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Abstract. In this paper, contention resolution amohgontenders on a multiple-access
channel is explored. The problem studied has been modelad:#3election in Radio
Networks, in which every contender has to have exclusivescat least once to a shared
communication channel. The randomized adaptive protoasgnted shows that, for a
probability of error2e, all the contenders get access to the channel in tirmel + &)k +
O(log?(1/¢)), wheree < 1/(n + 1), € > 0 is any constant arbitrarily close & andn

is the total number of potential contenders. The above tioneptexity is asymptotically
optimal for any significant. The protocol works even if the number of contendeiis
unknown and collisions can not be detected.

1 Introduction

A recurrent question, in settings where a resource musté®dlamong many contenders, is
how to make that resource available to all of them. The probeparticularly challenging if
not even the number of contenders is known. The broad specfgettings where answers to
such a question are useful makes its study a fundamental®askxample of such contention

is the problem of broadcasting information in a multiple@ss channel. A multiple-access
channelis a synchronous system that allows a message téivereidto many recipients at the
same time using a channel of communication but, due to theedhmature of the channel, the
simultaneous introduction of messages from multiple sesiproduce a conflict that precludes
any message from being delivered to any recipient. In Raaivbirks? one of the instances
of such a question is the problem known in the literature §3ehection. In its general version,
the k-Selection problem [11], also known aall-broadcast, is solved when an unknown size-
subset of, network nodes have been able to access a unique shared bbiaoremunication,
each of them at least once. TheSelection problem in Radio Networks and related problems
have been well-studied for settings where a tight upper 8aur; is known. In this paper, a
randomized adaptive protocol férSelection in Radio Networks is presented, assuming that
such a knowledge is not available, the arrival of messagbatished, and conflicts to access
the channel cannot be detected by all nodes. To our know)ehigeis the firstk-Selection
protocol in the Radio Networks literature that works in saohditions and it is asymptotically

* This research was supported in part by Comunidad de Madaiat §-0505/TIC/0285; Spanish MEC
grant TIN2005-09198-C02-01, TIN2008-06735-C02-01; N$&nyCCF 0632838; and EU Marie
Curie International Reintegration Grant IRG 210021.

3 As pointed out in [3], the historical developments justifietuse of Radio Network to refer to any
communication network where the channel is contended, iévadio communication is not actually
used.



optimal for any sensible error-probability bound (up todrse exponential ik). This protocol
improves over previous work in adversarial packet contentesolution thanks to the adaptive
nature of the protocol and the knowledgeofGiven that the error probability is parametrized,
this protocol can be also applied to sok«Selection in multiple neighborhoods of a multi-hop
Radio Network.

Notation and Model Most of the following assumptions and notation are folkliorthe Radio
Networks literature. For details and motivation, see thwesuof Chlebus [3]. We study the
k-Selection problem in a Radio Network comprisedhofabeled stations calledodes. Each
node is assumed to be potentially reachable from any otlag imoone communication step,
hence, the network is characterizedsagyle-hop or one-hop indistinctively. Before running
the protocol, nodes have no information besidesnd their own label, which is assumed to
be unique but arbitrary.Time is supposed to be slotted Gommunication steps. Assuming
that the computation time-cost is negligible in comparigdth the communication time-cost,
time efficiency is studied in terms of communication steply.ofhe piece of information as-
signed to a node in order to deliver it to other nodes is cadlegssage. The assignment of
a message is due to an external agent and such an event i @abkssage arrival. Com-
munication among nodes is carried out by means of radio loasidn a shared channel. If
exactly one node transmits at a communication step, suamartrission is calleguccessful

or non-colliding, we say that the message waddivered, and all other nodegeceive such a
message. If more than one message is transmitted at the isagnadollision occurs, the mes-
sages are garbled, and nodes only receit@ference noise. If no message is transmitted in
a communication step, nodes receive dpdgkground noise. In this work, nodes can not dis-
tinguish between interference noise and background niigs, the channel is callegithout
collision detection. Each node is in one of two stategtive if it holds a message to deliver,
or idle otherwise. In contrast witlblivious protocols, where the sequence of transmissions
of a node does not depend on the transmissions receivedd#ptive protocol presented in
this paper exploits the information implicit on the occunte of a successful transmission. In
the randomized protocol presented here all active nodethessame probability in the same
communication step, a class of protocols usually cdtéd Therefore, it is also aniformpro-
tocol, i.e., all active nodes use the same protocol. As inrfstance [1, 7, 11], we assume that
all the k£ messages arrive inlaatch, i.e. in the same communication step, a problem usually
calledstatic k-Selection? and that each node becomes idle upon delivering its message.

Problem Definition Given a Radio Network where a subgétof the set ofn network nodes,
such thai K| = k, are activated by message arrivals, thBelection problem is solved when
each node i has delivered its message. The definition given pertairtsggéneral version
of the problem where messages may arrive at different tiadsgugh in this paper we study
only simultaneous, dratched, arrivals.

Related Work Regarding deterministic solutions, tkeSelection problem was shown to be
in O(klog(n/k)) already in the 70's by giving adaptive protocols that make efscollision
detection [2, 8, 14]. In all these results the algorithmitht@que, known asree algorithms,

“ Notice that our protocol does not make any use of the ideafitymessage originator. Thus, it can be
used even in settings where nodes are not labeled or laleef®aunique.
5 A dynamic counterpart where messages arrive at different times sassaidied [11].



relies on modeling the protocol as a complete binary treeravtiee messages are placed at
the leaves. Later, Greenberg and Winograd [6] showed a lbaend for that class of pro-
tocols of 2(k log,, n). Regarding oblivious algorithms, Komlds and Greenbefj ghowed
the existence af(k log(n/k)) solutions even without collision detection but requiringkvl-
edge ofk andn. More recently, Clementi, Monti, and Silvestri [4] showetbaver bound of
£2(klog(n/k)), which also holds for adaptive algorithms if collision dzten is not available.

In [11], Kowalski presented the construction of an obligaleterministic protocol that, us-
ing the explicit selectors of Indyk [9], gives@(% polylogn) upper bound without collision
detection.

In the following results, availability of collision detégh is assumed. Martel presented
in [13] a randomized adaptive protocol férSelection that works i (k + logn) time in
expectatioh. As argued by Kowalski in [11], this protocol can be improted (k +log log n)
in expectation using Willard's expecté&d(log logn) selection protocol of [17]. In the same
paper, Willard shows that, for any given protocol, therestesxa choice ok < n such that
selection take€2(log log n) expected time for the class of fair selection protocols.tRercase
in which n is not known, in the same paperXloglog k) expected time selection protocol
is described, again, making use of collision detectionolfigion detection is not available,
using the techniques of Kushilevitz and Mansour in [12]ahde shown that, for any given
protocol, there exists a choice bf< n such thatf2(logn) is a lower bound in the expected
time to get even the first message delivered.

A frequent challenging difficulty to overcome in resolvinglisions is to determine which
is the best probability of transmission to be used by thearmrs when their number is un-
known. The method of choice is then to increase or decreasemobability based on the
success or failure of successive trials. When the prolvaloifitransmission is increased it is
said that aack-on strategy is used, whereaack-off is the term used when such probabil-
ity is decreased. A combination of both strategies is uguallled back-on/back-off. Mono-
tonic back-off strategies for contention resolution ofdbetd arrivals ofk packets on sim-
ple multiple access channels, a problem that can be sektSatection, have been analyzed
in [1]. The best strategy shown is the so-calledlog-iterated back-off with a makespan in
O(kloglog k/ logloglog k) with probability at least — 1/k¢, ¢ > 0, which does not use any
knowledge ofk or n.

Regarding related problems, extending previous work am atgorithms, Greenberg and
Leiserson [7] presented randomized routing strategiestitrées for bounded number of mes-
sages. Choosing appropriate constant capacities for tfesexd the fat-tree, the problem could
be seen ak-Selection. However, that choice implies a logarithmicgestion parameter which
yields an overalD(k polylogn) time. In [5], Gereb-Graus and Tsantilas presented an algo-
rithm that solves the problem of realizing arbitrdryrelations in ann-node network, with
probability at leastt — 1/n° ¢ > 0, in ©(h + lognloglogn) steps. In arh-relation, each
processor is the source as well as the destinatignrmaessages. Making = k this protocol
can be used to solve-Selection. However, it requires that nodes kniaw

Results and Outline In this paper, a randomized adaptive protocolifeBelection, in a one-
hop Radio Networkwithout collision detection, that doesmegjuire knowledge of the number
of contenders:, is presented. Assuming that< 1/(n + 1), the protocol is shown to solve
the problem in(e 4+ 1 + )k 4+ O(log?(1/¢)) communication steps, whege> 0 is any con-
stant arbitrarily close t® with probability at leastl — 2¢. Given that the error probability

® Througout this papetog meandog, unless otherwise stated.



is parametric, this protocol can be applied to multiple hbigrhoods of a multi-hop Radio
Network, adjusting the error probability in each one-hojghborhood appropriately. To our
knowledge O(k log log k/ loglog log k) [1] is the best upper bound in the literature for a pro-
tocol suitable to solvé:-Selection in Radio Networks (although they propose it facket
contention resolution), that works without knowledgeiptunder batched arrivals, and with-
out collision detection. By exploiting back-on/back-offcathe knowledge of,, our protocol
improves their time complexity. Given thatis a lower bound for this problem, the protocol
is optimal (modulo a small constant factorkife 9(2*\/5). In Section 2 the details of the
protocol are presented and they are analyzed in Section 3.

2 Protocol

The protocol comprises two different algorithms. Each efnthis particularly suited for one
of two scenarios, depending on the number of messages ldéliteer. The algorithm called
BT solves the problem for the case when that number is beloveatibid (that will be defined
later). The algorithm calledT is suited to reduce that number from the initiato a value
below that threshold. The BT algorithm uses the well-knoechhique of repeating trans-
missions with the same appropriately-suited probabilittilihe problem is solved. The AT
algorithm on the other hand is adaptive by repeatedly irsingaan estimation of the messages
left and decreasing such an estimation by roughly one eahdimessage is delivered. (Even
if that successful transmission is due to the BT algorithém)illustration of the estimation
progress is depicted in Figure 1. Further details can be iseglyorithm 1. Both algorithms

‘ 4k
4k +log?(1/¢)

Fig. 1. lllustration of estimate progress.

are executed interleaving their communication steps (ask T in Algorithm 1). For clarity,
each communication step is referred to by using the name@gorithm executed at that step.
The following notation used in the algorithm is defined faardy: 8 £ e + 5,6 = 1 + &5,

7 £ 30081n(1/¢), e £ error probability0) < & < 1,0 < & < 0.27and0 < & < 1/2 are
constants arbitrarily close ty and1/¢;, € N.

3 Analysis

For clarity, each of the algorithms comprising the protoa@ first analyzed separately and
later put together in the main theorem. Consider first the l§drithm. (Refer to Algorithm 1.)
Let x be called thedensity estimator. Let around be the sequence of AT-steps between in-
creasings of the density estimator (Line 14). Let the rolmelsumbered as € {1,2,...}



Algorithm 1 : Pseudocode for node
1 upon message arrival do

2 te—T

3 R« T

4 start tasksl, 2 and3

5 Task 1

6 foreach communication-step = 1,2,... do

7 if communication-step =1 (mod 1/¢&;) then /1 BT-step
8 transmit(z, message) with prob1/7

9 else [l AT-step
10 transmit(z, message) with prob1/x

11 t—t—1

12 if t <0then

13 t—T

14 K—RK+T

15 Task 2

16 upon reception from other node do

17 K — max{k — 6,7}

18 t—t+p

19 Task 3

20 upon message delivery stop

and the AT-steps within a round ase {1,2,...}. (E.g., roundl is the sequence of AT-
steps from initialization until Line 14 of the algorithm ixexuted for the first time.) Let
krt, Called thedensity, be the number of messages not delivered yet (i.e., the nuofilze-
tive nodes) at the beginning of AT-stef roundr. Let ¥,.; be the density estimator used
at the AT-stept of roundr. Let X,.; be an indicator random variable such that,, = 1

if a message is delivered at the AT-stemf roundr, and X,, = 0 otherwise. Then,
Pr(X,:=1) = (krt/Frt)(1—1/F,¢)"~1. Also, for a round-, let the number of messages
delivered in the interval of AT-stef$, ¢) of r, including those delivered in BT steps, bg;.
The following intermediate results will be useful. Firste state the following useful fact.

Fact1 [15, §2.68]
/D) <141 <e® 0 < |z] < 1.

Lemma 1. For any round r wherex, 1 < k.1 —,v > d(2—-9)/(6 —1) >0, Pr(X,, = 1)
is monotonically non-increasing with respect to ¢ for § + 1 < K,y < Ky, @Nd 0 < (Kpt —
V) (Ere =y = 1)/ (Kre =7+ 1).

Proof. We want to show conditions such that for anyin round r, Pr(X,; = 1) >
Pr(X,iy1 = 1). If k.p = k+41 the claim holds trivially. Then, let us assume instead that
Krt > Krt+1. We want to show that

Kt —1 Koy t+1_1
K 1 ' K 1 ’
#(1—~ ) 2]’t+1(1—~ ) .
Ryt Ryt Ry t+1 Ry t+1

Due to the BT-step between two consecutive AT-steps, at masinessages are delivered in
the intervalft,t + 1) of . Thus, replacing appropriately, we want to show that thiofahg




inequalities hold.

Kpt—1 Kyt —2
Ryt 1 ot Ret — 1 1 it
— |1—-= — 1-= , 1
Ryt ( Kr.,t) Ryt — 6 ( Ryt — 5) ( )

Kpt—1 Kr,t—3
. 1 r,t . _ 2 1 r,t
2t (- >tz 2 (o . )
Ii,,«yt K/T,t Ii,,«yt — 25 K/T,t - 25

Y

Reordering 1,

Frg—0—1 (Er,t —1 Fpy—6 )"“‘1 J fre = L @)

Er,t Er,t Er,t - 5 -1 ’{r,t
Using calculus, it can be seen that the left-hand side of 3oisatonically non-increasing for
0+ 1 < Kr+ < Kp. The details are omitted for brevity. Then, given tRat = &, 1 — o, <

Kr1 — Ort — 7 < Kpt — 7, itis enough to show

fir,t_l Rt — 7 Rrt — 7 '%7‘,15_7_5_1

Again using calculus, it can be seen that the left-hand ditteequality 4 is monotonically non-
increasing ork,.; fory > §(2—9)/(6 — 1) andd < (k¢ — ) (Krp —v — 1)/ (Krp — v+ 1).
The details are omitted for brevity. Then, it is enough tovslizat, in the limit, the left-hand
side of Inequality 4 tends td. Which can be verified using standard calculus techniques. T
details are omitted for brevity. Using the same technigueesjuality 2 can be shown to hold.

Lemma 2. For anyround r wherex, 1 — v —7 < K1 < kr1 — 7,7y > 0 and for any AT-step
t inr such that

Grr < Ko ng-1 (7+T+1)lnﬁ—1’

6lnp—1 6lnp—1

the probability of a successful transmissionisat least Pr(X,, = 1) > 1/0.

Proof. We want to showx,.+/,¢)(1 -1/, )" =1 > 1/3. Given that nodes are active until
their message is delivered, it is enough to show

Rr1 — Opt 1 fr1—l=ors
— (1_ — t) > 1/8. (5)

Ke1l — 6Ur,t Re1l —

Using calculus, it can be seen that the left hand side of lakitgib is monotonically non-
decreasing with restpect &. ; under the conditions of the Lemma. The details are omitted fo
brevity. Then, it is enough to prove Inequality 5 for; = k.1 — v — 7.

Kp1 — Opt 1 K/r,l_l_o'nt
1= O . (1 B ) >1/8
Hr,l -

Kpl —7Y—T— 00,4 — 7 =004

1 Kp1—1—0pt
1— >1/p.
( 57‘,1 _7_7—_607‘,15) o /6




Given thato, ; < K, g‘;nﬁﬁjll — (”’Lgf:llgf‘f_l < (K1 — (y+ 7+ 1))/6, using Fact 1, we
want

- -1
exp ’{r,l a'r,t S ﬁ
Kpl —Y—T— 00, — 1

Ryl — Opt — 1

<1
Kpg1—Y—T—00,3—17 np

Manipulating the last expression, it can be seen that thenkehmolds.
The following lemma, shows the efficiency and correctnesh@fiT-algorithm.
Lemma 3. If the number of messages to deliver is more than

5

6lnﬁ 1 yi- ((5(2—5)/(5—1))+T+1)1nﬁ—1
M= lnﬁ 1 25/6 T Ing—1

O(log(1/e)),

Jj=1

after running the AT-algorithmfor (e + &3+ 1+ &5)k — 7 steps, where {3 and &; are constants
arbitrarily close to 0, the number of messages left to deliver is reduced to at most M with
probability at least 1 — e, for e < 1/(n+1).

Proof. Consider the first round such that
I{T,l_’Y_TSRT,l <’{r,1_757:6(2_5)/(5_1)' (6)

By definition of the AT algorithm, unless the number of messalgft to deliver is reduced
to at mostM before, such a round exists. To see why, natice in Algoriththat the density
estimator is either increased byin Line 14, or decreased hyin Line 17, or assigned

in Line 3 or 17. After the first assignment, we havg; = 7 < k1,1 — v — 7, because
k11 > M > 27 + ~. We show now that condition 6 of can not be satisfied right after
decreasing the density estimator in Line 17. Consider twiseoutive steps,t’ + 1 of some
roundr’ such that stillk, ;s < k.. ,» —~ — 7. If, upon a success at stépof /', K, 41 =T
by the assignmentin Line 17, angl v 1 —y—7 < K py1, thens, pog <7 +y+7 < M
and we are done. If on the other hafid .1 = k,» » — ¢ by the assignmentin Line 17, then
Frip41 = Rprpr — 0 < Kpryp —y —T — 6 < K pry1 — 7y — 7. Thus, the only way in which
the density estimator gets inside the aforementioned ranlg the increase in Line 14 and
therefore round exists.

We show now that, before leaving roundat leastr messages are delivered with high
probability so that in some future round > r the conditionk,»1 — v — 7 < K1 <
kr 1 — v holds again. In order to do that, we divide roundh consecutive sub-rounds of
sizer,5/67, (5/6)%r,... (The fact that a number of steps is an integer is omitted tttout
for clarity.) More specifically, the sub-roun$ is the set of AT-steps in the intervé), 7|
and, fori > 2, the sub-roundb; is the set of steps in the interv&l5/6) =27, (5/6)~17].
Thus, denotindS;| = =, foralli > 1,itism = 7 andr;, = (5/6)r;,—1 for i > 2. For
each: > 1, letY; be a random variable such thet = ZteSi X, . Even if no message is
delivered, round still has at least the sub-routsd by definition of the algorithm. Given that,
according with Algorithm 1, each message delivered delag®nd of round in 8 = e + &3
AT-steps, fori > 2, the existence of sub-rourff] is conditioned ort;_1 > 57;_1/(65). We
show now that with big enough probability roundhas5 sub-rounds and at leastmessages
are delivered. Even if messages are delivered in every stéped sub-rounds (including



messages delivered in BT-steps), given that > M, the total number of messages delivered

is less tham,. 1 315 — (ng;lgl_nlﬁ’l because = §(2—4)/(6 —1). Thus, Lemma 2 can be
applied and the expected number of messages delivergdsnZ[Y;] > 7;/5. In order to use
Lemma 1, we verify first its preconditions. If, at any step,.; < M, we are done. Otherwise,
we know thats,;, > K, > d+1and(k, —v)(kre —v —1)/(krp — v+ 1) > d. Given that

v =46(2-19)/(6 — 1), by Lemma 1, the random variablés. ; are not positively correlated,
therefore, in order to bound from below the number of sudaésBansmissions we can use the

following Chernoff-Hoeffding bound [16]. Far < ¢ < 1,

Pr(Yi < (1—¢)n/B) < e—?°T1/(28)
Pr(Y; < (1—¢)mi/B|Yie1 > 57i-1/(68)) < e=#" /) i 2 <i <5,

Takingy = 1/6,

Pr(Y; <57m/(68)) < e—#°3001In(1/¢)/2
Pr(Y; < 57:/(68)[Yi_1 > 5ri_1/(63)) < e~#"(3/6)1300m(1/e)/2 v . 9 < j < 5,

PT(Yl < 57’1/(66)) < 6_2111(1/5)
Pr(Y; < 57/(68)|Yi—1 > 51-1/(683)) < e7210(1/2) 'y 1 2 < < 5.

Given thate < 1/(n + 1) andk < n, then it holds that? + ke < 1 which implies
thatln(1/e) > In(e + k), thereforee=21n(1/e) < ¢~ In(e+k)—In(1/e) — ¢ /(¢ 4+ k). So, more
than(5/(6(e + £3)))m messages are delivered in any sub-roShavith probability at least
1 —¢/(e + k). Given that each success delays the end of round? = e + ¢3 AT-steps, we
know that, forl < i < 4, sub-roundS;; exists with probability at least— /(s + k). If, after
any sub-round, the number of messages left to deliver is at /o we are done. Otherwise,
conditioned on these events, the total number of messadjesrdd over thes sub-rounds is
atleasty")_, Y; > Y271 (5/(6(c + €9))) (¢ + &) 7 = (v/(e + &) X251 (5/6) > 7
becausé&g < 0.27.

Thus, the same analysis can be repeated over the nextréusuth thats,» ; — v — 7 <
Krr 1 < ke — 7. Unless the number of messages left to deliver is reducetlriwoat A/
before, such a round’ exists by the same argument used to prove the existence ad rou
The same analysis is repeated over various rounds untiledbages have been delivered or
the number of messages left is at md$t Then, using conditional probability, the overall
probability of success is at leagt — /(¢ + k))*. Using Fact 1 twice, that probability is at
leastl — e.

It remains to be shown the time complexity of the AT algorithrhe difference between
the number of messages to deliver and the density estimghtrafter initialization is at most
k — 7. This difference is increased with each message delivered imosts — 1 and reduced
at the end of each round by Therefore, the total number of rounds is at mgst- 7 +
(6 — 1)k)/T = 0k/T — 1. Each message delivered adds only a constant factorthe total
time, whereas the other steps in each round add up Therefore, the total time is at most
B+o)k—T=(e+&+1+&)k—T.

The time efficiency and correctness of the BT algorithm ialdihed in the following lemma.
The proof, omitted for brevity, is a straightforward comgttidn of the probability of some
message not being delivered.



Lemma 4. If the number of messages left to deliver is at most

g1 i ((62=8)/6—=1)+7+1)Ing—1
M—271nﬁ_1(2(5/6) )+ . :

J=1

there exists a constant ¢ > 0 such that, after running the BT-algorithm for clog?(1/¢) steps,
all messages are delivered with probability at least 1 — .

The following theorem establishes the main result.

Theorem 2. For any one-hop Radio Network, under the model detailed in Section 1, Algo-
rithm 1 solves the k-selection problem within (e + 1 + &)k + O(log?(1/¢)) communication
steps, where ¢ > 0 is any constant arbitrarily close to 0, with probability at least 1 — 2¢ for
e<1/(n+1).

Proof. From Lemmas 3 and 4, and the definition of the algorithm, thed tome is(e + 1 +
& +E3)k/(1— &) + O(log?(1/¢)). Given thatts, &5, andé, are positive constants arbitrarily
close to0, the claim follows.

4 Conclusions and Open Problems

The general problem of enabling an unknown number of comtenthe access to a shared
resource was studied in this paper. The results obtaingdipdao a problem of broadcast-
ing information in a multiple-access radio-channel, bettmay be straightforwardly applied
to any setting that supports the same model. The specifidgrostudied herek-Selection

in Radio Networks, was previously studied in the literaturgt assuming that a tight upper
bound on the number of contenders is known. Thus, a crucigtibation of this paper was
the removal of such assumption, consequently widening¢bpesof application of the pro-
tocol presented. Furthermore, we have assumed that messagassigned to all nodes at the
same time, increasing the potential contention for the rBkwith respect to scenarios where
messages might arrive sparsely. To avoid collisions reguitom that contention it would be
useful to have a mechanism to detect them at each node. Howevstudied a more challeng-
ing scenario where only the transmitter of a message knowsvids the only one to access
the channel in a time slot or not. Nonetheless, even undéreske challenging conditions, the
bound shown is asymptotically optimal for any sensible repr@bability bound. To the best
of our knowledge, the&-Selection protocol presented in this paper is the first & Radio
Networks literature that works in such conditions and isropt.

A number of possible extensions of this work arise as namuaktions that are left for
future work. First, different patterns of message arrieamprising specific application sce-
narios, such as Poisson arrivals and others, may also yitilchal bounds. Also, the protocol
presented here improves over previous work in adversaaizgt contention-resolution thanks
to the adaptive nature of the protocol and the knowledge dherefore, the question of how
to solve the problem optimally in settings where nodes dewetn known or the feasibility of
a non-adaptive optimal protocol are also important. Finétle experimental evaluation of the
protocol presented here, or others resulting from the abwmtioned future work, would be
useful for comparison with heuristics currently in use.
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