in Packet Networks 593

give each packet a deadline for every link on its path. Our goal is to make sure
that no more than T packets have a deadline for link e during any time interval of
length T . If this condition holds, then we are able to bound the end-to-end delay
experienced by a packet.

3.1. RANDOMIZED PROTOCOL. For a packet p injected during an M-interval
[(γ − 1)M, γ M) for an integral γ , let us suppose its path is e0, e1, . . . , edp .
We define a deadline τ

p
k for p at link ek as follows. We choose the initial deadline

τ
p

0 uniformly at random from [γ M + T, (γ + 1)M − dmaxT). We then define the
remaining deadlines inductively by τ

p
k+1 = τ

p
k + T . Our protocol always gives

priority to the packet with the smallest deadline at each link. We define M and T
such that,

T = 36m

ε3
log(2Mm2), (6)

M ≥ max

{
1 − ε/2

ε/6
(dmax + 1)T, w

}
, (7)

and M is a multiple of w . These properties are satisfied for,

M = O

(
dmaxm

ε4
log

m

ε
+ w

)
.

(Note that the protocol uses knowledge of (bounds on) the values of w and r , like the
randomized protocol in Andrews et al. [2001].) When a packet meets its deadlines,
it reaches its destination within 2M steps.

3.2. ANALYSIS. Our objective is to show that all packets injected during a given
M-interval meet all their deadlines with a constant probability. Lemma 3.1 gives
a sufficient condition for all deadlines to be met. For any packet p and link e, let
X p,e

[t,t+T) = 1 if there is a k such that e is the kth link on packet p’s path and τ
p

k lies
in the time interval [t, t + T). Let X p,e

[t,t+T) = 0 otherwise.

LEMMA 3.1. If
∑

p X p,e
[t,t+T) ≤ T for all t and all links e, then all packets meet

all their deadlines.

PROOF. Suppose not. Let p be a packet that misses its kth deadline τ
p

k and
suppose that no deadline earlier than τ

p
k is missed. Then p has arrived at its kth

link ek by time τ
p

k − T . (This is true regardless of whether ek is the initial link
of p or not.) By our assumption that τ

p
k is the first deadline that is missed, all the

packets with deadlines for ek that are earlier than τ
p

k − T + 1 meet those deadlines.
Therefore, the only packets that block packet p in the interval [τ p

k −T +1, τ
p

k] have
deadlines in the interval [τ p

k − T + 1, τ
p

k]. By the assumption in the statement of
the lemma, there are at most T − 1 such packets (excluding p). Therefore, packet
p is served by link ek at time τ

p
k or earlier. This is a contradiction.

Given Lemma 3.1, we show,

LEMMA 3.2. Consider packets injected during an M-interval, [(γ −1)M, γ M).
The number of deadlines from these packets on any link e during any interval
[t, t + T) is at most T with a constant probability.

594 M. ANDREWS ET AL.

PROOF. We use a Chernoff bound to prove the number of deadlines is small.
Let Sγ

e0,e be the set of packets injected into the network during the interval [(γ −
1)M, γ M) that have e0 as their initial link and that have link e on their path. The
expected number of deadlines is,

E


 ∑

p∈Sγ
e0,e

X p,e
[t,t+T)


 ≤ |Sγ

e0,e|
M − (dmax + 1)T

T .

When |Sγ
e0,e| is large, the expectation is large and the argument is straightforward.

However, for small |Sγ
e0,e| a direct application of the Chernoff bound may not suffice.

To rectify this, let us define a new quantity,

βγ
e0,e = M

M − (dmax + 1)T
max{|Sγ

e0,e|/M, ε/3m}.

The quantity β has the following properties.

(1) β
γ
e0,e ≥ ε/3m;

(2)
∑

e0
β

γ
e0,e ≤ M

M−(dmax+1)T ((1 − ε) + mε/3m) ≤ 1−ε/2
1−2ε/3 (1 − 2ε/3) ≤ 1 − ε/2.

The second property follows from the requirement of M in (7) and the admissibility
of the paths. Our lemma follows if we show that the following holds with constant
probability,∑

p∈Sγ
e0,e

X p,e
[t,t+T) ≤ (1 + ε/2)βγ

e0,eT, ∀e0, e and ∀[t, t + T). (8)

If the above holds, the number of deadlines on link e in the interval [t, t + T) is at
most (1 + ε/2)

∑
e0

β
γ
e0,eT , which is less than T due to the second property of β.

We have,

Pr


 ∑

p∈Sγ
e0,e

X p,e
[t,t+T) > (1 + ε/2)βγ

e0,eT


 ≤

∏
p E

[
(1 + ε/2)X p,e

[t,t+T)
]

(1 + ε/2)(1+ε/2)βγ
e0,eT

≤
∏

p E
[
exp

(
ε
2 X p,e

[t,t+T)

)]
(1 + ε/2)(1+ε/2)βγ

e0,eT
(9)

≤ exp
(−ε2βγ

e0,eT/12
)

≤ 1

2Mm2
.

The first inequality is due to a Chernoff bound. The second and third inequalities
hold since 1 + x ≤ ex for x ≥ 0, and E[

∑
p∈Sγ

e0,e
X p,e

[t,t+T)] ≤ β
γ
e0,eT , respectively.

The fourth inequality follows from the definition of T in (6) and the fact that
β

γ
e0,e ≥ ε/3m. By taking a union bound over all links e0, e and all intervals [t, t +

T) ⊆ [γ M, (γ + 1)M), we have that the number of deadlines from all packets on
e during [t, t + T) is at most T with probability at least 1/2.

3.3. REMARKS. To prove Lemma 3.2, a condition weaker than (8) would be
sufficient. It would suffice to show that the number of deadlines on any e during
any [t, t + T) is at most (1 + ε/2)

∑
e0

β
γ
e0,eT . Indeed, this would even allow T and

Source Routing and Scheduling in Packet Networks 595

M to be a factor of m smaller, as in Andrews et al. [2001]. However, such a weaker
condition only allows derandomization in a centralized manner.

We emphasize that the condition (8) depends only on sets of packets that are
injected into one particular initial link. Therefore, we can choose the deadlines for
a packet simply by considering the other packets that are injected at the same initial
link. Hence, we can carry out a derandomization independently at each initial link
and obtain a distributed, deterministic protocol. This is in contrast to the randomized
protocol of Andrews et al. [2001] in which the success condition depends on packets
that are injected across all initial links in the network.

3.4. DERANDOMIZATION. We use the method of conditional expectations to
derandomize the protocol for each M-interval. (See, e.g., Raghavan [1988].) In
summary,

THEOREM 3.3. Our derandomized protocol is distributed and guarantees a
delay bound of 2M = poly(m, w, 1/ε) for every packet.

PROOF. Let Sγ
e0,e = {p0, p1, . . . , p�}. For i ≤ �, let g(δ0, δ1, . . . , δi) be equal

to

∑
e,t

Pr


 ∑

p∈Sγ
e0,e

X p,e
[t,t+T) > (1 + ε/2)βγ

e0,eT |τ p0
0 = δ0, . . . , τ

pi

0 = δi


 ,

where t is summed over the range [γ M, (γ + 1)M − T). By a calculation similar
to the Chernoff calculation of (9), the value of g(· , . . . , ·) is upper bounded by the
following function h,

h(δ0, δ1, . . . , δi) =
∑
e,t

∏
p E

[
exp

(
ε
2 X p,e

[t,t+T)

) ∣∣τ p0
0 = δ0, . . . , τ

pi

0 = δi
]

(1 + ε/2)(1+ε/2)βγ
e0,eT

.

For fixed δ0, . . . , δi−1, the definition of conditional expectation implies that
there exists an initial deadline δi for the packet pi such that h(δ0, δ1, . . . , δi−1) ≥
h(δ0, δ1, . . . , δi−1, δi). If we always choose the initial deadline so that this inequality
is satisfied, then,

g(δ0, δ1, . . . , δ�) ≤ h(δ0, δ1, . . . , δ�)
≤ h(∅)
≤ exp

(− ε2βγ
e0,eT/12

)
.

The third inequality follows from (10). We have chosen the parameters M and T so
that exp(−ε2β

γ
e0,eT/12) is less than 1. In addition, since g(δ0, δ1, . . . , δ�) involves

no randomness every term of g is either 0 or 1. The above inequalities imply that
g(δ0, δ1, . . . , δ�) is less than 1 and so condition (8) fails with probability zero. Hence,
with probability one all deadlines are met and all packets reach their destinations
in time 2M .

It remains to show that we can calculate h(δ0, . . . , δi). If j ≤ i , then,

E
[
X

p j ,e
[t,t+T)

∣∣τ p0
0 = δ0, . . . , τ

pi

0 = δi
]

596 M. ANDREWS ET AL.

FIG. 3. Network G for which FIFO and NTG are unstable even if we are allowed to choose routes.

is equal to 0 or 1 depending on whether or not the initial deadline δ j causes packet
p j to have a deadline for link e during [t, t + T). If j > i , then,

E
[
X

p j ,e
[t,t+T)

∣∣τ p0
0 = δ0, . . . , τ

pi

0 = δi
] = E

[
X

p j ,e
[t,t+T)

]
,

which is equal to the probability, over all possible choices of the initial deadline,
that packet p j has a deadline for link e during the interval [t, t + T). (Recall that
the initial deadline has at most M choices and all subsequent deadlines are chosen
deterministically.) This probability is solely dependent on whether or not the path
for packet p j passes through link e. Hence, for fixed δ0, . . . , δi−1, we can choose
the value of δi that minimizes h(δ0, δ1, . . . , δi−1, δi).

4. Instability in Combined Routing and Scheduling

In Andrews et al. [2001], it was shown that if the packet routes are given by the
adversary, then the FIFO and Nearest-to-Go (NTG) scheduling protocols can be
unstable even if the packet paths are admissible. (FIFO always gives priority to
the packet that arrived at the link earliest. NTG always gives priority to the packet
that has the smallest number of hops remaining to its destination.) However, the
examples given in Andrews et al. [2001] do not lead to instability if we are allowed
to route packets on paths other than the ones chosen by the adversary.

We therefore have a natural question. If we are allowed to choose the routes, can
we guarantee that FIFO and NTG are stable? In this section, we show that the answer
to this question is negative. We present examples in which, regardless of how we
choose the routes, the FIFO and NTG scheduling protocols create instability.

THEOREM 4.1. There exists a network G such that FIFO creates instability
under some (w, r)-admissible injections, regardless of how packets are routed.

PROOF. Network G is shown in Figure 3. We break the packet injections into
phases. We inductively assume that, at the beginning of phase j , a set S of s packets
with destination u0 is in the queue of e0. We show that at the beginning of phase
j + 1 more than s packets with destination u1 are in the queue of e1. By symmetry,
this process repeats indefinitely and the number of packets in the network grows

Source Routing and Scheduling in Packet Networks 597

without bound. For the basis of the induction, we inject a large burst of packets at
source node v0 with destination node u0, which is allowed by a large window w .
From now on, all the injections are at rate r with burst size one. In general, the
sequence of injections in phase j is as follows:

(1) For the first s steps, we inject a set X of rs packets at node v0 with destination
u1. These packets are completely held up at e0 by the packets in S. We also
hold up packets in S at f0 by injecting rs packets at w0 with destination u0.
These newly injected packets get mixed with those of S into the set S′. At the
end of the first s steps, rs packets from S′ are at f0. Note that packets in X will
be routed through either f0 or f ′

0.

(2) For the next rs steps, we inject a set Y of r2s packets at node v0 with destination
u1. These packets are held up at e0 by the packets in X . We also inject packets
at w0 with destination u′

0 at rate r . These packets delay the packets from X that
are routed through f ′

0. Hence, at most, rs/(r + 1) packets of X cross f ′
0. (This

only happens if packets in X are routed through f ′
0, which is not necessarily the

case.) Note that no packet from X crosses f0 in these steps, since the packets
in S′ have priority. Hence, at the end of these rs steps, a set X ′ ⊆ X of at least
r2s/(r + 1) packets are still at w0.

(3) For the next
∣∣X ′∣∣+|Y | steps, the packets in X ′ and Y move forward, and merge

at v1. Meanwhile, we inject packets at v1 with destination u1 at rate r . We end
with at least r (

∣∣X ′∣∣ + |Y |) packets at v1 with destination u1. This number is at
least r3s + r3s/(r + 1).

This ends phase j . For r ≥ 0.9, we have r3 + r3/(r + 1) > 1. It is easy to verify
that the injections during phase j are admissible. The inductive step is complete.

Injections similar to the above can be used to prove the instability of NTG on
network G at any rate r > 1/

√
2. The induction hypothesis of phase j now does

not require the packets in S to be initially in the queue of e0, but to cross e0 in the
first s steps of the phase. Hence, subphase (3) is no longer required. Furthermore,
after subphase (2) both sets Y and X ′ contain at least r2s packets, since single-link
injections have higher priority than the packets in X . It follows that the system is
unstable since 2r2s > s.

5. Stability of a Ring with Parallel Links

In this section, we consider source routing on a ring with c parallel links. Consider a
decomposition of the network into c disjoint single rings. We propose a deterministic
on-line source-routing algorithm that routes each packet along one of these rings
and guarantees that the routing is admissible. In Andrews et al. [2001] it was shown
that the single ring is stable under any greedy scheduling policy (i.e., one that
always schedules a packet whenever packets are waiting). Hence, we conclude that
the ring with c parallel links is stable under any greedy scheduling policy if our
source-routing algorithm is used.

Note that the 4-ring with two parallel links was shown to be unstable under a
greedy protocol such as FIFO when the packet paths are given by the adversary
[Andrews et al. 2001]. This shows that freedom of routing can make a differ-
ence in network stability since we have a network that is unstable under FIFO if

598 M. ANDREWS ET AL.

the adversary can dictate the routes but is stable under FIFO if we can choose the
routes intelligently.

5.1. DEFINITIONS. Consider a ring with n nodes and c parallel directed links
from node i to node i +1(mod n). The parallel links connecting neighboring nodes
are uniquely labeled 1, . . . , c. We denote the cycle of n links labeled j as the
j th single ring. Note that, if j
= j ′, the j th and the j ′th single rings are link
disjoint. We assume that the injections are (w, r)-admissible. For convenience, we
sometimes denote 1 − r by ε. We propose a source-routing algorithm that finds
weakly (W, R)-admissible paths along these single rings, where, for some β < 1,

W ≥ 3

rε2
ln

nc

β
, (10)

R = 1 − ε2, (11)

and W is a multiple of w .

5.2. RANDOMIZED ALGORITHM. Let us first study the following randomized
routing algorithm. Each time a packet is injected, one of the c single rings is
randomly chosen, uniformly and independently, and the packet is routed along it.
Since the injections are (w, r)-admissible, in any W -interval at most cr W packets
are injected that must cross the parallel links from any node i to i + 1(mod n).
Hence, the expected number of packets routed along any link of the ring is at
most r W . Using a Chernoff bound, we can upper bound the probability of more
than (1 + ε)r W = RW packets being routed along any link in the W -interval.
Let P = p0, p1, . . . , p� be the set of packets injected in a W -interval. For each
packet p j , let X

p j
e be the random variable denoting whether p j is routed along link

e. Let Xe be the number of packets routed along link e in the W -interval. From a
Chernoff bound, we have that,

Pr [Xe > (1 + ε)r W] ≤
∏

p j ∈P E
[
(1 + ε)X

p j
e

]
(1 + ε)(1+ε)rW

≤ [
exp (ε)/(1 + ε)(1+ε)

]rW

≤ [exp (ε − (1 + ε) ln(1 + ε))]rW

≤ [(exp −ε2/3)]rW

≤ β

nc
.

The last two inequalities follow from the fact that ε < 1 and the definition of W
in (10), respectively. We can now bound the probability of any link having more
than (1 − ε2)W packets routed along it. We use L to denote the set of links in the
ring.

Pr [max
e∈L

Xe > (1 + ε)r W] ≤
∑
e∈L

Pr [Xe > (1 + ε)r W]

≤ |L| β

nc
= β

Source Routing and Scheduling in Packet Networks 599

Hence, since β < 1, there is a positive probability of routing all the packets in such
a way that no link has congestion more than RW . By choosing a very small β (e.g.,
O(1/n)) we could show that this randomized algorithm guarantees that the routing
is weakly (W, R)-admissible with high probability. This can be used to show the
stability of any greedy scheduling protocol in a probabilistic sense (i.e., there is a
value C such that the probability of having more than kC packets in the system at
any given time is exponentially small in k).

However, in the rest of the section, we only need β < 1. We will derandomize
the proposed algorithm, and all we need for this process to work is to have a feasible
routing with the required properties. This is guaranteed for any β < 1.

5.3. OFFLINE ROUTING. We will now derandomize the above algorithm so that
all the packets are deterministically routed and no link has congestion more than
(1 − ε2)W . To do this, we use the method of conditional probabilities, as we did in
Section 3. Unfortunately, to apply this method directly, we need to know from the
beginning the set P of packets to be routed. We achieve this as follows: We divide
time into intervals of W steps, and hold all the packets injected in one W -interval
until its last step. Then, all these packets are routed in that last step, when all of
them are known.

Let P = p0, p1, . . . , p� be the set of packets injected in a W -interval. Let γp j

denote the single ring chosen to route packet p j . For i ≤ �, let,

g(δ0, δ1, . . . , δi) = Pr [max
e∈E

Xe > (1 + ε)r W |γp0 = δ0, . . . , γpi = δi].

Since g(·, . . . , ·) is difficult to calculate directly, we define another function
h(·, . . . , ·) by,

h(δ0, δ1, . . . , δi) =
∑
e∈E

∏
p j ∈P E

[
(1 + ε)X

p j
e

∣∣∣ γp0 = δ0, . . . , γpi = δi

]
(1 + ε)(1+ε)r W

,

which can be easily computed. For this, it is enough to observe that, when computing
h(δ0, δ1, . . . , δi), for each packet p j ,

—if j ≤ i , then
—if e is in the δ j th single ring and it is in the path from the source to the

destination of p j , then E[(1 + ε)X
p j
e |γp0 = δ0, . . . , γpi = δi] = 1 + ε.

—Otherwise, E[(1 + ε)X
p j
e |γp0 = δ0, . . . , γpi = δi] = (1 + ε)0 = 1.

—if j > i , then
—if e could be in the path from the source to the destination of p j , then

E[(1 + ε)X
p j
e |γp0 = δ0, . . . , γpi = δi] = (1 + ε)1/c.

—Otherwise, E[(1 + ε)X
p j
e |γp0 = δ0, . . . , γpi = δi] = (1 + ε)0 = 1.

We have that, g(δ0, δ1, . . . , δi) ≤ h(δ0, δ1, . . . , δi). Also, for fixed δ0, . . . , δi−1,
the definition of conditional expectation implies that the single ring δi can be chosen
such that h(δ0, δ1, . . . , δi−1) ≥ h(δ0, δ1, . . . , δi−1, δi). If we always choose the single
rings so that this inequality is satisfied, then,

g(δ0, δ1, . . . , δ�) ≤ h(δ0, δ1, . . . , δ�)) ≤ h(∅) ≤ β.

In this expression, the left-hand side involves no randomness and so it is either 0 or
1. However, since β < 1, it has to be less than 1 and so there must be a probability

600 M. ANDREWS ET AL.

zero of failure. Hence, no link has congestion more than (1−ε2)W , and the routing
is weakly (W, R)-admissible.

5.4. ONLINE ROUTING. Now we want to route packets as soon as they are
injected. This does not allow us to use the above derandomization process directly,
since we will not necessarily know the set P by the time we need to route the first
packets. This is needed to compute the different values of the function h(·, . . . , ·).
However, we will deal with this problem by making pessimistic assumptions about
the packets that have not been injected yet.

First, consider two packets, pk and pl , such that their paths do not overlap, and
the destination node of pk is the source node of pl . Replace these packets by one
single packet whose source node is that of pk and its destination node is that of
pl . Observe that, for fixed δ0, . . . , δi , if k > i and l > i , the value of h(δ0, . . . , δi)
does not change by the replacement (see above). This can be generalized to the
replacement of any number of packets.

Then, this allows us to use the following trick. Initially, we assume a set P (0) of
packets that consists of cr W ghost packets going from node i to node i +1(mod n),
for each i . The value h(∅) is computed for this set P (0).

Now, assume that i−1 packets have been already injected and routed. (That is, the
values δ0, δ1, . . . , δi−1 are fixed and h(δ0, δ1, . . . , δi−1) is computed.) When the i th
packet pi is injected, we remove one ghost packet from the set P (i−1) for each hop
that pi crosses. These ghost packets are replaced by the packet pi to obtain a new
set P (i). The existence of the appropriate ghost packets is guaranteed by the initial
ghost packets we put in P (0) and the fact that the injections are (w, r)-admissible. As
we saw previously, this does not change the value of h(δ0, δ1, . . . , δi−1). Then, route
the packet pi (choose and fix δi) so that h(δ0, δ1, . . . , δi−1) ≥ h(δ0, δ1, . . . , δi−1, δi).

By repeating this process, at the end of the W -interval we have that

g(δ0, δ1, . . . , δ�) ≤ h(δ0, δ1, . . . , δ�)) ≤ h(∅) ≤ β,

where � is the number of packets injected during the W -interval. We now remove
all the remaining ghost packets. This process eliminates any remaining random-
ness in g(δ0, δ1, . . . , δ�), and can never increase its value, since it only removes
packets. Then, since g(δ0, δ1, . . . , δ�) = 0 involves no randomness and β < 1,
g(δ0, δ1, . . . , δ�) = 0 and no link has congestion more than (1 − ε2)W . Hence, the
routing is weakly (W, R)-admissible.

6. Conclusions

In this article, we have presented source-routing algorithms for packet-switched
networks and we have described the first distributed, deterministic scheduling pro-
tocol with a polynomial delay bound. There is much still to be explored in the
study of combined routing and scheduling. For example, different packets are often
associated with different delay requirements. Some of them may be delay sensitive,
whereas others may be delay tolerant. The problem of scheduling these packets on
given routes in order to meet these delay requirements has been studied before (see,
for instance, Georgiadis et al. [1996]). The ability to choose the routes would add
an additional dimension to the problem and may even make scheduling easier.

ACKNOWLEDGMENT. The authors wish to thank Adam Meyerson for helpful
discussions.

Source Routing and Scheduling in Packet Networks 601

REFERENCES

AIELLO, W., KUSHILEVITZ, E., OSTROVSKY, R., AND ROSEN, A. 1998. Adaptive packet routing for bursty
adversarial traffic. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing. (Dallas,
TX.). ACM, New York, 359–368.

ANDREWS, M., AWERBUCH, B., FERNÁNDEZ, A., KLEINBERG, J., LEIGHTON, T., AND LIU, Z. 2001. Uni-
versal stability results and performance bounds for greedy contention-resolution protocols. J. ACM 48,
1 (Jan.), 39–69.

AWERBUCH, B., AZAR, Y., AND PLOTKIN, S. 1993. Throughput competitive on-line routing. In Proceed-
ings of the 34th Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press,
Los Alamitos, Calif., 32–40.

AWERBUCH, B., AZAR, Y., PLOTKIN, S., AND WAARTS, O. 1994. Competitive routing of virtual circuits
with unknown duration. In Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms.
ACM, New York, 321–330.

AWERBUCH, B., AND LEIGHTON, T. 1994. Improved approximation algorithms for the multicommodity
flow problem and local competitive routing in dynamic networks. In Proceedings of the 26th Annual
ACM Symposium on Theory of Computing. ACM, New York, 487–496.

BERTSIMAS, D., AND GAMARNIK, D. 1999. Asymptotically optimal algorithm for job shop scheduling
and packet routing. J. Algorithms 33, 2, 296–318.

BORODIN, A., KLEINBERG, J., RAGHAVAN, P., SUDAN, M., AND WILLIAMSON, D. P. 2001. Adversarial
queuing theory. J. ACM 48, 1 (Jan.), 13–38.

GAMARNIK, D. 1998. Stability of adversarial queues via fluid models. In Proceedings of the 39th Annual
Symposium on Foundations of Computer Science (Palo Alto, Calif.). IEEE Computer Society Press, Los
Alamitos, Calif., 60–70.

GAMARNIK, D. 1999. Stability of adaptive and non-adaptive packet routing problems in adversarial
queuing networks. In Proceedings of the 31th Annual ACM Symposium on Theory of Computing (Atlanta,
Ga.). ACM, New York, 206–214.

GARG, N., AND KÖNEMANN, J. 1998. Faster and simpler algorithms for multicommodity flow and other
fractional packing problems. In Proceedings of the 39th Annual Symposium on Foundations of Computer
Science (Palo Alto, Calif.). IEEE Computer Society Press, Los Alamitos, Calif., 300–309.

GEORGIADIS, L., GUÉRIN, R., PERIS, V., AND SIVARANJAN, K. 1996. Efficient network (QoS) provisioning
based on per node traffic shaping. In Proceedings of the IEEE INFOCOM’96. IEEE Computer Society
Press, Los Alamitos, Calif., 102–110.

KESHAV, S. 1997. An Engineering Approach to Computer Networking. Addison-Wesley, Reading, Mass.
LEIGHTON, F. T., MAGGS, B. M., AND RAO, S. B. 1994. Packet routing and job-shop scheduling in

O(congestion + dilation) steps. Combinatorica 14, 2, 167–186.
PLOTKIN, S., SHMOYS, D., AND TARDOS, E. 1994. Fast approximation algorithms for fractional packing

and covering problems. Math Oper. Research, 257–301.
RAGHAVAN, P. 1988. Probabilistic construction of deterministic algorithms: approximating packing

integer programs. J. Comput. Syst. Sci. 37, 130–143.
ROSEN, E., VISWANATHAN, A., AND CALLON, R. 2001. Multiprotocol label switching architecture. RFC

3031. http://www.ietf.org/rfc/rfc3031.txt.
SRINIVASAN, A., AND TEO, C. 1997. A constant-factor approximation algorithm for packet routing, and

balancing local vs. global criteria. In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing (El Paso, TX.). ACM, New York, 636–643.

TENNENHOUSE, D., SMITH, J., SINCOSKIE, W., WETHERALL, D., AND MINDEN, G. 1997. A survey of
active network research. IEEE Commun. Mag., 80–86.

YOUNG, N. 1995. Randomized rounding without solving the linear program. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, 170–178.

RECEIVED JULY 2002; REVISED MARCH 2004 AND OCTOBER 2004; ACCEPTED MARCH 2005

Journal of the ACM, Vol. 52, No. 4, July 2005.

