From an inter mittent rotating star to a leader

Antonio Fernandez Anta’ and Michel Raynal?

1 LADyR, GSyC, Universidad Rey Juan Carlos, 28933 Mostoles, Spain.
2 IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France.
anto@syc. escet. urjc.es raynal @risa.fr

Abstract. Considering an asynchronous system made up of n processes and
where up to ¢ of them can crash, finding the weakest assumptions that such a
system has to satisfy for a common leader to be eventually elected is one of the
holy grail quests of fault-tolerant asynchronous computing. This paper is a step
in such a quest. It has two main contributions. First, it proposes an asynchronous
system model, in which an eventual leader can be elected, that is weaker and
more general than previous models. This model is captured by the notion of in-
termittent rotating ¢-star. An z-star is a set of x + 1 processes: a process p (the
center of the star) plus a set of = processes (the points of the star). Intuitively,
assuming logical times rn (round numbers), the intermittent rotating ¢-star as-
sumption means that there are a process p, a subset of the round numbers rn, and
associated sets Q(rn) such that each set {p}UQ(rn) is a t-star centered at p, and
each process of Q(rn) receives from p a message tagged rn in a timely manner
or among the first (n — ¢) messages tagged rn it ever receives. The star is called
t-rotating because the set Q(rn) is allowed to change with rn. It is called inter-
mittent because the star can disappear during finite periods. This assumption, not
only combines, but generalizes several synchrony and time-free assumptions that
have been previously proposed to elect an eventual leader (e.g., eventual ¢-source,
eventual ¢-moving source, message pattern assumption). Each of these assump-
tions appears as a particular case of the intermittent rotating ¢-star assumption.
The second contribution of the paper is an algorithm that eventually elects a com-
mon leader in any system that satisfies the intermittent rotating ¢-star assumption.
That algorithm enjoys, among others, two noteworthy properties. Firstly, from a
design point of view, it is simple. Secondly, from a cost point of view, only the
round numbers can increase without bound. This means that, be the execution
finite or infinite, be links timely or not (or have the corresponding sender crashed
or not), all the other local variables (including the timers) and message fields have
a finite domain.

Keywords: Assumption coverage, Asynchronous system, Distributed algorithm,
Eventual ¢-source, Eventual leader, Failure detector, Fault-tolerance, Message
pattern, Moving source, Omega, Partial synchrony, Process crash, System model,
Timely link.

1 Introduction

1.1 Leader oracle: motivation

A failure detector is a device (also called oracle) that provides the processes with
guesses on which processes have failed (or not failed) [3,21]. According to the prop-
erties associated with these estimates, several failure detector classes can be defined.

It appears that failure detector oracles are at the core of a lot of fault-tolerant proto-
cols encountered in asynchronous distributed systems. Among them, the class of leader
failure detectors is one of the most important. This class, also called the class of leader
oracles, is usually denoted (2. (When clear from the context, the notation {2 will be used
to denote either the oracle/failure detector class or an oracle of that class.) {2 provides
the processes with a leader primitive that outputs a process id each time it is called, and
such that, after some finite but unknown time, all its invocations return the same id, that
is the identity of a correct process (a process that does not commit failures). Such an
oracle is very weak: (1) a correct leader is eventually elected, but there is no knowledge
on when it is elected; (2) several (correct or not) leaders can co-exist before a single
correct leader is elected.

The oracle class {2 has two fundamental features. The first lies on the fact that, de-
spite its very weak definition, it is powerful enough to allow solutions to fundamental
problems such as the consensus problem [4]. More precisely, it has been shown to be the
weakest class of failure detectors that allows consensus to be solved in message-passing
asynchronous systems with a majority of correct processes (let us remind that, while
consensus can be solved in synchronous systems despite Byzantine failures of less than
one third of the processes [14], it cannot be solved in asynchronous distributed systems
prone to even a single process crash [7]). Basically, an (2-based consensus algorithm
uses the eventual leader to impose a value to all the processes, thereby providing the
algorithm liveness. Leader-based consensus protocols can be found in [9,13,18]. The
second noteworthy feature of (2 lies on the fact that it allows the design of indulgent
protocols [8]. Let P be an oracle-based protocol that produces outputs, and PS be the
safety property satisfied by its outputs. P is indulgent with respect to its underlying
oracle if, whatever the behavior of the oracle, its outputs never violate the safety prop-
erty PS. This means that each time P produces outputs, they are correct. Moreover, P
always produces outputs when the underlying oracle meets its specification. The only
case where P can be prevented from producing outputs is when the implementation
of the underlying oracle does not meet its specification. (Let us notice that it is still
possible that P produces outputs despite the fact that its underlying oracle does not
work correctly.) Interestingly, (2 is a class of oracles that allows designing indulgent
protocols [8,9]. More precisely, due to the very nature of an eventual leader, it cannot
be known in advance when that leader is elected; consequently, the main work of an
£2-based consensus algorithm is to keep its safety property, i.e., guarantee that no two
different values can be decided before the eventual leader is elected.

Unfortunately, {2 cannot be implemented in pure asynchronous distributed systems
where processes can crash. (Such an implementation would contradict the impossibility
of solving consensus in such systems [7]. Direct proofs of the impossibility to imple-
ment {2 in pure crash-prone asynchronous systems can be found in [2,19].) But thanks
to indulgence, this is not totally bad news. More precisely, as 2 makes it possible the
design of indulgent protocols, it is interesting to design “approximate” protocols that do
their best to implement (2 on top of the asynchronous system itself. The periods during
which their best effort succeeds in producing a correct implementation of the oracle

(i.e., there is a single leader and it is alive) are called “good” periods (and then, the
upper layer {2-based protocol produces outputs and those are correct). During the other
periods (sometimes called “bad” periods, e.g., there are several leaders or the leader is
a crashed process), the upper layer (2-based protocol never produces erroneous outputs.
The only bad thing that can then happen is that this protocol can be prevented from
producing outputs, but when a new long enough good period appears, the upper layer
£2-based protocol can benefit from that period to produce an output.

A main challenge of asynchronous fault-tolerant distributed computing is conse-
quently to identify properties that are at the same time “weak enough” in order to be
satisfied “nearly always” by the underlying asynchronous system, while being “strong
enough” to allow (2 to be implemented during the “long periods” in which they are
satisfied.

1.2 Existing approaches to implement (2

Up to now, two main approaches have been investigated to implement {2 in crash-prone
asynchronous distributed systems. Both approaches enrich the asynchronous system
with additional assumptions that, when satisfied, allow implementing (2. These ap-
proaches are orthogonal: one is related to timing assumptions, the other is related to
message pattern assumptions.

The eventual timely link approach The first approach considers that the asynchronous
system eventually satisfies additional synchrony properties. Considering a reliable com-
munication network, the very first papers (e.g., [15]) assumed that all the links are
eventually timely3. This assumption means that there is a time 7, after which there is a
bound ¢ -possibly unknown- such that, for any time = > 7, a message sent at time 7 is
received by time 7 + 4.

This approach has then been refined to obtain weaker and weaker assumptions. It
has been shown in [1] that it is possible to implement {2 in a system where communi-
cation links are unidirectional, asynchronous, and lossy, provided that there is a correct
process whose n — 1 output links are eventually timely (n being the total number of
processes). This assumption has further been weakened in [2] where it is shown that (2
can be built as soon as there is a correct process that has only ¢ eventually timely links
(where ¢ is a known upper bound on the number of processes that can crash); such a
process is called an eventual ¢-source. (Let us notice that, after the receiver has crashed,
the link from a correct process to a crashed process is always timely.)

Another time-based assumption has been proposed in [16] where the notion of even-
tual ¢-accessibility is introduced. A process p is eventual ¢-accessible if there is a time
7o such that, at any time = > T, there is a set Q(7) of ¢ processes such that p ¢ Q(7)
and a message broadcast by p at 7 receives a response from each process of Q(7) by
time 7 + § (where § is a bound known by the processes). The very important point
here is that the set Q(7) of processes whose responses have to be received in a timely
manner is not fixed and can be different at distinct times.

3 Actually, the £2 protocol presented in [15] only requires that the output links of the correct
process with the smallest identity to be eventually timely.

The notions of eventual ¢-source and eventual ¢-accessibility cannot be compared
(which means that none of them can be simulated from the other). In a very interesting
way these two notions have been combined in [11] where is defined the notion of even-
tual ¢-moving source. A process p is an eventual ¢-moving source if there is a time 7
such that at any time 7 > 7 there is a set Q(7) of ¢ processes such that p ¢ Q(7) and a
message broadcast by p at 7 is received by each process in Q(7) by time 7 + 4. As we
can see, the eventual ¢-moving source assumption is weaker than the eventual ¢-source
as the set Q(7) can vary with 7.

Other time-based approaches are investigated in [5,12]. They consider weak as-
sumptions on both the initial knowledge of processes and the network behavior. Proto-
cols building {2 are presented [5,12] that assume the initial knowledge of each process
is limited to its identity and the fact that identities are totally ordered (so, a process
knows neither n nor t). An unreliable broadcast primitive allows the processes to com-
municate. One of the protocols presented in [5] is communication-efficient (after some
time a single process has to send messages forever) while, as far as the network behav-
ior is concerned, it only requires that each pair of correct processes be connected by
fair lossy links, and there is a correct process whose output links to the rest of correct
processes are eventually timely. It is shown in [12] that £2 can be built as long as there is
one correct process that can reach the rest of the correct processes via eventually timely
paths.

The message pattern approach A totally different approach to build {2 has been in-
troduced in [17]. That approach does not rely on timing assumptions and timeouts. It
states a property on the message exchange pattern that, when satisfied, allows (2 to be
implemented. The statement of such a property involves the system parameters »n and .

Let us assume that each process regularly broadcasts queries and, for each query,
waits for the corresponding responses. Given a query, a response that belongs to the
first (n — t) responses to that query is said to be a winning response. Otherwise, the
response is a losing response (then, that response is slow, lost or has never been sent
because its sender has crashed). It is shown in [19] that £2 can be built as soon as the
following behavioral property is satisfied: “There are a correct process p and a set @ of ¢
processes such that p ¢ @ and eventually the response of p to each query issued by any
q € Q is always a winning response (until -possibly- the crash of ¢).” When ¢ = 1, this
property becomes: “There is a link connecting two processes that is never the slowest (in
terms of transfer delay) among all the links connecting these two processes to the rest
of the system.” A probabilistic analysis for the case ¢ = 1 shows that such a behavioral
property on the message exchange pattern is practically always satisfied [17].

This message pattern approach and the eventual timely link approaches cannot be
compared. Interestingly, the message pattern approach and the eventual ¢-source ap-
proach have been combined in [20]. This combination shows that {2 can be imple-
mented as soon as there is a correct process p and a time 7 after which there is a set @
of ¢ processes ¢ such that p ¢ @ and either (1) each time a process ¢ € @ broadcasts a
query, it receives a winning response from p, or (2) the link from p to ¢ is timely. As it
can be seen, if only (1) is satisfied, we obtain the message pattern assumption, while, if
only (2) is satisfied, we obtain the eventual ¢-source assumption. More generally, here,

the important fact is that the message pattern assumption and the timely link assumption
are combined at the “finest possible” granularity level, namely, the link level.

1.3 Content of the paper: towards weaker and weaker synchrony assumptions

A quest for a fault-tolerant distributed computing holy grail is looking for the weakest
synchrony assumptions that allow implementing (2. Differently from the quest for the
weakest information on failures that allows solving the consensus problem (whose re-
sult was (2 [4]), it is possible that this quest be endless. This is because we can envisage
lots of base asynchronous computation models, and enrich each of them with appropri-
ate assumptions that allow implementing 2 in the corresponding system. Such a quest
should be based on a well-formalized definition of a low level asynchronous model,
including all the models in which (2 can be implemented. There is no guarantee that
such a common base model exists.

So, this paper is only a step in that direction. It considers the classical asynchronous
computing model where processes can crash. They communicate through a reliable
network [3,7]. (Fair lossy links could be used instead of reliable links* but we do not
consider that possibility in order to keep the presentation simple.) The paper shows that
it is possible to implement (2 in an asynchronous system from a synchrony assumption
weaker than any of the previous ones, namely, eventual ¢-source, eventual ¢t-moving
source, or the message pattern assumption. Interestingly, these specific assumptions
become particular cases of the more general (and weaker) assumption that is proposed.
In that sense, the paper not only proposes a weaker assumption, but has also a generic
dimension.

The proposed behavioral assumption (that we denote A) requires that each pro-
cess regularly broadcasts ALIVE(rn) messages, where rn is an increasing round num-
ber (this can always be done in an asynchronous system). The sending of ALIVE(rn)
messages by the processes can be seen as an asynchronous round, each round number
defining a new round.

To make easier the presentation we describe first an assumption A™ of which A is a
weakening. AT is as follows. There is a correct process p and a round number RN, such
that, for each rn > RNy, there is a set Q(rn) of ¢ processes such that p ¢ Q(rn) and
for each process g € Q(rn) either (1) g has crashed, or (2) the message ALIVE(rn) sent
by p is received by ¢ at most ¢ time units after it has been sent (the corresponding bound
4 can be unknown), or (3) the message ALIVE(rn) sent by p is received by ¢ among the
first (n — ¢) ALIVE(rn) messages received by ¢ (i.e., it is a winning message among
ALIVE(rn) messages received by q). It is easy to see, that if only (1) and (2) are satisfied,
A boils down to the eventual ¢t-moving source assumption, while if only (1) and (3) are

4 This can easily be done by using message acknowledgments and piggybacking: a message
is piggybacked on the next messages until it has been acknowledged. So, a message sent by
the underlying communication protocol can be made up of several messages sent by the upper
layer algorithm. It is nevertheless important to remark that such a piggybacking + acknowledg-
ment technique is viable only if the size of the messages sent by the underlying communication
protocol remains manageable.

satisfied, it boils down to a moving version of the message pattern assumption (because
the set Q() can change over time). The set of processes {p} U Q(rn) defines a star
centered at p. As it must have at least ¢ points (links), we say it is a t-star. Moreover,
as Q(rn) can change at each round number, we say that p is the center of an eventual
rotating ¢-star (“eventual” because there is an arbitrary finite number of round numbers
during which the requirement may not be satisfied).

While A™ allows implementing (2, it appears that a weakened form of that as-
sumption is sufficient. This is the assumption A. It is sufficient that p be the center
of an eventual rotating ¢-star only for a subset of the round numbers. More precisely,
A requires that there is an infinite sequence S = s1, so,... of (not necessarily con-
secutive) round numbers, and a bound D (not necessarily known), such that, V& > 1,
sk+1 — Sk < D, and there is a process p that is the center of a rotating ¢-star when we
consider only the round numbers in S. We call such a configuration an eventual inter-
mittent rotating ¢-star (in fact, the “eventual” attribute could also be seen as being part
of the “intermittent” attribute).

Basically, the difference between A* and A is related to the notion of observation
level [10]. While A™ considers a base level including all the round numbers, A provides
an abstraction level (the sequence \S) that eliminates the irrelevant round numbers. Of
course, as it is not known in advance which are the relevant round numbers (i.e., S), an
A-based algorithm has to consider a priori all the round numbers and then find a way
to dynamically skip the irrelevant ones.

After having introduced A" and A4, the paper presents, in an incremental way, an
A -based algorithm and an .4-based algorithm that build a failure detector oracle of the
class £2. The A-based algorithm enjoys a noteworthy property, namely, in an infinite
execution, only the round numbers increase forever. All the other local variables and
message fields remain finite. This means that, among the other variables, all the timeout
values (be the corresponding link eventually timely or not) eventually stabilize. From
an algorithmic mechanism point of view, the proposed algorithm combines new ideas
with mechanisms also used in [2,5,11,17,20].

All the proofs and additional technical developments can be found in [6].

2 Definitions

2.1 Basic distributed system model

We consider a system formed by a finite set 17 of n > 2 processes, namely, I =
{p1,p2,--. ,pn}. Process identifiers are totally ordered. Without loss of generality we
assume that ID(p;) < ID(p;), when i < j, and use ID(p;) = 4. We sometimes
use p and ¢ to denote processes. A process executes steps (a step is the reception of
a set of messages with a local state change, or the sending of messages with a local
state change). A process can fail by crashing, i.e., by prematurely halting. It behaves
correctly (i.e., according to its specification) until it (possibly) crashes. By definition, a
correct process is a process that does not crash. A faulty process is a process that is not
correct. As previously indicated, ¢ denotes the maximum number of processes that can
crash (1 <t < n).

Processes communicate and synchronize by sending and receiving messages through
links. Every pair of processes (p, ¢) is connected by two directed links, denoted p — ¢
and ¢ — p. Links are assumed to be reliable: they do not create, alter, or lose messages.
In particular, if p sends a message to g, then eventually ¢ receives that message unless
one of them fails. There is no assumption about message transfer delays (moreover, the
links are not required to be FIFO).

Processes are synchronous in the sense that there are lower and upper bounds on
the number of processing steps they can execute per time unit. Each process has also
a local clock that can accurately measure time intervals. The clocks of the processes
are not synchronized. To simplify the presentation, and without loss of generality, we
assume in the following that the execution of the local statements take no time. Only
the message transfers consume time.

In the following, AS,, :[0] denotes an asynchronous distributed system as just de-
scribed, made up of n processes among which up to ¢ < n can crash. More generally,
AS,, +[P] will denote an asynchronous system made up of n processes among which up
to t < n can crash, and satisfying the additional assumption P (so, P = () means that
the system is a pure asynchronous system).

We assume the existence of a global discrete clock. This clock is a fictional device
which is not known by the processes; it is only used to state specifications or prove
protocol properties. The range of clock values is the set of real numbers.

2.2 The oracle class 2

12 has been defined informally in the introduction. A leader oracle is a distributed entity
that provides the processes with a function leader() that returns a process id each time
it is invoked. A unique correct process is eventually elected but there is no knowledge of
when the leader is elected. Several leaders can coexist during an arbitrarily long period
of time, and there is no way for the processes to learn when this “anarchy” period is
over. A leader oracle satisfies the following property [4]:

— Eventual Leadership: There is a time 7 and a correct process p such that any
invocation of leader() issued after = returns the id of p.

£2-based consensus algorithms are described in [9,13,18] for asynchronous systems
where a majority of processes are correct (¢t < n/2). These algorithms can then be
used as a subroutine to solve other problems such as atomic broadcast (e.g., [3,13]).

As noticed in the introduction, whatever the value of ¢t € [1,n — 1], £2 cannot be
implemented in AS,, ;[(]. Direct proofs of this impossibility can be found in [2,19]
(“direct proofs” means that they are not based on the impossibility of asynchronously
solving a given problem such as the consensus problem [7]).

3 The additional assumption A

This section defines a system model, denoted AS,, +[A] (AS, +[0] enriched with the
assumption .4) in which failure detectors of the class {2 can be built. (Said differently,
this means that (2 can be implemented in all the runs of AS,, ;[()] that satisfy .A.)

Process behavior requirement The assumption A requires that each process p; regu-
larly broadcasts ALIVE(rn) messages (until it possibly crashes). The parameter rn is a
round number that, for each process p;, takes the successive values 1,2, ...

Let send_time(i,7n) be the time at which p; broadcasts ALIVE(rn). The words
“regularly broadcasts” means that the duration separating two broadcasts by the same
process is bounded. More formally, there is a bound 5 (not necessarily known by the
processes) such that, for any round number rn and any process p; (until it possibly
crashes), we have 0 < send_time(i,rn+ 1) — send _time(i, rn) < . Itis important to
notice that, given two different processes, there is no relation linking send _time(i,rn)
and send_time(j, rn). It is easy to see that this broadcast mechanism can be imple-
mented in AS,, ;[0].

In the text of the algorithms, “repeat regularly ST means that two consecutive
executions of the statement S7" are separated by at most (5 time units.

Definitions According to the time or the order in which it is received, an ALIVE(rn)
message can be §-timely or winning. These notions are central to state the assumptions
AT and A. It is important to remark that they are associated with messages, not with
links. Let ¢ denote a bounded value.

Definition 1. A message ALIVE(rn) is §-timely if it is received by its destination pro-
cess at most ¢ time units after it has been sent.

Definition 2. Amessage ALIVE(rn) iswinning if it belongs to the first (n—t) ALIVE(rn)
messages received by its destination process.

System model AS,, ;[A*] The additional assumption A* is the following: There is a
correct process p, a bound 4§, and a finite round number RNy, such that for any rn >
RNy, there is a set of processes Q(rn) satisfying the following properties:

- Al:p ¢ Q(rn) and |Q(rn)| > t (i.e., {p} U Q(rn) is a t-star centered at p), and

— A2: Forany g € Q(rn) (i.e., any point of the star), one of the following properties
is satisfied: (1) ¢ has crashed, or (2) the message ALIVE(rn) is é-timely, or (3) the
message ALIVE(rn) is winning.

It is important to see that p, §, and RN, are not known in advance, and can never
be explicitly known by the processes. As said in the introduction, the process p that
satisfies A™ is the center of an eventual rotating ¢-star.

AT includes several dynamicity notions. One is related to the fact that the sets Q()
are not required to be the same set, i.e., Q(rn1) and Q(rn2) can be different for rn; #
rng. This is the rotating notion (first introduced in [11,16] under the hame moving set).
A second dynamicity notion is the fact that two points of the star {p} U Q(rn) (e.g.,
p — gl and p — ¢2), are allowed to satisfy different properties, one satisfying the
“s-timely” property, while the other satisfying the “winning” property. Finally, if the
point ¢ appears in Q(rn1) and Q(rn2) with rny # rne, it can satisfy the “J-timely”
property in Q(rny) and the “winning” property in Q(rns).

It is important to notice that the assumption A™ places constraints only on the mes-
sages tagged ALIVE. This means that, if an algorithm uses messages tagged ALIVE plus
messages with other tags, there is no constraint on the other messages, even if they use
the same links as the ALIVE messages.

System model AS,, +[A] As indicated in the introduction, A is a weakening of .A* that
allows the previous properties to be satisfied by only a subset of the round numbers.
(None of the previous assumptions proposed so far have investigated such an assump-
tion weakening.)

The additional assumption A is the following: There is a correct process p, a bound
0, abound D, and a finite round number RN, such that:

— Thereis an infinite sequence S of increasing round numbers s; = RNy, sa, .. . , Sk,
Sk+1,---,Suchthat sy+1 —si < D, (s0, the round numbers in S are not necessarily
consecutive), and

— For any s; € S there is a set of processes Q(s;) satisfying the properties Al and
A2 previously stated.

When D = 1, A boils down to A™". So, A weakens AT by adding another dynamicity
dimension, namely, a dimension related to time. It is sufficient that the rotating ¢-star
centered at p appears from time to time in order {2 can be built. This is why we say that
A defines an intermittent rotating ¢-star. The limit imposed by A to this dynamicity
dimension is expressed by the bound D.

4 An At-based leader algorithm

This section presents and proves an algorithm that builds a failure detector of the class (2
in AS,, [A™]. This algorithm will be improved in the next sections to work in AS,, ;[A]
(Section 5), and then to have only bounded variables (Section 6).

4.1 Principles and description of the algorithm

The algorithm is based on the following idea (used in one way or another in several
leader protocols -e.g., [2,17]-): among all the processes, a process p; elects as its current
leader the process it suspects the least to have crashed (if several processes are the least
suspected, p; uses their ids to decide among them).

Local variables To attain this goal each process p; uses the following local variables:

— s_rn; and r_rn; are two round number variables. s_rn; is used to associate a round
number with each ALIVE() message sent by p;. When s_rn; = a, p; has executed
up to its ath sending round.
r_rn; is the round number for which p; is currently waiting for ALIVE() messages.
When r_rn; = b, p; is currently executing its bth receiving round.

Sending rounds and receiving rounds are not synchronized (separate tasks are as-
sociated with them).

— timer; is p;’s local timer.

— susp-level;[1..n] is an array such that susp_level;[j] counts, from p;’s point of
view, the number of rounds during which p; has been suspected to have crashed by
at least (n — t) processes.

— rec_from;[1..] is an array such that rec_from;[rn| keeps the ids of the processes
from which p, has received an ALIVE(rn) message while rn > r_rn, (if rn <
r_rn; when the message arrives, then it is too late and is consequently discarded).

— suspicions;[1..,1..n] is an array such that suspicions;[rn, j] counts, as far as the
receiving round rn is concerned, how many processes suspect that p; has crashed.

Process behavior The algorithm for a process p; is described in Figure 1. It is made
up of two tasks. The task 7'1 (Lines 1-3) is the sending task. In addition to its round
number, each ALIVE() message carries the current value of the array susp_level; (this
gossiping is to allow the processes to converge on the same values for those entries of
the array that stop increasing).

The task 7°2 is the main task. When leader() is locally invoked, it returns the id
of the process that locally is the least suspected (Lines 19-21). If several processes are
the least suspected, their ids are used to decide among them®. When an ALIVE(rn, sl)
message is received, 72 updates accordingly the array susp_level;, and rec_from;[rn]
if that message is not late (i.e., if r_rn; > rn). The core of the task 7'2 is made up of
the other two sets of statements.

— Lines 8-12. The timer timer; is used to benefit from the “J-timely message” side
of the assumption A™, while the set rec_from;[r-rn;] is used to benefit from its
“winning message” side. At each receiving phase r_rn;, p; waits until both the
timer has expired and it has received (n — ¢) ALIVE(rn, x) messages with rn =
r_rn;.

When this occurs, as far as the receiving phase r_rn; is concerned, p; suspects all
the processes p, from which it has not yet received ALIVE(r_rn;, x) message. It
consequently informs all the processes about these suspicions (associated with the
receiving phase r_rn;) by sending to all a SUSPICION(r_rn;, suspects) message
(Line 10). Then, p; proceeds to the next receiving phase (Line 12). It also resets the
timer for this new (r_rn;th) waiting phase (Line 11).

The timer has to be reset to a value higher than the previous one when p; discovers
that it has falsely suspected some processes because its timer expired too early®. A
way to ensure that the timeout value increases when there are such false suspicions,
is adopting a conservative approach, namely, systematically increasing the timeout
value. So, a correct statement to reset the timer (at Line 11) could be “set timer;
to s_rn;” (or to r_rn;) as these round numbers monotonically increase.

It appears (see the proof) that susp_level;[j] is unbounded if p; is correct and p; is
faulty. So, another possible value to reset timer; is max({susp_level;[j]}1<j<n)-
The reason to reset timer; that way (instead of using s_rn; or r_rn;) will become
clear in the last version of the algorithm (Section 6) where we will show that all the
susp-level;[j] variables can be bounded, and so all the timeout values will also be
bounded (while the round numbers cannot be bounded). Let us notice that bounded
timeout values can allow reducing stabilization time.

— Lines 13-18. When it receives a SUSPICION(rn, suspects) message, p; increases
suspicions;[rn, k] for each process pj, such that k& € suspects (Line 15). More-

5 Let X be a non-empty set of pairs (integer, process id). The function min(X) returns the
smallest pair in X, according to lexicographical order. This means that (si1, ¢) is smaller than
(sl2,7) iff sl1 < sl2, 0r (sl1 = s12) A (i < j).

€ Let us remark that an ALIVE(rn,*) message that arrives after the timer has expired, but be-
longs to the first (n —¢) ALIVE(rn, x) messages received by p;, is considered by the algorithm
as if it was received before the timer expiration. So, such a message cannot give rise to an er-
roneous suspicion.

over, if p; is suspected by “enough” processes (here, n — t) during the receiving
phase rn, p; increases susp_level;[k] (Lines 16-17)’.

init: for_each rn > 1 do rec_from;[rn] < {i} end_do;
for_each rn > 1,1 < j < n do suspicions;[rn, j] < 0 end_do;
sormg < 0; rorng «— 1; susp_level; «— [0, ..., 0]; set timer; to 0;

task T'1:
(1) repeat regularly:
% Two consecutive repeats are separated by at most 3 time units %
2) sorng — sorm + 1
(3) for_each j # i do send ALIVE(s_rn;, susp-level;) top; end_do

task 72

(4) upon reception ALIVE(rn, sl) from p;:

(5) for_each k do susp_level;[k] «— max(susp_level;[k], sl[k]) end_do;
©) ifrn > rorn; then rec_from;[rn] «— rec_from;[rn] U {j}

(7) end.if

(8) when (timer; has expired) A (|rec_from;[r_rn;]| > n — t):

(9) let suspects = II \ rec_from;[r_rn;];

(10) for_each j do send SUSPICION(rrn;, suspects) top; end_do;
(11) set timer; to max({susp-level;[j]}1<j<n);

12) rong —ron; +1

(13) upon reception SUSPICION(rn, suspects) from p;:

(14) for_each k € suspects do

(15) suspicions;[rn, k] < suspicions;[rn, k] + 1;

(16) if (suspicions;[rn, k] =n —t)

a7 then susp_level;[k] — susp_level;[k] + 1 end._if
(18) end_do

(19) when leader() isinvoked by the upper layer:
(20) let ¢ such that (susp_level;[¢], £) = min({(susp-leveli[j],5)}
(21) return (¢)

1<j<n);

Fig. 1. Algorithm for process p; in AS,, :[A™]

4.2 Proof of the algorithm

Lemma 1. Let p; be a correct process and p; a faulty process. susp_level;[j] increases
forever.

" It is worth noticing that the system parameter ¢ is never explicitly used by the algorithm. This
means that (n — ¢) could be replaced by a parameter «. For the algorithm to work, « has to be
a lower bound on the number of the correct processes.

Lemma 2. Let p, be a correct process that is the center of an eventual rotating ¢-star
(i.e., it makes true A™). There is a time after which, for any process p;, susp_level;[{]
is never increased at Line 17.

Theorem 1. The algorithm described in Figure 1 implements 2 in AS,, ;[AT].

5 An A-based leader algorithm
51 From At to.A

The difference between A* and A lies on the fact that the properties Al and A2 that
define an eventual rotating ¢-star, have no longer to be satisfied by each round number
starting from some unknown but finite number RNy, but only by the round numbers
of an infinite sequence S = s1, s2,... , Sk, Sk+1, - - -, that (1) starts at RN, (i.e., s1 =
RNy), and (2) is such that Vk, sp+1 — s < D, where D is a (possibly unknown)
constant.

This means that, when compared to an 4™ -based algorithm, an 2 A-based algo-
rithm has to filter the round numbers in order to skip the irrelevant ones, i.e., the round
numbers that do not belong to S. In a very interesting way, this can be attained by adding
asingle line (more precisely, an additional test) to the A" -based algorithm described in
Figure 1. The corresponding .A-based algorithm is described in Figure 2 where the new
line is prefixed by “x”.

- The Lines 1-12 are the same as in Figure 1

(13) upon reception SUSPICION(rn, suspects) from p;:
(14) for_each k € suspects do

(15) suspicions;[rn, k] < suspicions;[rn, k] + 1;
(16) if (suspicionsi[rn,k] =n —1t)

* A (Vo : mn — susp-level;[k] < x < rn : suspicions;[x, k] > n —1t)
(%)) then susp_level;[k] — susp_level;[k] + 1 end._if
(18) end.do

- The Lines 19-21 are the same as in Figure 1

Fig. 2. Algorithm for process p; in AS;, +[A]

The variable susp_level;[k] must no longer be systematically increased when there
is a round number rn such that suspicion;[rn, k] = n — t. This is in order to prevent
such increases when rn is a round number that does not belong to the sequence S. But,
on the other side, susp_level;[k] has to be forever increased if p; has crashed. To attain
these “conflicting” goals, the variables susp_level;[k] and suspicion;[rn, k] are simul-
taneously used as follows: susp_level;[k] is increased if suspicion;[rn,k] = n — ¢
and, Vz such that rn — susp_level;[k] < x < rn, we have suspicion;[z, k] > n — t.

When it is satisfied, this additional condition means that p; has been continuously
suspected during “enough” rounds in order susp_level;[k] to be increased. The ex-
act meaning of “enough” is dynamically defined as being the round number window
[rn — susplevel;[k] + 1, rn], thereby allowing not to explicitly use the bound D (that
constraints the sequence S) in the text of the algorithm.

5.2 Proof of the algorithm

The statements of the lemmas and theorem that follow are the same as in Section 4. As
A is weaker than AT their proofs are different.

Lemma 3. Let p; be a correct process and p; a faulty process. susp_level;[j] increases
forever.

Lemma 4. Let p, be a correct process that is the center of an eventual rotating ¢-star
(i.e., it makes true .A). There is a time after which, for any process p;, susp_level;[¢] is
never increased at Line 17.

Theorem 2. The algorithm described in Figure 2 implements 2 in AS,, ,[A].
6 A bounded variable .A-based leader algorithm

When we examine the A-based leader algorithm described in Figure 2, it appears that,
for each process p;, the size of its variables is bounded, except for variables s_rn;,
rrn;, and susp_level;[§] in some cases (e.g., when p; crashes). Since the current
value of max({susp_level;[j]}1<;j<n) is used by p; to reset its timer, it follows that
all the timeout values are potentially unbounded (e.g., this occurs as soon as one pro-
cess crashes).

We show here that each local variable susp_level;[j] can be bounded whatever the
behavior of p; and the time taken by the messages sent by p; to p;. Consequently, all the
variables (except the round numbers) are bounded, be the execution finite or infinite. It
follows that all the timeout values are bounded, whatever the fact that processes crash
or not, and the links are timely or not. This is a noteworthy property of the algorithm.
(Of course, it remains possible to use s_rn; or r_rn; if, due to specific application
requirements, one needs to have increasing timeouts.)

6.1 Bounding all the variables susp_level;[k]

Let us observe that if susp_level;[k] is not the smallest value of the array susp_level;,
p; does not currently considers p; as the leader. This means that it is not necessary
to increase susp_level;[k] when susp_level;[k] # min({susp-level;[j]}1<j<n). The
proof shows that this intuition is correct.

Let B be the final smallest value in the array susp_level;[1..n], once the eventual
leader has been elected. The previous observation allows us to conclude that no value in
this array will ever be greater than B + 1, and consequently, all the values are bounded.

As for the previous algorithm (Figure 2), The resulting algorithm can be attained
by adding a single line (more precisely, an additional test) to the AT -based algorithm
described in Figure 1. This new test is described in Figure 3 where it appears at the line
marked “**”

(13) upon reception SUSPICION(rn, suspects) from p;:
(14) for_each k € suspects do
(15) suspicions;[rn, k] < suspicions;[rn, k] + 1;
(16) if (suspicions;[rn,k] =n —t)
* A (Y : rn — susp-leveli[k] < x < rn : suspicions;[x, k] > n —t)
A (susp-level;[k] = min({susp_level;[j]}1<j<n))
(17) then susp_level;[k] — susp_level;[k] + 1 end_if
(18) end.do

**k

Fig. 3. Algorithm with bounded variables for process p; in AS., [A]

6.2 Proof and properties of the algorithm

Lemma 5. Let p, be a correct process that makes true the assumption A. There is a
time after which, for any process p;, susp_level;[¢] is never increased at Line 17.

Definition 3. Let B; be the greatest value (or +oc if there is no such finite value) ever
taken by a variable susp_level;[j], Vi € [1..n]. Let B = min(By, ..., By) or +oo if
all B; are equal to +-oo.

Lemma 6. Let p; be a correct process and p; a faulty process. We eventually have
susp-level;[j] > B.

Theorem 3. The algorithm described in Figure 3 implements {2 in AS,, ,[A].

Lemma7. V p;, max({susplevel;[z]}1<p<n) — min({susplevel;[z]}1<u<n) < 1
is always satisfied.

Theorem 4. No variable susp_level;[j] is ever larger than B + 1.

7 Conclusion

Combining the result of [3,4] with this paper we obtain the following theorem:

Theorem 5. Consensus can be solved in any message-passing asynchronous system
that has (1) a majority of correct processes (¢t < n/2), and (2) an intermittent rotating
t-star.

References

1. Aguilera M.K., Delporte-Gallet C., Fauconnier H. and Toueg S., On Implementing Omega
with Weak Reliability and Synchrony Assumptions. 22th ACM Symposium on Principles of
Distributed Computing (PODC’ 03), pp. 306-314, 2003.

2. Aguilera M.K., Delporte-Gallet C., Fauconnier H. and Toueg S., Communication Efficient
Leader Election and Consensus with Limited Link Synchrony. 23th ACM Symp. on Princi-
ples of Distributed Computing (PODC’ 04), pp. 328-337, 2004.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

Chandra T.D. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Systems.
Journal of the ACM, 43(2):225-267, 1996.

Chandra T.D., Hadzilacos V. and Toueg S., The Weakest Failure Detector for Solving Con-
sensus. Journal of the ACM, 43(4):685-722, 1996.

Fernandez A., Jiménez E. and Raynal M., Eventual Leader Election with Weak Assumptions
on Initial Knowledge, Communication Reliability, and Synchrony. Proc. Int'l |EEE confer-
ence on Dependable Systems and Networks (DSN' 06), pp. 166-175, 2006.

Fernandez A. and Raynal M., From an Intermittent Rotating Star to a Leader. Tech Report
1810, IRISA, Rennes, 2006.

Fischer M.J., Lynch N. and Paterson M.S., Impossibility of Distributed Consensus with One
Faulty Process. Journal of the ACM, 32(2):374-382, 1985.

Guerraoui R., Indulgent Algorithms. 19th ACM Symposium on Principles of Distributed
Computing, (PODC’ 00), pp. 289-298, 2000.

Guerraoui R. and Raynal M., The Information Structure of Indulgent Consensus. |EEE
Transactions on Computers, 53(4):453-466, 2004.

Hélary J.-M., Mostéfaoui A. and Raynal M., Interval Consistency of Asynchronous Dis-
tributed Computations. Journal of Computer and System Sciences, 64(2):329-349, 2002.
Hutle M., Malkhi D., Schmid U. and Zhou L., Chasing the weakest system model for imple-
menting {2 and consensus. Brief Annoucement, Proc. 8th Int’l Symposium on Stabilization,
Safety and Security in Distributed Systems (SSS 06), LNCS #4280, pp. 576-577, 2006.
Jiménez E., Arévalo S. and Fernandez A., Implementing unreliable failure detectors with
unknown membership. Information Processing Letters, 100(2):60-63, 2006.

Lamport L., The Part-Time Parliament. ACM Trans. on Comp. Systems, 16(2):133-169, 1998.
Lamport L., Shostak R. and Pease L., The Byzantine General Problem. ACM Transactions
on Programming Languages and Systems, 4(3):382-401, 1982.

Larrea M., Fernandez A. and Arévalo S., Optimal Implementation of the Weakest Failure
Detector for Solving Consensus. Proc. 19th IEEE Int’| Symposium on Reliable Distributed
Systems (SRDS 00), pp. 52-60, 2000.

Malkhi D., Oprea F. and Zhou L., {2 Meets Paxos: Leader Election and Stability with-
out Eventual Timely Links. Proc. 19th Int’'l Symp. on Distributed Computing (DISC’ 05),
Springer Verlag LNCS #3724, pp. 199-213, 2005.

Mostéfaoui A., Mourgaya E., and Raynal M., Asynchronous Implementation of Failure De-
tectors. Proc. Int'l IEEE Conf. on Dependable Systems and Networks, pp. 351-360, 2003.
Mostéfaoui A. and Raynal M., Leader-Based Consensus. Parallel Processing Letters,
11(1):95-107, 2000.

Mostéfaoui A., Raynal M. and Travers C., Crash-resilient Time-free Eventual Leadership.
Proc. 23th Int’| IEEE Symposium on Reliable Distributed Systems, pp. 208-217, 2004.
Mostéfaoui A., Raynal M. and Travers C., Time-free and timer-based assumptions can be
combined to get eventual leadership. IEEE Transactionson Parallel and Distributed Systems,
17(7):656-666, 2006.

Raynal M., A Short Introduction to Failure Detectors for Asynchronous Distributed Systems.
ACM S GACT News, Distributed Computing Column, 36(1):53-70, 2005.

