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The paper proposes a simple protocol that ensures sequential consistency. The protocol assumes that
the shared memory abstraction is supported by the local memories of nodes that can communicate
only by exchanging messages through reliable channels. Unlike other sequential consistency protocols,
the one proposed here does not rely on a strong synchronization mechanism, such as an atomic
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1. INTRODUCTION

The definition of a consistency criterion is crucial for the
correctness of a multiprocess program [2, 3]. Basically, a
consistency criterion defines which value has to be returned
when a read operation on a shared object is invoked by a
process [4–6]. The strongest (i.e. most constraining) consistency
criterion is atomic consistency [7], also called linearizability
[8]. It states that a read returns the value written by the latest
preceding write, ‘latest’ referring to real-time occurrence order
(concurrent writes being totally ordered). Causal consistency
[9, 10] is a weaker criterion, stating that a read does not get an
overwritten value. Causal consistency allows concurrent writes;
consequently, it is possible that concurrent read operations
on the same object get different values. This occurs when
those values have been produced by concurrent writes. Other
consistency criteria weaker than causal consistency have also
been proposed [11, 12].

1A preliminary version of this paper was published in [1].

This paper focuses on sequential consistency [13]. This
criterion lies between atomic consistency and causal consis-
tency. Informally, it states that a multiprocess program executes
correctly if its results could have been produced by executing
that program on a single processor system. This means that an
execution is correct if we can totally order its operations in such
a way that:

(i) the order of operations in each process is preserved;
(ii) each read operation obtains the latest previously written

value, ‘latest’ referring here to the total order.

The difference between atomic consistency and sequential
consistency lies in the meaning of the word ‘latest’. This
word refers to real-time when we consider atomic consistency,
while it refers to a logical time notion when we consider
sequential consistency. Namely, the logical time defined by the
total order. The main difference between sequential consistency
and causal consistency lies in the fact that, like atomic
consistency, sequential consistency orders all write operations,
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while causal consistency does not require the ordering of
concurrent writes.

Atomic consistency is relatively easy to implement in a
distributed message-passing system. Each process pi maintains
in a local cache the current value v of each shared variable
x, and such a cached value v is systematically invalidated (or
updated) each time a process pj writes x. The conflicts due to
multiple accesses to a shared variable x are usually handled
by associating a manager Mx with every shared variable x.
One of the most popular atomic consistency protocols is the
invalidation-based protocol due to Li and Hudak [14] that has
been designed to provide a distributed shared memory on top
of a local area network. An update-based atomic consistency
protocol is described in [15].

Due to its very definition, atomic consistency requires that the
value of a variable x cached at pi be invalidated (or updated)
each time a process pj issues a write on x. In that sense, the
atomic consistency criterion (that is an abstract property of a
computation) is intimately related to an eager invalidation (or
update) mechanism that concerns the operational side. Said in
another way, atomic consistency is a consistency criterion that
can be too conservative for some applications.

Put in another way, sequential consistency can be seen
as a form of lazy atomic consistency [16]. A cached
value does not need to be systematically invalidated each
time the corresponding shared variable is updated. Old and
new values of a shared variable can coexist at different
processes as long as the resulting execution could have been
produced by running the multiprocess program on a single
multiprogrammed processor system. Of course, a protocol
implementing sequential consistency can be more involved than
a protocol implementing atomic consistency, as it has to keep
track of global information allowing it to know, for each process
pi , which old values currently used by pi have to be invalidated
(or updated). This global information tracking, which is at
the core of sequential consistency protocols, is the additional
price that has to be paid to replace eager invalidation by lazy
invalidation, thereby providing the possibility for more efficient
runs of multiprocess programs.

This paper presents a methodological construction of a
sequential consistency protocol. A variant of this protocol
has first been presented in [17] as a dynamically adaptive
and parameterized algorithm that implements sequential
consistency, cache consistency or causal consistency, according
to the setting of some parameter. This parameterized algorithm
is presented ‘from scratch’, without exhibiting or relying on
basic underlying principles. Here, it is shown that a variant of
its sequential consistency instantiation can be obtained from a
simple derivation starting from the very definition of sequential
consistency.

The algorithm obtained here from this derivation not only is
surprisingly simple, but—as it is based on the very essence of
sequential consistency—it reveals to be particularly efficient for
some classes of applications. The protocol has the nice property

to allow the write operations to be always executed locally
without involving external synchronization.Alternatively, some
read operations can be executed in the same fashion, while
others cannot. Whether a read is executed locally depends on
the variable that is read and the set of variables that have been
previously written by the process issuing the read operation, so
it is context-dependent.

The derived algorithm has been implemented and used to
run typical parallel programming applications, namely finite
differences (FD), matrix multiplication (MM), and fast Fourier
transform (FFT), in a cluster of workstations. In this context, the
performance of this implementation of the algorithm has been
compared with implementations of the sequential consistency
algorithms proposed by Attiya and Welch [18]. The results of
this comparison show that the implementation of our algorithm
runs faster and requires smaller number of messages than the
other two. Furthermore, unlike the algorithms from [18], with
our algorithm a large majority of the messages carry information
about written values.

The paper is made up of six sections. Section 2 presents
some related work. Section 3 presents the computation model,
and defines sequential consistency. Then, Section 4 derives the
protocol from the sequential consistency definition. Section 5
provides a performance evaluation of such a protocol. Finally,
Section 6 concludes the paper.

2. RELATED WORK

Several protocols providing a sequentially consistent shared
memory abstraction on top of an asynchronous message passing
distributed system have been proposed. The protocol described
in [19] implements a sequentially consistent shared memory
abstraction on top of a physically shared memory and local
caches. It uses an atomic n-queue update primitive. Attiya and
Welch [18] present two sequential consistency protocols. Both
protocols assume that each local memory contains a copy of
the whole shared memory abstraction. They order the write
operations using an atomic broadcast facility: all the writes are
sent to all processes and are delivered in the same order by each
process. Read operations issued by a process are appropriately
scheduled to ensure their correctness.

The protocol described in [20] considers a server site that
has a copy of the whole shared memory abstraction. The local
memory of each process contains a copy of a shared memory
abstraction, but the state of some of its objects can be invalid.
When a process wants to read an object, it reads its local copy
if it is valid. When a process wants to read an object whose
state is invalid, or wants to write an object, it sends a request
to the server. In this way, the server orders all write operations.
An invalidation mechanism ensures that the reading by pi of an
object that is locally valid is correct. A variant of this protocol
is described in [21]. The protocol described in [22] uses a
token that orders all write operations and piggybacks updated
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values. This protocol, like one of the protocols described in [18],
provides purely local read operations [23].1

Most of the previous protocols rely on a strong synchroniza-
tion mechanism that has a scope spanning the whole system
(atomic broadcast facility, navigating token or central man-
ager2). However, the protocol described in [16] is fully dis-
tributed in the sense that it does not rely on an underlying global
mechanism: each object x is managed by its own object man-
ager Mx and there is no synchronization primitive whose scope
is the entire system.

3. THE SEQUENTIALLY CONSISTENT SHARED
MEMORY ABSTRACTION

A parallel program defines a set of processes interacting through
a set of concurrent objects. This set of shared objects defines
a shared memory abstraction. Each object is defined by a
sequential specification and provides processes with operations
to manipulate it. When it is running, the parallel program
produces a concurrent system [8]. As in such a system an
object can be accessed concurrently by several processes, it is
necessary to define consistency criteria for concurrent objects.

3.1. Shared memory abstraction

A shared memory system is composed of a finite set of sequential
processes p1, . . . , pn that interact via a finite set X of shared
objects. Each object x ∈ X can be accessed by read and
write operations. A write into an object defines a new value for
the object; a read allows to obtain a value of the object. A write
of value v into object x by process pi is denoted by wi(x)v;
similarly, a read of x by process pj is denoted by rj (x)v where
v is the value returned by the read operation; op will denote
either r (read) or w (write). To simplify the analyses, as in
[7, 9, 25], we assume that all values written into an object x are
distinct.3 Moreover, the parameters of an operation are omitted
when they are not important. Each object has an initial value
(it is assumed that this value has been assigned by an initial
fictitious write operation).

3.2. Programs, histories and legality

A program is a set of read and write operations to be issued
by the processes that form the program. The local program

1As shown in [18], atomic consistency does not allow protocols in which
all read operations (or all write operations) can be executed locally without
involving global synchronization[8, 24]. Alternatively, causal consistency
allows protocols where this happens [9, 10, 25].

2For example, an atomic broadcast facility allows ordering all the write
operations, independently of the processes that issue them.

3Intuitively, this hypothesis can be seen as an implicit tagging of each value
by a pair composed of the identity of the process that issued the write plus a
sequence number. Such a tagging is only conceptual and not required for the
correctness of the algorithm.

of process pi is the set of operations to be issued by pi .
If op1 and op2 are going to be issued by pi and op1 is
going to be issued first, then we say that ‘op1 precedes op2
in pi’s process–order’, which is denoted by op1 →i op2.
Note that nothing has been said about the read or written
values, nor about the order between operations from different
processes.

In order to model concrete executions of programs, we
introduce the concept of history. The local history (or local
computation) ĥi of pi is the sequence of operations issued by pi

in process order such that each operation has an associated (read
or written) value. If hi denotes the set of operations executed
by pi , then ĥi is the total order (hi, →i ).

Definition 3.1. An execution history (or simply history, or
computation) Ĥ of a shared memory system is a partial order
Ĥ = (H, →H ) such that:

(i) H = ⋃
i hi;

(ii) op1 →H op2 if:

(a) ∃pi : op1 →i op2 (in that case, →H is called process–
order relation), or

(b) op1 = wi(x)v and op2 = rj (x)v (in that case →H is
called read-from relation), or

(c) ∃op3 : op1 →H op3 and op3 →H op2.

Two operations op1 and op2 are concurrent in Ĥ if we have
neither op1 →H op2 nor op2 →H op1. Table 1 shows some
of the nomenclature used.

The legality concept is the key notion on which the definitions
of shared memory consistency criteria are based [9, 10, 12, 24].
From an operational point of view, it states that, in a legal history,
no read operation can get an overwritten value.

Definition 3.2. A read operation r(x)v of a history Ĥ is
legal if:

(i) ∃w(x)v : w(x)v →H r(x)v;
(ii) � ∃op(x)u : (u �= v) ∧ (w(x)v →H op(x)u →H r(x)v).

A history Ĥ is legal if all its read operations are legal.

TABLE 1. Nomenclature.

Symbol Description

pi Sequential process i

ri(x)v Read of value v of object x by process pi

wi(x)v Write of value v into object x by process pi

op →i op′ Operation op precedes operation op′ in pi

op →H op′ Operation op causally precedes operation op′
hi Set of operation executed by pi

ĥi Total order (hi, →i )

Hi

⋃
i hi

Ĥi Total order (Hi, →H )
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3.3. Sequential consistency

Sequential consistency was proposed by Lamport in 1979 to
define a correctness criterion for multiprocessor shared memory
systems [13].A system is sequentially consistent with respect to
a multiprocess program if ‘the result of any execution is the same
as if (1) the operations of all the processors were executed in
some sequential order, and (2) the operations of each individual
processor appear in this sequence in the order specified by its
program.’

This informal definition states that the execution of a program
is sequentially consistent if it could have been produced by
executing this program on a single processor system.4 More
formally, we define sequential consistency in the following way.
We first recall the definition of linear extension of a partial
order. A linear extension Ŝ = (S, →S) of a partial order
Ĥ = (H, →H ) is a topological sort of this partial order. This
means that it satisfies the following:

(i) S = H ;
(ii) op1 →H op2 ⇒ op1 →S op2 (Ŝ maintains the order

of all ordered pairs of Ĥ );
(iii) →S defines a total order.

Definition 3.3. A history Ĥ is sequentially consistent if it
has a legal linear extension Ŝ. We also say that Ŝ is a base legal
sequentially consistent history of Ĥ .

As an example, we consider the history Ĥ depicted in Fig. 1.
Each process has issued three operations on the shared objects x

and y. The write operations w1(x)0 and w2(x)1 are concurrent.
It is easy to see that Ĥ is sequentially consistent by building a
legal linear extension Ŝ including first the operations issued by
p2 and then the ones issued by p1.

4. THE METHODOLOGICAL CONSTRUCTION

The aim of this work is to implement a sequentially consistent
shared memory abstraction on top of an underlying message-
passing distributed system. Such a system is a distributed system
made up of n reliable sites, one per process. Hence, without
ambiguity, pi denotes both a process and the associated site.
Each pi has a local memory. The processes communicate
through reliable channels by sending and receiving messages.
There are no assumptions neither on process speed, nor on
message transfer delay. Hence, the underlying distributed
system is reliable but asynchronous.

4In his definition, Lamport assumes that the process–order relations defined
by the program (point 2 of the definition) is maintained in the equivalent
sequential execution, but not necessarily in the execution itself. As we do not
consider programs, but only executions, we implicitly assume that the process–
order relations displayed by the execution histories are the ones specified by
the programs which gave rise to these execution histories.

FIGURE 1. A sequentially consistent execution Ĥ . Transitivity edges
come from process–order relations (represented by dashed arrows) and
read–from (represented by dotted arrows) relations. Only the edges that
are not due to transitivity are shown.

4.1. The methodology

The usual approach to design sequential consistency protocols
consists on first defining a protocol and then proving it is correct.
The approach adopted here is different, in the sense that we start
from the very definition of sequential consistency, and derive
from it a sequential consistency protocol.

More precisely, to ensure that a distributed execution has
a base legal sequentially consistent history, we perform the
following steps.

(i) First define a base legal sequentially consistent history Ŝ.
(ii) Then, design a protocol that controls the execution of

the multiprocess program in order to produce an actual
distributed execution Ĥ that has Ŝ as a base legal
sequentially consistent history.

The first subsection that follows derives a trivial sequential
consistency protocol that works for a very particular type of
multiprocess programs; these particular multiprocess programs
have the nice property that all operations can be executed
locally. Then, by observing that the history of each sequentially
consistent process can be decomposed into segments, such
as those considered in the previous type of multiprocess
programs, a new sequential consistency protocol is derived
that works for the general case. Finally, the last subsection
shows how to enhance such a general protocol in order to
achieve higher performance. The key idea behind the above-
mentioned algorithms is disseminating updates only at the end
of the different segments into which the distributed execution
is decomposed. This solution reduces the necessary number
of messages used to guarantee sequential consistency, thus
improving the overall system performance.

4.2. Step 1 of the construction: the trivial case

We start with a multiprocess program where the local program
of each process pi has the following very particular structure.
Namely, it is formed by a (possibly empty) sequence containing
only read operations (denoted as SRi), followed by a (possibly
empty) sequence of write and read operations (denoted as SWRi)
such that the read operations are issued only on variables that
have been previously written by pi . Note that SWRi ends when
pi stops issuing operations.

Consider a concrete execution Ĥ of such a program, produced
by executing sequentially the SRi sequences in any order, and
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then the SWRi sequences also in any order, and make each read
operation return the closest previously written value, by the
same process, in the corresponding variable (or the initial value,
if it has not written any value). Since the SRi sequences contain
only read operations that obtain the initial values of the shared
variables and the read operations in the SWRi sequences read
only variables previously written by process pi , from the very
definition of sequential consistency, it is immediate to find a
base legal sequentially consistent history Ŝ of Ĥ . Namely,

Ŝ = SR1 . . . SRn SWR1 . . . SWRn. (1)

Figure 2 shows an example of a parallel execution of a
program made of n = 3 processes, as described in the above
paragraph. Our goal now is to design a protocol that ensures that
any history of the multiprocess programs considered is of the
previously defined form (i.e. has Ŝ as a base legal sequentially
consistent history).

4.2.1. Implementation of the trivial case protocol
From the above presented reasoning, it follows that an
implementation would simply provide each process pi with
a local cache containing all the shared variables and perform

FIGURE 2. Example of a program execution Ĥ that is ‘trivially’
sequentially consistent. Reads are assumed to return the closest
previously written value, by the same process, in the corresponding
variable (or the initial value, if it has not been written yet). The ordering
of the base legal sequentially consistent history Ŝ is indicated with the
dashed arrow.

both reads and writes locally. Clearly, all the resulting histories
will have the above presented Ŝ as a base legal sequentially
consistent history. Consequently, no additional protocol would
be necessary. Figure 3 shows an implementation of the
described protocol.

4.3. Step 2 of the construction: the general case (looking
for correctness)

We first observe that, in the general case, the local program of
pi (for each process) can always be expressed as follows:

SR0
i SWR1

i SR1
i SWR2

i SR2
i . . . SWRk

i SRk
i . . . ,

where SRk
i is a (possibly empty) sequence of only read

operations and SWRk
i is a (possibly empty) sequence of write

and read operations such that read operations are performed only
on variables that have been previously written in SWRk

i . Note
that SWRk

i ends immediately before there is a read operation,
by process pi , on a variable not previously written in SWRk

i .
The superscript k is used to associate a SRi sequence with its
immediately preceding SWRi sequence.

The decomposition of each process history into sequences
and the particular case of a single sequence examined in the
previous step of the construction, provides us with some hint on
how to proceed. Indeed, we define a history Ŝ formed first by
the sequences SR0

1, SR0
2, . . . , SR0

n, in this order, and then by the

sequences SWR1
1 SR1

1 , SWR1
2 SR1

2 , . . . , SWR1
n SR1

n , in this

order. We find that Ŝ will contain additional subsequent phases,
similar to the second one, until completing the execution. Also,
make read operations to return the closest previously written
value, by any process, in the corresponding variable (or the
initial value, if it has not been written yet).

Clearly, for the definition of sequential consistency, Ŝ will
be a base legal sequentially consistent history of ‘some’ of the
histories of the general program. Figure 4a shows an example,

FIGURE 3. Trivial case protocol for process pi .
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in the case where there are n = 3 processes, of the parallel
execution of a program Ĥ that has the above defined history Ŝ

as a base legal sequential history.
Now, the goal is to design a sequential consistency protocol

that ensures that ‘any’ possible program execution has Ŝ as a
base legal sequentially consistent history.

4.3.1. Implementation of the general case protocol
For the design of the protocol, we observe that, in Ŝ, when
pi+1 executes SR1

i+1, it can read the value of a variable x that
has been written by pi when it executed SWR1

i . Hence, pi+1

must be informed of these writes before it executes SR1
i+1.

A simple way to attain this goal consists of using a token
traveling along a logical ring, so that no process misses updates
(e.g. p1, p2, . . . , pn, p1) and carrying the latest known value
of each shared variable. Therefore, we have to manage the
token exactly as if it was received by pi+1 just after pi+1

executed SR0
i+1 and was sent by pi+1 to pi+2 just after pi+1

terminated SR1
i+1. Logically, the token follows the dashed arrow

in Fig. 4a, so that Ĥ will have Ŝ as a base legal sequentially
consistent history. Then, in the algorithm to carry the new values
written in SWR1

i , the token has to be sent after SWR1
i finishes.

Moreover, as SR1
i modifies no shared variables, the token can

be sent by pi before SR1
i . So, when a process pi receives the

token, it ends a segment SWRk
i , sends the token and starts a

segment SRk
i .

The resulting protocol is described in Fig. 5. As already
indicated, X denotes the set of shared variables, and Ci[x] is
pi’s local cache containing the value of the shared variable
x. Each process pi maintains a boolean array updatedi such
that updatedi[x] is true if and only if pi has updated x

since the last visit of the token. The boolean no_changei is
a synonym for ∧x∈X(¬updatedi[x]) (no_changei is true if
and only if no shared variable has been updated since the last
visit of the token at pi). The write operation and the statements
associated with the token reception are executed atomically.
We observe that the arrival of the token at a process always
corresponds to the beginning of a new segment SRk

i for that
process.5 Figure 4b shows the actual travel of the token with
this algorithm in the example used in this step. Observe that,
in this protocol the token could be replaced by a list containing
only the modifications. This ‘improvement’, together with one
dealing with the dissemination of updates, is incorporated in the
algorithm presented in the next step.

5The reader familiar with token-based termination detection protocols [26]
can see that the protocol described in Fig. 5 and these termination detection
protocols share the same underlying mechanism combining token and flags
(here, the flags no_changei ). The corresponding flags in a termination detection
protocol are usually called cont_passivei , and are used to know if a process pi

stayed continuously passive between two consecutive visits of the token. This
flag is set to false when pi receives a message. It is reset to true when pi owns
the token, becomes passive and sends the token to its successor.

4.4. Step 3 of the construction: the general case (looking
for efficiency)

When we look at the form of the sequences SRj

i , as defined in
Step 2, we also observe that they can always be decomposed
as follows:

SRj

i =
⎧⎨
⎩

SR0
i,1 . . . SR0

i,i when j = 0,

SRj

i,i (mod n)+1 . . . SRj

i,(i+n−1) (mod n)+1 when j > 0.

Note that SR0
i is decomposed into i sequences, whereas SRj>0

i

is always decomposed into n sequences.
The rationale behind the form we have decomposed SRj

i

into n subsequences (except for the start-up phase, where it
is split into i subsequences) can be explained as follows. By
using such a decomposition, the goal is to allow a process
pi , during its sequence of reads in SRj

i , to obtain the updated
values as quickly as possible. Namely, those updates will take
place at the beginning of each one of the SRj

i,k subsequences.
With this in mind, in the new base legal sequentially consistent
history Ŝ, the updated values within SWRj

i will have to be
‘disseminated’to all processes at the same time, contrary to what
is done at Step 2, where the updated values were disseminated
sequentially. Clearly, this type of ‘eager’ dissemination allows
processes to be informed of new values earlier. Furthermore, this
also allows processes to disseminate only their own updates (in
the protocol in Step 2, the token accumulates all the updates),
thus reducing the transfer of data between processes.

Therefore, by substituting the new decomposed sequences
into the local history of pi , we obtain the following:

SR0
i,1 . . . SR0

i,i

SWR1
i SR1

i,i (mod n)+1 . . . SR1
i,(i+n−1) (mod n)+1

SWR2
i SR2

i,i (mod n)+1 . . . SR2
i,(i+n−1) (mod n)+1

...

SWRj

i SRj

i,i (mod n)+1 . . . SRj

i,(i+n−1) (mod n)+1

...

Now, we define the form of the base legal sequentially
consistent history Ŝ. To do that, first we order the different
sequences of the local programs as in Fig. 6.

Then, we make read operations to return the closest
previously written value, by any process, in the corresponding
variable (or the initial value, if it has not been written yet).
Clearly, for the definition of sequential consistency, Ŝ will be
a base legal sequentially consistent history of ‘some’ of the
histories of the general program. Figure 7a shows an example,
in the case where there are n = 3 processes, of the parallel
execution of a program Ĥ that has the above defined history
Ŝ as a base legal sequential history. Figure 7b also illustrates
how the dissemination of writes is performed. Now, as in the
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FIGURE 4. Example of a general case program’s execution that is sequentially consistent.

previous cases, the goal is to design a sequential consistency
protocol that ensures that ‘any’ possible program execution has
Ŝ as a base legal sequentially consistent history.

4.5. Implementation of the efficient general case protocol

The design of the protocol is based on the protocol in Step 2.
However, in order to dissociate the two different roles of
the token (namely, dissemination and gathering of updates),
the token itself is replaced by the local variables tokeni .
By tokeni = j we mean that, from pi’s point of view,
pj is the process that is currently allowed to disseminate
updates. So, circulating the token around the logical ring,
p1, p2, . . . , pn, p1, . . . , is realized by having each tokeni

variable taking successively the values 1, 2, . . . , n, 1, . . . . Note
that tokeni = i means that pi (knows that it) has the token and
is consequently allowed to disseminate updates.

The task associated with the management of the token is
presented in Fig. 8. This task defines two distinct behaviors for
a process pi according to the token position. More precisely,
when pi has the token (case tokeni = i), it is allowed to send to
the rest of processes information about all the write operations
(updates) it has executed since the previous visit of the token
(Lines 3 and 4). This set of updates upd is carried in the message
updates(upd). After broadcasting its updates, pi resets its local
control variables (Lines 5 and 6).

When pi does not have the token (case tokeni �= i), it waits
for an updates() message from the next process allowed to
broadcast its updates (ptokeni

). When it receives that message
(Line 8), pi updates accordingly its local cache (as in the previ-
ous protocol, Lines 9 and 10). This constitutes an early refresh-
ing of its local cache with the new values provided by ptokeni

.
Note that, for a process pi , the token moves from pj to

pj+1 when, being tokeni equal to j , pi executes tokeni ←
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FIGURE 5. General case protocol for process pi .

SR0
1,1 SR0

2,1 . . . SR0
n,1

SWR1
1 SR1

1,2 SR0
2,2 . . . SR0

n,2

SWR1
2 SR1

1,3 SR1
2,3 SR0

3,3 . . . SR0
n,3

SWR1
i SR1

1,i (mod n)+1 . . . SR1
i,i (mod n)+1 SR0

i+1,i (mod n)+1 . . . SR0
n,i (mod n)+1

..
.

..
.

SWR1
n SR1

1,n (mod n)+1 SR1
2,n (mod n)+1 . . . SR1

n,n (mod n)+1

SWR2
1 SR2

1,1 (mod n)+1 SR1
2,1 (mod n)+1 . . . SR1

n,1 (mod n)+1

SWR2
2 SR2

1,2 (mod n)+1 SR2
2,2 (mod n)+1 SR1

3,2 (mod n)+1 . . . SR1
n,2 (mod n)+1

..
.

SWR2
i SR2

1,i (mod n)+1 . . . SR2
i,i (mod n)+1 SR1

i+1,i (mod n)+1 . . . SR1
n,i (mod n)+1

..
.

SWR2
n SR2

1,n (mod n)+1 SR2
2,n (mod n)+1 . . . SR2

n,n (mod n)+1

..
.

FIGURE 6. Efficient ordering of the sequences for the general case.

(tokeni mod n) + 1 (Line 13). All the processes have
the same view of the order in which the token visits the
processes. Consequently, after it has received and processed

an updates() message from pj , the process pj+1 knows that
it has the token: no explicit message is necessary to represent
the token.
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FIGURE 7. Example of an efficient general case program execution that is sequentially consistent.

It is important to note that all the processes update their local
caches (with the new values coming from the other processes)
in the same order. This is an immediate consequence of the
fact that each process pi delivers the updates() messages
in the order defined by the successive values of tokeni .
As in the base token-based protocol, pi’s own updates are
done at the time pi issues the corresponding write operations
and tracked with the boolean array updatedi . These boolean
flags are used to maintain the consistency of pi’s local
cache each time it receives and processes an updates()
message.

5. PERFORMANCE EVALUATION

This section presents experiments that show the efficiency of the
proposed protocol. The protocol described in Fig. 8 is denoted
by CFJR in the following. First, we show that in our efficient
general case protocol most of the operations are performed in
a fast manner. An operation (either read or write) is said to
be fast if it can be executed locally at the process where it is
issued without involving global synchronizations. This is a nice
property since a process has never to wait when it writes or reads
a new value in a shared object. This implies that such operations
can be served almost immediately.

Furthermore, the performance of CFJR is also compared with
two sequential consistency protocols proposed by Attiya and
Welch [18]. Such protocols are two of the most widely known
sequential consistency protocols. In the first protocol proposed
by Attiya and Welch (denoted as AW-fastr), all read operations
are fast while write operations are not fast. In the second one
(denoted as AW-fastw), all write operations are fast while read
operations are not fast.

An exact analytic evaluation of how many read operations the
protocol allows to be fast is not possible, as it depends on the
read/write patterns of the upper layer distributed application.
Hence, we have used real benchmark implementations to
estimate the number of fast reads and, more generally, to
evaluate the protocol performance. So, we have implemented
three typical parallel processing applications:

(i) FD with 16 384 × 1024 elements,
(ii) MM with 1600 × 1600 matrices,

(iii) FFT with 262 144 coefficients

FD and MM have been implemented as in [27], while
FFT as been implemented as in [28]. The code, written
in C, uses the sockets interface with UDP/IP for computer
intercommunication. The executions have been done in an
experimental environment formed by a cluster of 2, 4 and
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FIGURE 8. Efficient general case protocol for process pi .

8 computers connected with a switched full-duplex 1Gbps
Ethernet network. Each computer is a PC running Linux Red-
Hat with a 1.5 GHz AMD CPU and 512 Mbytes of RAM
memory. We have mapped one process to each computer
and have restricted our implementation to a maximum of
100 memory operations carried in one single message.

5.1. Percentage of fast operations in CFJR

In Table 2, the percentages of observed fast read and fast write
operations per process in CFJR are shown. As it can be readily
seen, all write operations are fast, while in all cases, almost
100% of the read operations are fast. This makes evident that the
main goal of our protocol (i.e. to maximize the local operations)
is certainly achieved.

5.2. Comparing CFJR with other protocols

In this section, we compare CFJR with AW-fastr and AW-fastw.
First, we compare the execution time measured with the three
protocols for each one of the considered applications. As it can
be readily seen in Table 3, whatever the case, the execution
time provided by the CFJR protocol is much smaller than the
execution time provided by both AW-fastr and AW-fastw. In the
case of FD, the execution time is up to 14.5 times lower; in the
case of MM the execution time is up to 3.12 times lower and in
the case of FFT the execution time is up to 27.5 times lower.

Table 4 presents the total number of messages and acknowl-
edgments sent by each process when executing FD, MM, and
FFT. By acknowledgments we mean all the messages sent
to preserve the correct behavior of the protocol but without
containing write operations. We can see that CFJR reduces
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TABLE 2. Percentage of fast read and write operations per process in CFJR.

Nodes (%)

2 nodes 4 nodes 8 nodes

Operations MM FD FFT MM FD FFT MM FD FFT

Reads 99.21 99.57 99.46 99.99 99.82 99.95 99.99 99.87 99.98
Writes 100 100 100 100 100 100 100 100 100

TABLE 3. Execution time of FD, MM and FFT (in seconds)

FD MM FFT

2 4 8 2 4 8 2 4 8

CFJR 2228.3 2360.0 1450.8 3760.0 3307.5 2813.3 554.2 512.5 437.5
AW-fastr 14133.3 19100.0 22591.7 4816.7 10346.7 8718.3 1371.7 14070.0 11304.2
AW-fastw 12141.7 16400.0 21008.3 4348.3 9720.8 7512.5 1227.5 10215.8 9093.3

TABLE 4. Total number (in thousands) of messages + acknowledg-
ments sent by each process.

2 4 8

FD
CFJR 2667/50 960/29 579/11
AW-fastr 366361/190201 352321/264241 312321/308281
AW-fastw 346613/170453 342284/254204 338782/294742

MM
CFJR 3004/63 396/0.4 208/1.5
AW-fastr 110400/51520 110080/76800 109847/89367
AW-fastw 110080/51200 106587/73307 108239/87590

FFT
CFJR 5206/3357 376/87 194/15
AW-fastr 19922/4980 20970/8388 21068/9731
AW-fastw 19546/4604 19766/7184 19559/8426

up to two orders of magnitude the total number of messages
sent by each process. This is due to the fact that while CFJR
allows several write operations to be disseminated in a sin-
gle message (in our implementation, up to 100), both the
AW-fastr and the AW-fastw protocols issue one message per
write operation. Table 4 also show that in CFJR, almost each
message contains write operations, unlike the AW-fastr and
the AW-fastw protocols, where up to 50% of the messages are
acknowledgments.

6. CONCLUSION

This paper has presented a new sequential consistency protocol.
Unlike the previous protocols we are aware of, this one has been

derived from the very definition of the sequential consistency
criterion. Due to its design principles, the protocol we have
obtained is particularly simple. Additionally, it provides write
operations that can be executed locally (i.e. without requiring
any form of global synchronization). Read operations can also
be executed locally when they read a variable that has just been
previously updated by the same process. The proposed protocol
is very efficient in terms of achieving a high rate of memory
operations that can be executed locally. Finally, we note that
it is possible, from an engineering point of view, to adapt the
globally efficient protocol to particular environments. A simple
adaptation would consist in allowing some processes pi to keep
the token for some time when they have it. The benefit of such a
possibility depends on the read/write access pattern of the upper
layer application program.
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