
Fernández Anta A, Jiménez E, Raynal M. Eventual leader election with weak assumptions on initial knowledge, communi-

cation reliability, and synchrony. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 25(6): 1267–1281 Nov.

2010. DOI 10.1007/s11390-010-1100-9

Eventual Leader Election with Weak Assumptions on Initial

Knowledge, Communication Reliability, and Synchrony

Antonio Fernández Anta1, Senior Member, ACM, IEEE, Ernesto Jiménez2, and Michel Raynal3

1Institute IMDEA Networks, Avenida del Mar Mediterraneo, 22, 28918 Leganés, Spain
2EUI, Universidad Politécnica de Madrid, 28031 Madrid, Spain
3IRISA, Université de Rennes, Campus de Beaulieu 35 042 Rennes, France

E-mail: antonio.fernandez@imdea.org; ernes@eui.upm.es; raynal@irisa.fr

Received June 10, 2009; revised September 3, 2010.

Abstract This paper considers the eventual leader election problem in asynchronous message-passing systems where an
arbitrary number t of processes can crash (t < n, where n is the total number of processes). It considers weak assumptions
both on the initial knowledge of the processes and on the network behavior. More precisely, initially, a process knows only
its identity and the fact that the process identities are different and totally ordered (it knows neither n nor t). Two eventual
leader election protocols and a lower bound are presented. The first protocol assumes that a process also knows a lower
bound α on the number of processes that do not crash. This protocol requires the following behavioral properties from the
underlying network: the graph made up of the correct processes and fair lossy links is strongly connected, and there is a
correct process connected to (n− f)− α other correct processes (where f is the actual number of crashes in the considered
run) through eventually timely paths (paths made up of correct processes and eventually timely links). This protocol is
not communication-efficient in the sense that each correct process has to send messages forever. The second protocol is
communication-efficient: after some time, only the final common leader has to send messages forever. This protocol does
not require the processes to know α, but requires stronger properties from the underlying network: each pair of correct
processes has to be connected by fair lossy links (one in each direction), and there is a correct process whose n − f − 1
output links to the rest of correct processes have to be eventually timely. A matching lower bound result shows that any
eventual leader election protocol must have runs with this number of eventually timely links, even if all processes know all
the processes identities. In addition to being communication-efficient, the second protocol has another noteworthy efficiency
property, namely, be the run finite or infinite, all the local variables and message fields have a finite domain in the run.

Keywords eventually timely and fair lossy links, eventual leader election, failure detector, omega leader oracle, process

initial knowledge

1 Introduction

1.1 The Class of Eventual Leader Oracles Ω

Failure detectors[1-2] are at the core of many fault-
tolerant protocols encountered in asynchronous dis-
tributed systems. Among them, the class of Ω failure
detectors[3] is one of the most important. (This class is
also called the class of leader oracles; when clear from
the context, the notation Ω will be used to denote ei-
ther the oracle/failure detector class or an oracle of that
class.) Assuming that no two processes have the same
identity (id), an Ω oracle provides each process with a
read-only local variable that contains a process id. Ω
is characterized by the fact that these local variables

satisfy the following eventual leadership property: there
is a finite time after which all the leader local vari-
ables contain the same id, which is the id of a correct
process (a process that does not commit failures). So,
Ω guarantees that a correct common leader is eventu-
ally elected, but there is no knowledge on when this
common leader is elected. Let us observe that, before
the finite (but unknown) time from which the common
leader is elected, it is possible to have an arbitrary long
anarchy period during which the leader of each process
can change, processes have different leaders (possibly,
some of them being crashed processes), etc. The reader
interested in other types of failure detectors will find
definitions and protocols implementing them in [1, 4-
9].

Regular Paper
This work was partially supported by the Comunidad de Madrid under Grant No. S2009/TIC-1692, and the Spanish MEC under

Grant Nos. TIN2007-67353-C02-01 and TIN2008-06735-C02-01.
c©2010 Springer Science+ Business Media, LLC & Science Press, China

1268 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

A fundamental feature of the oracle class Ω lies in
the fact that, among all the classes of oracles that pro-
vide processes with information on failures only, it is
the weakest class that allows to solve the consensus
problem[3]. This means that, given any run of a sys-
tem prone to process crashes, Ω provides the weakest
information, related to the failures occurring in that
run, that is needed for the processes to be able solve
the agreement problem. (This problem is at the core of
the state machine replication paradigm.) Examples of
leader-based consensus protocols can be found in [10-
13]①. In all these protocols, Ω is used to ensure the live-
ness property of the protocol. Example of consensus-
based protocols that implement the state machine repli-
cation paradigm can be found in [1, 10, 14-15].

Unfortunately, Ω cannot be implemented in pure
asynchronous distributed systems prone to process
crashes. (Such an implementation would contradict the
impossibility of solving consensus in such systems[16].
A direct proof of the impossibility to implement Ω in
pure crash-prone asynchronous systems can be found in
[17].) So, a main challenge of fault-tolerant distributed
computing consists in identifying properties that are at
the same time “weak enough” in order to be satisfied
by “almost all” underlying systems, while being “strong
enough” to allow to implement Ω in the runs in which
they are satisfied.

1.2 Related Work: The Timely Link Approach
to Implement Ω

The first implementations[1,3,18] of Ω in crash-prone
asynchronous distributed systems considered a fully
connected communication network where all links are
reliable and eventually timely. A link is eventually
timely[19] if there is a time τ0 after which there is a
(possibly unknown) bound δ such that, for any time
τ > τ0, a message sent at time τ is received by time
τ + δ (stronger versions of eventually timely links are
defined and called partially synchronous in [1, 8, 20]).
By convention, as soon as a process q has crashed, the
link from any process p to q can be considered as be-
having in a timely manner.

This approach has then been refined to obtain
weaker assumptions. It has been shown in [19] that it is
possible to implement Ω in a system where communi-
cation links are unidirectional, asynchronous and lossy,
provided there is a correct process whose all output
links are eventually timely. The corresponding proto-
col requires that all the correct processes send messages

forever. It is also shown in [19] that, if there is addition-
ally a correct process whose all input and output links
are fair lossy②, it is possible to design a communication-
efficient Ω protocol (i.e., a protocol that guarantees
that, after some time, only one process has to send
messages forever). Let us observe that communication-
efficiency, as introduced in [19], is a minimal condition.
This is because, in order not to be falsely suspected to
have crashed, at least the leader (or a witness of it) has
to send messages forever.

The notion of eventual t-source has been introduced
in [21] (in a system model where t denotes the max-
imal number of processes that can crash). An even-
tual t-source is a correct process that has t eventually
timely output links. It is shown in that paper that this
weak assumption is strong enough for implementing Ω .
Two protocols based on an eventual t-source are pre-
sented in [21]. In addition to the eventual t-source,
the first protocol (denoted ADFT1 in the following) re-
quires only fair lossy links, but it is not communication-
efficient (it demands each correct process to send mes-
sages forever). The second protocol (denoted ADFT2)
is communication-efficient (after some time, only the
leader sends messages forever), but this is obtained at
an additional price, namely, each link has to be reliable
and t output links of the eventual t-source are timely
from the very beginning of the execution (i.e., it is a
perpetual t-source).

A protocol building Ω when there is a process that
eventually becomes forever t-accessible, and all other
links are fair-lossy is described in [22]. The notion
of eventual t-accessibility is orthogonal to the notion
of eventually timely t-source in the sense that none of
them encompasses the other one. More specifically, a
process p is t-accessible at some time τ if there is a set
Q of t processes such that a message broadcast by p at
τ receives a response from each process of Q by time
τ + δ (where δ is a bound known by the processes).
This notion requires t < n/2 (i.e., a majority of correct
processes) to prevent process blocking. Its interest lies
on the fact that the set Q of processes whose responses
have to be received in a timely manner is not fixed and
can be different at distinct times.

As mentioned above, the eventual t-source and even-
tual t-accessibility notions are incomparable. A new
assumption that is weaker than both of them, namely
eventually moving t-source, is proposed in [23]. An
eventually moving t-source is a correct process such
that, eventually, each message it sends is timely re-
ceived by a set Q of t processes (a faulty process is

①It is important to notice that the first version of the Paxos algorithm[10], which uses a (transient) leader oracle, dates back to
1989, i.e., before the Ω formalism was introduced and investigated.
②Roughly speaking, a link is fair lossy if infinitely many messages are received when infinitely many messages are sent through

the link.

Antonio Fernández Anta et al.: Eventual Leader Election with Weak Assumptions 1269

assumed to always receive the messages timely), that
can be different at distinct times. In [23] three Ω pro-
tocols based on an eventually moving t-source are pre-
sented. A lower bound of Ω(nt) on the communication
complexity (links that carry messages forever) of any
protocol based on an eventually moving t-source is also
given. The second protocol refines the first protocol to
achieve this bound. The third protocol refines the first
one to have bounded timeouts.

A totally different approach to implement Ω is pre-
sented in [24]. That approach, that does not use timers,
is based on a message-pattern assumption. It is shown
in [25] that this approach and the timely link approach
can be combined to obtain protocols with a greater as-
sumption coverage[26].

1.3 Related Work: Implementing Ω When n
Is Not Known

The election of an eventual leader in a system made
up of n processes, in which each process knows only
its identity and the fact that no two processes have the
same identity, has recently been addressed in [27] where
an Ω protocol is presented.

Let GR
ET be the directed graph whose vertices are

the correct processes in a run R (the processes that do
not crash in the considered run), and where there is a
directed edge from p to q iff the link connecting p to
q is eventually timely. A directed path from p to q in
GR

ET is called an eventually timely path.
The protocol described in [27] elects a common cor-

rect leader, despite the fact that no process knows n,
as soon as there is a correct process p such that, for
any correct process q 6= p, there is an eventually timely
path from p to q. This protocol (denoted as JAF in the
following) is not communication-efficient.

1.4 Motivation and Content of the Paper

This paper is on the design of eventual leader elec-
tion protocols in systems where a process knows neither
n, nor t, nor the ids of the other processes (it knows
only their domain, so, the context is the same as the
one considered in [27]). It investigates behavioral as-
sumptions on the links, that allow to implement Ω de-
spite such a weak initial knowledge. From a theoretical
side, this study provides us with a better understand-
ing of the eventual leader election problem by enlarging
the type of systems in which it can be solved. From a
practical side, it provides protocols that can be used in
applications such as sensor systems. In such systems,
the number of sensors is bounded, but this number is

usually not known by the sensors themselves, and no
sensor knows initially the id of the other sensors that
define the system. An example of use is when, to pre-
vent interference and save energy, only one of the sen-
sors has to eventually send data to a base station.

Two protocols and an impossibility result are
presented③. In the following, “initial knowledge” refers
the values of the constants (if any) used in the protocol,
the type and the initial content of the local variables of
each process, and the implicit assumptions common to
all the processes (e.g., the fact that they are provided
with the same code). Processes are synchronous in the
sense that there are upper and lower bounds on their
execution speeds.

First Protocol. The first protocol that is presented
(denoted as FJR1 in the following) assumes that the
initial knowledge of the processes is as follows.

(K1) A process knows initially neither n, nor t, nor
the id of the other processes. (This means that a pro-
cess cannot compute these values from the initial values
of its local variables.) A process knows only its own id,
the domain of the identities, the fact that the ids are
totally ordered and how to order two given ids, and the
fact that no two processes have the same identity. As an
example, the value domain of the identities can be the
set of integers, and the processes are initially assigned
distinct integers.

(K2(α)) The processes know a lower bound (denoted
α) on the number of correct processes. (This means
that the assumption K2(α) is satisfied as soon as α
processes do not crash.)

It is important to notice that α does not allow the
processes to compute the values of n or t that define
a particular system instance. Actually, α abstracts all
the pairs (n, t) such that n− t > α. The protocol FJR1
works for any such pair.

While it requires only the initial knowledge defined
in K1 and K2(α), the protocol FJR1 is intended for the
runs R where the underlying network satisfies the two
following behavioral properties:

(C1) Each ordered pair of processes that are correct
in R is connected by a directed path made up of correct
processes and fair lossy links.

(C2) Given a process p correct in R, let reachR(p)
be the set of the processes that are correct in R and
accessible from p through directed paths made up of
correct processes and eventually timely links. There is
at least one correct process p such that |reachR(p)| >
(n − f) − α + 1, where f is the number of actual
crashes during the run R. (Observe that p is included
in reachR(p).)

③The assumptions or properties related to the initial knowledge of each process are identified by the letter K, while the ones
related to the network behavior are identified by the letter C.

1270 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

Observe that condition C2 imposes α > 1. Other-
wise, (n−f)−α+1 is larger than the number of correct
processes, n−f , and C2 cannot be satisfied. As we can
see, in the runs where exactly α processes are correct
(i.e., α = n− f), C2 is trivially satisfied, which means
that no link is then required to be eventually timely.
In that sense (although their codes differ in many re-
spects), FJR1 generalizes JAF. While JAF requires the
existence of a correct process p with eventually timely
paths to each other correct process, FJR1 reduces this
number to (n − f) − α. On the other hand, JAF does
not need property C1.

An Impossibility Result. Then the paper presents
an impossibility result that consists in an existential
lower bound theorem. That theorem states that, in
any system in the absence of any initial knowledge of
the number of correct or faulty processes, there is no
leader protocol that implements an eventual leader in
all runs where f processes fail and less than n− f − 1
links eventually behave in a timely manner. This result
holds even if the identities of all the processes are part
of the initial knowledge.

Second Protocol. The paper then considers the de-
sign of a communication-efficient protocol when the
process initial knowledge is restricted to (K1). This
protocol (denoted FJR2) works in any run R that sa-
tisfies the following network behavioral properties:

(C1′) Each pair of correct processes is connected by
(typed④) fair lossy links (one in each direction).

(C2′) There is a correct process whose output links
to every correct process are eventually timely.

This protocol is communication-efficient (after some
finite time, only the common leader sends messages for-
ever). It also satisfies the following noteworthy pro-
perty: be the execution finite or infinite, both the size
of the local variables and the size of the messages re-
main finite. Differently from FRJ1, FRJ2 assumes that
no link duplicates messages. Comparing FRJ2 with
JAF, Property C1′ is not necessary in JAF, and Prop-
erty C2′ is relaxed to eventually-timely paths instead
of eventually-timely links. On the other hand, JAF is
not communication efficient.

1.5 FJR1 and FJR2 with Respect to ADFT1
and ADFT2

This subsection briefly compares the cited protocols.
First, the assumptions on the initial knowledge of n and
t are weaker in FJR1 and FJR2 than in ADFT1 and
ADFT2. However, ADFT1 can be rewritten without
using the particular values of n and t as soon as the
“differential” value of n − t is known. As far as the

behavioral properties on the links are concerned we
have the following.

None of ADFT1 and FJR1 is communication-
efficient. While ADFT1 is based on the existence of
an eventual t-source and fair lossy links, FJR1 requires
the existence of a correct process p connected through
eventually timely paths to (n − f) − α other correct
processes, and fair lossy paths connecting each pair of
correct processes. Essentially, the requirements that
ADFT1 imposes at the link level are relaxed to the
path level in FJR1.

Both ADFT2 and FJR2 are communication-efficient.
ADFT2 requires a t-source and reliable links, and the
explicit use of n cannot be easily eliminated from it.
Differently, FJR2 requires the existence of a correct pro-
cess whose output links to the other correct processes
are eventually timely, and fair lossy links between every
pair of correct processes. Essentially, timely and reli-
able links in ADFT2 are relaxed into eventually-timely
and fair-lossy links in FJR2.

It follows that, while the protocols ADFT1 and
ADFT2 on one side, and FJR1 and FJR2 on the other
side, investigate the same behavioral properties at the
link level (fair lossy links and eventual timely links),
they consider different global properties when we look
at a more global level (defined by the processes and
the underlying network). So, these protocols differ not
only in their requirements on the initial knowledge of
the processes, but also in the way they combine pro-
perties on individual links to obtain global behavioral
properties that allow to implement an eventual leader
oracle.

1.6 Organizatioin

The paper is made up of 6 sections. Section 2
presents the distributed system model. Section 3
presents FJR1 and proves its correctness. Section 4
states and proves the lower bound result. Section 5
presents FJR2 and proves its correctness. Finally, Sec-
tion 6 concludes the paper.

2 Distributed System Model

2.1 Processes with Crash Failures

The system is made up of a finite set Π of n pro-
cesses. A process is denoted p, q or pi, where i is its
index. The indexes are used for notational convenience.
A process pi has an identity idi.

As indicated in the introduction, initially, a process
pi knows only the value domain of the ids, its own id,
the fact that the ids are totally ordered, and how to

④In a typed fair lossy link messages have types, and the guarantees are defined for the messages of the same type.

Antonio Fernández Anta et al.: Eventual Leader Election with Weak Assumptions 1271

order two given ids. This means that there is no way for
a process to compute n, t, or the ids of other processes,
from the initial values of its local variables⑤. Without
loss of generality, we assume that for all pi, pj ∈ Π ,
i < j iff idi < idj . Then, to simplify the exposition, we
use in the following i instead of idi as the identity of pi.

A process can crash (stop executing). Once crashed,
a process remains crashed forever. A process exe-
cutes correctly until it possibly crashes. A process that
crashes in a run is faulty in that run, otherwise it is
correct. The model parameter t denotes the maximum
number of processes that can crash in a run (1 6 t < n),
while f denotes the number of actual crashes in a given
run (0 6 f 6 t). As for n, a process cannot determine
the value of t from the values of its local variables. The
code of the first protocol (FJR1) uses a constant α.
This constant is assumed to be a lower bound on the
number of correct processes.

As in [21], the processes are synchronous in the sense
that there are lower and upper bounds on the number of
processing steps they can execute per time unit. Each
process has also a local clock that can accurately mea-
sure time intervals. The clocks of the processes are not
synchronized.

2.2 Communication Network

The processes communicate by exchanging messages
over links. Each pair of processes is connected by two
directed links, one in each direction.

Communication Primitive. The processes are pro-
vided with a broadcast primitive that allows each pro-
cess p to simultaneously send the same message m to
the rest of processes in the system (e.g., like in Eth-
ernet networks, radio networks, or IP-multicast). It is
nevertheless possible, depending on the quality of the
connectivity (link behavior) between p and each pro-
cess, that the message m is received in a timely manner
by some processes, asynchronously by other processes,
and not at all by another set of processes.

Individual Link Behavior. A link cannot create or
alter messages, but does not guarantee that messages
are delivered in the order in which they are sent.

Concerning timeliness or loss properties, the commu-
nication system offers three types of links. Each type
defines a particular quality of service that the corre-
sponding links are assumed to provide.
• Eventual Timely Link. The link from p to q is even-

tually timely if there is a time τ0 and a bound δ such
that each message sent by p to q at any time τ > τ0 is
received by q by time τ + δ, if q is correct (τ and δ are
not a priori known and can never be known). If process

q is faulty, we assume that as soon as q has crashed,
the link from p to q is timely.
• Fair Lossy Link. Let us assume that each message

has a type. The link from p to q is fair lossy if, for each
type µ, assuming that p sends to q infinitely many mes-
sages of the type µ, q (if it is correct) receives infinitely
many messages of type µ from p.
• Lossy Link. The link from p to q is lossy if it can

lose an arbitrary number of messages (possibly all the
messages it has to carry).

As we can see, fair lossy links and lossy links are
inherently asynchronous, in the sense that they guar-
antee no bound on message transfer delays. An even-
tually timely link can be asynchronous for an arbitrary
but finite period of time. Concerning message dupli-
cation, a link satisfies property (D) if it is allowed to
duplicate messages, and satisfies property (ND) if it is
not allowed to.

Global Properties Related to the Communication
System. R being a run, let GR

ET be the directed graph
whose vertices are the processes that are correct in R,
and where there is a directed edge from p to q if the
link from p to q is eventually timely in R. Similarly, let
GR

FL be the directed graph whose vertices are the cor-
rect processes, and where there is a directed edge from
p to q if the link from p to q is fair lossy. (Notice that
GR

ET is a subgraph of GR
FL.) Given a correct process p,

reachR(p) has been defined in the introduction. It is
the subset of correct processes q that can be reached
from p in the graph GR

ET (i.e., there is a path made up
of eventually timely links and correct processes from p
to each q ∈ reachR(p).)

As already indicated in the introduction, given an
arbitrary run R, we consider the following behavioral
properties on the communication system:

(C1) The graph GR
FL is strongly connected.

(C1′) Each pair of correct processes is connected by
fair lossy links (one in each direction).

(C2) There is (at least) one correct process p such
that |reachR(p)| > (n − f) − α + 1. Recall that α is a
lower bound on the number of correct processes.
• (C2′): There is a correct process whose output

links to every correct process are eventually timely.
As noticed in the introduction, the property (C2) is

always satisfied in the runs where α = n− f (exactly α
processes are correct). Moreover, (C1′) and (C2′) are
stronger than (C1) and (C2), respectively.

2.3 The Class Ω of Oracles

Introduced in [3], the leader oracle Ω has been de-
fined informally in the introduction. It is a distributed

⑤A similar type of assumption on the initial knowledge of the process ids is encountered in the adaptive renaming problem[28-29].

1272 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

entity that provides each processes pi with a read-
only local variable leaderi that contains a process id.
When taken collectively, these local variables satisfy the
following property:

Eventual Leadership. There is a finite time τ such
that, after τ , the local variables leaderi of all the cor-
rect processes pi contain forever the same identity, that
is the identity of a correct process.

3 A Leader Election Protocol

Assuming that each process knows its identity (K1),
the lower bound α on the number of correct processes
(K2(α)), and that all the processes have distinct and
comparable identities, the protocol FJR1 described in
this section elects a leader in any run where the un-
derlying communication network satisfies the properties
(D), (C1) and (C2). Moreover, as far as the definition
of fair lossy link is concerned, all the messages sent by
the processes have the same type.

3.1 Description of the Protocol

As in other leader protocols, the underlying princi-
ple is as follows: a process elects as its current leader

the process that it considers alive and it perceives as
the “least suspected”. The notion of “suspected” is im-
plemented with counters, and “less suspected” means
“smallest counter” (using process ids to tie-break equal
counters). The protocol is described in Fig.1. It is
composed of two tasks. To guarantee correctness, it is
assumed that the sequences of statements defined by
the Lines 02∼09 (body of the repeat loop) in task T1,
the Line 11 of task T2, and the Lines 12∼25 of task T2
are executed in mutual exclusion.

Let X be a set of pairs 〈counter, process id〉. The
function lex min(X) returns the smallest pair in X ac-
cording to lexicographical order.

Local Variables. The local variables shared and man-
aged by the two tasks are the following ones.
• leaderi is the local variable the protocol has to

assign values. It is initialized to i, and contains the id
of the current leader of pi.
• membersi is a set containing all the process ids

that pi is aware of.
• timer i[j] is a timer used by pi to check if the link

from pj is timely. The current value of timeout i[j] is
used as the corresponding timeout value; it is increased
each time timer i[j] expires.

Init: allocate susp leveli[i] and suspected byi[i]; susp leveli[i] ← 0; suspected byi[i] ← ∅; membersi ← {i}; to reseti ← ∅;
silenti ← ∅; sni ← 0; leaderi ← i; statei ← {(i, sni, {(susp leveli[i], i)}, silenti)} % initial knowledge (K1) %

Task T1:
(01) repeat forever every η time units
(02) sni ← sni + 1;
(03) for each j ∈ silenti do suspected byi[j] ← suspected byi[j] ∪ {i} end for;
(04) for each j ∈ membersi such that |suspected byi[j]| > α do % initial knowledge (K2(α)) %
(05) susp leveli[j] ← susp leveli[j] + 1; suspected byi[j] ← ∅ end for;
(06) replace (i,−,−,−) in statei by (i, sni, {(susp leveli[j], j) | j ∈ membersi}, silenti);
(07) broadcast (statei);
(08) for each j ∈ to reseti do set timer i[j] to timeouti[j] end for; to reseti ← ∅
(09) leaderi ← ` such that (−, `) = lex min({(susp leveli[j], j)}j∈membersi

)
(10) end repeat

Task T2:
when timer i[j] expires:
(11) timeouti[j] ← timeouti[j] + 1; silenti ← silenti ∪ {j}
when state msg is received:
(12) let K = { (k, sn k, cand k , silent k) |

(k, sn k, cand k, silent k) ∈ state msg ∧ 6 ∃ (k, sn′,−,−) ∈ statei with sn′ > sn k };
(13) for each (k, sn k, cand k , silent k) ∈ K do
(14) if k ∈ membersi then replace (k,−,−,−) in statei by (k, sn k, cand k, silent k);
(15) stop timer i[k]; to reseti ← to reseti ∪ {k}; silenti ← silenti \ {k}
(16) else add (k, sn k, cand k, silent k) to statei;
(17) allocate susp leveli[k], suspected byi[k], timeouti[k] and timer i[k];
(18) susp leveli[k] ← 0; suspected byi[k] ← ∅; timeouti[k] ← η;
(19) membersi ← membersi ∪ {k}; to reseti ← to reseti ∪ {k}
(20) end if
(21) end for;
(22) for each (k, sn k, cand k, silent k) ∈ K do
(23) for each (sl, `) ∈ cand k do susp leveli[`] ← max(susp leveli[`], sl) end for;
(24) for each ` ∈ silent k do suspected byi[`] ← suspected byi[`] ∪ {k} end for
(25) end for

Fig.1. Eventual leader protocol FJR1 (code for pi).

Antonio Fernández Anta et al.: Eventual Leader Election with Weak Assumptions 1273

• silent i is a set containing the ids j of all the pro-
cesses pj such that timer i[j] has expired since its last
resetting.
• to reset i is a set containing the ids k of the pro-

cesses pk whose timer has to be reset.
• susp level i[j] contains the integer that locally mea-

sures the current suspicion level of pj . It is the counter
used by pi to determine its current leader (see the up-
date of leaderi in Line 09 of Task T1).
• suspected by i[j] is a set used by pi to manage the

increases of susp level i[j]. Each time pi knows that a
process pk suspects pj it includes k in suspected by i[j].
Then, when the number of processes in suspected by i[j]
reaches the threshold α, pi increases susp level i[j] and
resets suspected by i[j] to ∅ for a new observation pe-
riod.
• sni is a local counter generating the sequence num-

bers attached to each message sent by pi.
• statei is a set containing an element for each pro-

cess pk that belongs to membersi, namely, the most
recent information issued by pk that pi has received so
far (directly from pk or indirectly from a path involv-
ing other processes). That information is a quadruple
(k, snk, candk, silentk) where the component candk is
the set {(susp levelk[`], `) | ` ∈ membersk} from which
pk elects its leader.

Process Behavior. The aim of the first task of the
protocol is to disseminate to all the processes the latest
state known by pi. That task is made up of an infi-
nite loop (executed every η time units) during which
pi first updates its local variables suspected by i[j] and
susp level i[j] according to the current values of the sets
silent i and membersi. Then pi updates its own quadru-
ple in statei to its most recent value (which it has just
computed) and broadcasts it (this is the only place of
the protocol where a process sends messages). Finally,
pi resets the timers that have to be reset, updates ac-
cordingly to reset i to ∅, and recomputes the value of
the leaderi local variable it is implementing.

The second task is devoted to the management of
the timer expiration and message reception. The code
associated with the two first lines of this task is self-
explanatory. When it receives a message (denoted
state msg), a process pi considers and processes only
the quadruples that provide it with new information,
i.e., the quadruples (k, sn k, cand k, silent k) such that
it has not yet processed a quadruple (k, sn′,−,−) with
sn′ > sn k. For each such quadruple, pi updates
statei (it also allocates new local variables if k is the
id of a process it has never heard of before). Fi-
nally, pi updates its local variables susp level i[`] and
suspected by i[`] according to the information it learns
from each new quadruple (k, sn k, cand k, silent k) it

has received in state msg .

3.2 Proof of the Protocol

Considering that each processing block (body of the
loop in Task T1, timer expiration and message re-
ception managed in Task T2) is executed atomically,
we have (j ∈ membersi) iff ((j,−,−,−) ∈ statei) iff
(suspected by i[j] and susp level i[j] are allocated). We
also have (timer i[j] and timeout i[j] are allocated) iff
(j ∈ membersi \ {i}). It follows from these observa-
tions that all the local variables are well-defined: they
are associated exactly with the processes known by pi.
Moreover, a process pi never suspects itself, i.e., we
never have i ∈ silent i (this follows from the fact that,
as timer i[i] does not exist, that timer cannot expire —
the timer expiration in T2 is the only place where a
process id is added to silent i, Line 11 of Fig.1).

The proof considers an arbitrary run R.
Lemma 1. Let (k, sn,−,−) be a quadruple re-

ceived by a correct process pi. All the correct processes
eventually receive a quadruple (k, sn′,−,−) such that
sn′ > sn.

Proof. To prove the lemma, let us consider the first
correct process pi that receives a quadruple (k, sn,−,−)
such that no quadruple (k, sn′,−,−) with sn′ > sn be-
longs to statei.

If statei does not contain a quadruple (k,−,−,−),
pi adds (k, sn,−,−) to statei (Line 16). Otherwise, pi

replaces in statei the old quadruple (k,−,−,−), by the
new one (k, sn,−,−) (Line 14). Then, the only rea-
son for the quadruple (k, sn,−,−) to disappear from
statei, is its replacement by a quadruple (k, sn′′,−,−)
such that sn′′ > sn (Lines 12 and 14). As 1) all the
correct processes pj broadcast regularly their current
value of statej to all the processes, and 2) the graph
GR

FL is strongly connected, it follows that each correct
process eventually receives the quadruple (k, sn′,−,−)
or a quadruple (k, sn′′,−,−) with sn′′ > sn′. 2

Let L be the set that contains all the processes pi

that are correct in R and are such that |reachR(i)| >
(n− f)− α + 1. By property (C2), we have L 6= ∅.

Lemma 2. Let pi be a process in L. There is a time
after which, for any process pj in reachR(i), i ∈ silentj
remains permanently false.

Proof. Let us first observe that i never belongs to
silent i. Now, for every j 6= i, observe that, in order
to include i into silentj , timer j [i] has to expire (Line
11). So, to prove the lemma, we show that, for every
j ∈ reachR(i), j 6= i, there is a time at which i /∈ silentj

and after which timer j [i] never expires.
As pi is correct, it periodically issues statei mes-

sages (Lines 06∼07), each containing a quadruple
(i, sni,−,−). As GR

FL is strongly connected, it follows

1274 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

that there is a time after which each process pj such
that j ∈ reachR(i) (let us remind that GR

ET is a sub-
graph of GR

FL) receives a message carrying one such
quadruple (the quadruple progressed through paths in
GR

FL) and consequently allocates two local variables
timer j [i] and timeoutj [i] (Line 17).

The consecutive quadruples (i, sni,−,−) periodi-
cally sent by pi within statei messages (Lines 06∼07)
contain strictly increasing sequence numbers (Line 02).
It follows that any pj such that j ∈ reachR(i) receives
(through the paths in GR

FL) an infinite number of mes-
sages carrying quadruples (i, sni,−,−), and that in-
finitely often these arrive when (i, sn′,−,−) ∈ statej

with sni > sn′. It follows that infinitely often pj exe-
cutes silentj ← silentj \ {i} (Line 15).

The rest of the proof consists in showing that there
is a time after which timer j [i] never expires. Due to
the very definition of the graph GR

ET, there is a time τ0

after which all the links of this graph guarantee a (pos-
sibly unknown) bounded transfer delay δ. Let ∆τ0

i,j be
the value of timeoutj [i] at time τ0, and d the distance
from pi to pj in GR

ET (1 6 d 6 n− 1).
Case 1. If ∆τ0

i,j > d(η + δ), due to the very definition
of GR

ET, timer j [i] can no longer expire because it is reg-
ularly stopped at Line 15 before ∆τ0

i,j time units have
elapsed since its last resetting at Line 08 (let us notice
that different quadruples (i,−,−,−) can take distinct
paths in GR

ET from pi to pj).
Case 2. If ∆τ0

i,j 6 d(η+δ), it is possible that timer j [i]
expires before a quadruple (i, sni,−,−) with sni > sn′

(where (i, sn′,−,−) ∈ statej) arrives at pj . That pro-
cess consequently increases timeoutj [i] (Line 11). But
this can happen only a finite number of times (namely,
d(η + δ) −∆τ0

i,j + 1 times), after which we are in Case
1. 2

Lemma 3. Let pi be a process in L. There is a time
after which the local variables susp levelk[i] of all the
correct processes pk remain forever equal to the same
bounded value (denoted as SLi).

Proof. Let us first observe that any local variable
susp levelk[`] can be updated only at Line 05 or Line
23, and can only increase. pk being any process, let us
examine its local variable susp levelk[i] where i is such
that pi belongs to L (i.e., pi is a correct process such
that |reachR(i)| > (n − f) − α + 1). Due to Lemma
2, there is a time after which there is a set of at least
|reachR(i)| correct processes pj whose local predicate
i ∈ silentj remains false forever. Moreover, there is a
time after which the f faulty processes have crashed
(before crashing, they sent a finite number of messages,
and, after that time, they no longer send messages).

It follows from these observations that there is a
finite time τ after which at most β processes p` can

send state` messages including (`,−,−, silent`) with
i ∈ silent`. These β processes can be all the processes
but the (n−f)−α+1 processes of reachR(i) and the f
faulty processes, i.e., β 6 n−(n−f−α+1)−f = α−1.
It follows that after some finite time (when all the
quadruples (x,−,−, silentx) with i ∈ silentx dissemi-
nated from the f faulty processes px have arrived or
are lost), no process pk can increase its local vari-
able susp levelk[i] at Line 05. By the gossiping of the
statek messages (Lemma 1), and the fact that the graph
GR

FL is strongly connected, it follows that the variables
susp levelk[i] of all the correct processes become equal
(Line 23) and keep forever their common value (denoted
as SLi), which proves the lemma. 2

Given a run, let B be the set of processes pi such that
susp levelk[i] remains bounded at some correct process
pk.

Lemma 4. The following holds:
1) B 6= ∅.
2) ∀i ∈ B, the local variables susp levelk[i] of all the

correct processes pk remain forever equal to the same
bounded value (denoted as SLi).

Proof. L ⊆ B directly follows from the definition of
B and Lemma 3. As L 6= ∅, we have B 6= ∅.

Let pi be a process in B. The fact that the local
variables susp levelk[i] of all the correct processes pk

remain forever equal is an immediate consequence of
Line 23 and the gossiping mechanism used to propa-
gate the quadruples (i, sni,−,−) (Lemma 1). 2

Lemma 5. For every faulty process pi, either at
each correct process pj always i /∈ membersj, or at
each correct process pj, susp level j [i] increases without
bound.

Proof. If no correct process pj ever receives a mes-
sage including a quadruple (i, sni,−,−), then the vari-
able membersj of all the correct processes trivially re-
main such that i /∈ membersj .

So, let us consider the case where at least one cor-
rect process pk receives a quadruple (i, sni,−,−) ini-
tially sent by pi. Moreover, let us consider the last
such quadruple received by any correct process. Due
to the gossiping of the last quadruple (i, sni,−,−) re-
ceived (Lemma 1), and the fact that the graph GR

FL is
strongly connected, it follows that all the correct pro-
cesses receive and process this quadruple. Then, they
receive no message carrying a quadruple (i, sn′i,−,−)
with sn′i > sni (this follows from the definition of
(i, sni,−,−) that is the last quadruple sent by pi). Each
correct process pk then sets timerk[i] to timeoutk[i].
As no quadruple (i, sn′i,−,−) with sn′i > sni is ever
received, it follows that 1) timerk[i] expires and pk

adds pi to silentk (at Line 11); and 2) i is never with-
drawn from silentk (at Line 15). It follows that each

Antonio Fernández Anta et al.: Eventual Leader Election with Weak Assumptions 1275

state msg message (of the infinite sequence of such mes-
sages sent by pk) carries a quadruple (k,−,−, silentk)
with i ∈ silentk.

It follows from the previous discussion, the fact that
there are at least α correct processes, and the fact that
after some finite time each correct pk always suspects pi

(i.e., after some time i remains forever in silentk), that,
at each correct process pj , |suspected byj [i]| becomes >
α (at Line 24) infinitely often. Consequently, each cor-
rect process pj infinitely often increases susp level j [i]
(Line 05) which proves the lemma. 2

Theorem 1. The protocol described in Fig.1 en-
sures that, after some finite time, all the correct pro-
cesses have forever the same correct leader.

Proof. Due to Lemma 4, eventually all the correct
processes pk are such that B ⊆ membersk. Moreover,
due to Lemma 5, B contains only correct processes.

As after some time, for each j ∈ B, each correct pro-
cess pk keeps forever the same bounded value SLj in
susp levelk[j] (Lemma 4), it follows that all the correct
processes pi eventually output the same process id each
time they read local variable leaderi, and that id is
the identity of a correct process. 2

4 A Lower Bound

The previous protocol FJR1 is not communication-
efficient (each correct process has to send messages for-
ever). Several communication-efficient eventual leader
protocols (e.g., [21]) have been designed for systems
in which each process initially knows the whole set of
identities. The next section presents a communication-
efficient leader election protocol (FJR2) where the ini-
tial knowledge of each process is limited to its id only.
This protocol is based on the network behavioral as-
sumptions (C1′) and (C2′) that are stronger than (C1)
and (C2). Before describing this protocol, this section
shows an associated lower bound on the network be-
havior when processes have no other initial knowledge
on the number of faulty processes than t = n− 1. The
lower bound states that it is impossible to implement
Ω if all runs have less than n− f − 1 eventually timely
links, even if each process initially knows the whole set
of identities. Hence, the assumption (C2′) is existen-
tially optimal on the number of eventually timely links.

The following lemma exploits the fact that a process
has a limited initial knowledge on the number of correct
or faulty processes. However, processes may know the
system membership. This lemma is then used as the
cornerstone in the proof of the lower bound.

Lemma 6. Let us consider a system in which pro-
cesses have no other initial knowledge on the number
of correct or faulty processes than t = n − 1. Let P be
any protocol that implements an eventual leader in this

system. If, in an infinite run of P , a correct process
p stops receiving messages from the rest of processes at
some time τ , it eventually considers itself as the leader
at some time τ ′ > τ .

Proof. Note first that processes have only trivial
knowledge about the number of correct or faulty pro-
cesses in a run, which means that, as far as they know,
the number of faulty processes f in any run can go from
0 to n− 1. Hence, any protocol P that implements an
eventual leader must do so even if f = n− 1.

Now, let us consider an infinite run R of P with
f ∈ [0, n − 1]. Let us assume, by way of contradic-
tion, that in R some correct process p stops receiving
messages from the rest of processes at and after some
time τ , but it never becomes its own leader at any time
τ ′ > τ . Consider another run R′ of P with f = n − 1.
R′ behaves exactly like R up to time τ , and all pro-
cesses (that were still alive) except p crash at time τ .
From the point of view of p these two runs are undis-
tinguishable, and hence p behaves in R′ exactly as in
R. This implies that it never becomes its own leader at
any time τ ′ > τ . This contradicts the requirement that
P must implement an eventual leader in R′. 2

Let us notice that the above lemma holds even if the
process p receives messages after time τ ′.

Theorem 2. Let us consider a system of n > 3
processes in which processes have no other initial know-
ledge on the number of correct or faulty processes than
t = n − 1, they may know the system membership Π ,
and there is a pair of directed asynchronous reliable
links connecting each pair of distinct processes. Any
protocol that implements an eventual leader must have
at least n − f − 1 eventually timely links in some exe-
cutions.

Proof. If f = n − 1, the claims follow trivially. For
the case f < n − 1, the proof is by contradiction as
follows. We first assume that there is a protocol P im-
plementing Ω in an asynchronous system with reliable
links where only (n − f − 2) links eventually behave
timely and f processes fail. We then use the eventual
leadership property of Ω to construct an infinite exe-
cution of the protocol P with f failures in which this
property is not satisfied. Then, protocol P cannot exist.

For the sake of contradiction, assume there is a
protocol P implementing Ω in runs with f failures
of an asynchronous system with reliable links where
only (n − f − 2) links eventually behave timely. This
means that there are two correct processes (maybe
more), namely pi and pj , whose input links are all asyn-
chronous. P thus provides each process px, 1 6 x 6 n,
with a value leaderx (holding the process that px cur-
rently considers to be the leader). We use leaderx(τ)
to denote this value at time τ . We will construct an

1276 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

execution E of P with f failures such that the follow-
ing both hold:

1) After time τ0 = 0, E is fault-free (no process fails),
i.e., all f faulty processes crash at time τ0 = 0.

2) There is an infinite sequence of times τ0 < τ1 <
τ2 < · · · such that, for all k > 0, in each interval
(τk, τk+1] there are two time instants τ, τ ′ ∈ (τk, τk+1]
at which at least one of the processes pi and pj have
different leaders, i.e., leaderi(τ) 6= leaderi(τ ′) or
leaderj(τ) 6= leaderj(τ ′).

Clearly, in the execution E of P , two processes dis-
agree on the leader infinitely often and, consequently,
the eventual leadership is not satisfied.

As previously described, we define τ0 = 0, and make
f processes fail at this time. We construct the execution
E inductively. For k > 1, assume that E is already con-
structed up to time τk−1 (τ0 in the base case); we show
how to define τk and construct the interval (τk−1, τk] of
the execution E such that item 2) above is satisfied for
the value k.

Then, after τk−1 all links behave timely in execu-
tion E until some time τ > τk−1, at which P has
all processes agree on a leader p`k

. This time τ ex-
ists by eventual leadership. In particular, it holds that
leaderi(τ) = leaderj(τ) = `k.

Let sk be a process id such that sk ∈ {i, j} and
sk 6= `k. Such an id exists because i 6= j. Then, in

execution E, after time τ all links continue behaving
timely except the incoming links to psk

. These links,
which are all asynchronous, delay the delivery of all
messages until some time τ ′ > τ at which P makes psk

be its own leader (i.e., leadersk
(τ ′) = sk). This time

τ ′ exists by Lemma 6.
Let us define τk = τ ′. For completeness, we force

in E that all messages sent in the interval [τk−1, τk)
and still undelivered at time τk to be delivered at that
time. By construction it follows that there are two time
instants τ, τ ′ ∈ (τk−1, τk] that satisfy leaderi(τ) =
leaderj(τ) = `k and leadersk

(τ ′) 6= `k, for sk ∈
{i, j}. Hence, item 2) above is satisfied for the value k.

Repeating this process for every k > 0, we construct
an infinite sequence of intervals that constitutes the exe-
cution E. Hence we obtain an execution E that satisfies
items 1) and 2) mentioned above, which completes the
proof. 2

5 A Communication-Efficient Protocol

This section presents an eventual leader protocol
(FJR2) where, after some finite time, a single process
sends messages forever. Moreover, no message carries
values that increase indefinitely: the counters carried by
a message take a finite number of values. This means
that, be the execution finite or infinite, both the local

Let: leader() be the function returning ` such that (−, `) =lex min({(susp leveli[j], j)}j∈contendersi
)

Init: allocate susp leveli[i]; susp leveli[i] ← 0; hbci ← 0; contendersi ← {i}; membersi ← {i}; leaderi ← i

Task T1:
(01) repeat forever
(02) leaderi ← leader();
(03) next periodi ← false;
(04) while leaderi = i do every η time units
(05) if (¬next periodi) then next periodi ← true; hbci ← hbci + 1 end if ;
(06) broadcast (heartbeat, i, susp leveli[i],⊥, hbci);
(07) leaderi ← leader();
(08) end while;
(09) if (next periodi) then broadcast (stop leader, i, susp leveli[i],⊥, hbci) end if
(10) end repeat

Task T2:
when timer i[j] expires:
(11) timeouti[j] ← timeouti[j] + 1; broadcast (suspicion, i, susp leveli[i], j, 0);
(12) contendersi ← contendersi \ {j}
when (tag k, k, sl k, silent k, hbc k) is received with k 6= i :
(13) if (k /∈ membersi) then membersi ← membersi ∪ {k};
(14) allocate susp leveli[k] and last stop leader i[k];
(15) susp leveli[k] ← 0; last stop leader i[k] ← 0;
(16) allocate timeouti[k] and timer i[k]; timeouti[k] ← η end if ;
(17) susp leveli[k] ← max(susp leveli[k], sl k);
(18) if

(
(tag k= heartbeat) ∧ last stop leader i[k] < hbc k)

)
(19) then set timer i[k] to timeouti[k]; contendersi ← contendersi ∪ {k} end if ;
(20) if

(
(tag k = stop leader) ∧ last stop leader i[k] < hbc k)

)
(21) then last stop leader i[k] ← hbc k;
(22) stop timer i[k]; contendersi ← contendersi \ {k} end if ;
(23) if

(
(tag k = suspicion) ∧ (silent k = i)

)
then susp leveli[i] ← susp leveli[i] + 1 end if

Fig.2. The communication-efficient eventual leader protocol FJR2 (code for pi).

Antonio Fernández Anta et al.: Eventual Leader Election with Weak Assumptions 1277

memory of each process and the message size are finite.
The process initial knowledge is limited to (K1), while
the network behavior is assumed to satisfy (C1′) and
(C2′).

5.1 Description of the Protocol

The protocol FJR2 is described in Fig.2. As FJR1,
this protocol is made up of two tasks, but presents im-
portant differences with respect to the previous proto-
col. To guarantee correctness, five sets of statements of
the algorithm are defined as being executed in mutual
exclusion: Lines 02∼03, Lines 05∼07, and Line 09 in
task T1, and Lines 11∼12 and Lines 13∼23 in task T2.

Local Variables. A first difference is the Task T1,
where a process pi sends messages only when it consi-
ders it is a leader (Line 04). Moreover, if, after being
a leader, pi considers it is no longer a leader, it broad-
casts a message to indicate that it considers locally it is
no longer leader (Line 09). A message sent with a tag
field equal to heartbeat (Line 06) is called a heartbeat
message; similarly, a message sent with a tag field equal
to stop leader (Line 09) is called a stop leader message.

A second difference lies in the additional local vari-
ables that each process has to manage. Each process pi

maintains a set, denoted contendersi, plus local coun-
ters, denoted hbci and last stop leader i[k] (for each pro-
cess pk that pi is aware of). More specifically, we have:
• The set contendersi contains the ids of the pro-

cesses that compete to become the final common
leader, from pi’s point of view. So, we always have
contendersi ⊆ membersi. Moreover, we also always
have i ∈ contendersi. This ensures that a leader elec-
tion is not missed since, from its point of view, pi is
always competing to become the leader.
• The local counter hbci registers the number of

distinct periods during which pi considered itself the
leader. A period starts when leaderi = i becomes
true, and finishes when thereafter it becomes false
(Lines 04∼13).
• The counter last stop leader i[k] contains the grea-

test hbck value ever received in a stop leader message
sent by pk. This counter is used by pi to take into ac-
count a heartbeat message (Line 18) or a stop leader
message (Line 20) sent by pk, only if no “more recent”
stop leader message has been received (the notion of
“more recent” is with respect to the value of hbci asso-
ciated with and carried by each message).

Messages. Another difference lies in the shape and

the content of the messages sent by a process. A mes-
sage has five fields (tag k, k, sl k, silent k, hbc k) whose
meaning is the following:
• The field tag k can take three values: heartbeat,

stop leader or suspicion that defines the type of the
message. (Similarly to the previous cases, a message
tagged suspicion is called a suspicion message. Such a
message is sent only at Line 11.)
• The second field contains the id k of the message

sender.
• sl k is the value of susp levelk[k] when pk sent that

message. Let us observe that the value of susp levelk[k]
can be disseminated only by pk.
• silent k = j means that pk suspects pj to be faulty.

Such a suspicion is due to a timer expiration that oc-
curs at Line 11. (Let us notice that the field silent k
of a message that is not a suspicion message is always
equal to ⊥.)
• hbc k: this field contains the value of the period

counter hbck of the sender pk when it sent the message.
(It is set to 0 in suspicion messages.)

The set of messages tagged heartbeat or stop leader
defines a single type of message. Differently, there are
n types of messages tagged suspicion: each pair (suspi-
cion, silentk) defines a type.

Process Behavior. When a timer timer i[j] expires,
pi broadcasts a message indicating it suspects pj (Line
11)⑥, and accordingly suppresses j from contendersi.
Together with Line 22, this allows all the crashed pro-
cesses to eventually disappear from contendersi . When
pi receives a (tag k, k, sl k, silent k, hbc k) message, it
allocates new local variables if that message is the
first it receives from pk (Lines 13∼16); pi also updates
susp level i[k] (Line 17). Then, the processing of the
message depends on its tag.
• The message is a heartbeat message (Lines 18∼19).

If it is not an old message (this is checked with the test
last stop leader i[k] < hbc k), pi resets the correspon-
ding timer and adds k to contendersi.
• The message is a stop leader message (Lines

20∼22). If it is not an old message, pi updates its lo-
cal counter last stop leader i[k], stops the corresponding
timer and suppresses k from contendersi.
• The message is a suspicion message (Lines 23).

If the suspicion concerns pi, it increases accordingly
susp level i[i].

The protocol FJR2 is based on the communication-
efficient protocol of [19], adapted to the system pro-
perties. In particular, FJR2 cannot use point-to-point

⑥The suspicion message sent by pi concerns only pj . It is sent by a broadcast primitive only because the model does not offer
a point-to-point send primitive. If a point-to-point send primitive was available the broadcast at Line 11 would be replaced by the
statement “send (suspicion, i, susp leveli[i], 0) to pj”, and all the suspicion messages would then define a single message type. In that
case each tag would define a message type. This shows an interesting tradeoff relating communication primitives (one-to-one vs.
one-to-many) and the number of message types.

1278 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

communication and uses broadcast instead. It also has
to deal with the fact that the membership is unknown.
Finally, a new mechanism to guarantee communication-
efficiency and finite memory is introduced by FJR2
(based on stop leader messages).

5.2 Proof of the Protocol

This subsection proves that 1) the protocol FJR2
described in Fig.2 eventually elects a common correct
leader, and 2) no message carries values that indefi-
nitely grow. The proofs assume only (K1) as far the
process initial knowledge is concerned. It assumes (C1′)
and (C2′) as far as the network behavioral assumptions
are concerned.

Lemma 7. Let pk be a faulty process. There is a
finite time after which the predicate k /∈ contendersi

remains permanently true at each correct process pi.
Proof. Let pk and pi be a faulty process and a cor-

rect process, respectively. The only line where a process
is added to contendersi is Line 19. If follows that, if pi

never receives a heartbeat message from pk, k is never
added to contendersi and the lemma follows for pk.

So, considering the case where pi receives at least
one heartbeat message from pk, let us examine the last
heartbeat or stop leader message m from pk received
and processed by pi. “Processed” means that the mes-
sage m carried a field hbc k such that the predicate
last stop leader i[k] < hbc k was true when the message
was received. Let us notice that there is necessarily
such a message, because at least the first heartbeat or
stop leader message from pk received by pi satisfies the
predicate.

Due to the very definition of m, there is no other
message from pk such that pi executes Line 19 or Line
22 after having processed m. There are two cases, ac-
cording to the tag of m.
• If m is a stop leader message, pi executes Line

22 and consequently suppresses definitely k from
contendersi.
• If m is a heartbeat message, pi executes Line

19. This means that it resets timer i[k] and adds k
to contendersi. Then, as no more heartbeat messages
from pk are processed by pi, timer i[k] eventually ex-
pires and consequently pi withdraws k from contendersi

(Line 12), and never adds it again (as m is the last pro-
cessed heartbeat message), which proves the lemma. 2

Given a run, let B be the set of correct processes pi

such that the largest value ever taken by susp level i[i]
is bounded. Moreover, let Mi denote that value. Let
H be the set of correct processes whose all output links
with respect to each other correct process are eventually
timely. Due to the assumption (C2′), we have H 6= ∅.

Lemma 8. B 6= ∅.

Proof. The proof consists in showing that H ⊆ B.
Then, as H 6= ∅, the lemma follows.

Let pi be a process in H. susp level i[i] is in-
creased each time pi receives a suspicion message with
silent k = i (Line 23). Such a suspicion message can be
sent by a process pj only at Line 11 when timer j [i] ex-
pires. If pj is faulty it sends a finite number of suspicion
messages concerning pi, and consequently these suspi-
cion messages entail a finite increase of susp level i[i].
So, in the following we consider only the case of a pro-
cess pj that is correct. The only line where timer j [i] is
set is Line 19, where pj receives and processes a heart-
beat message from pi. The proof is a case analysis.
• pi sends a finite number of heartbeat messages. In

that case, any correct process pj receives a finite num-
ber nb[i, j] of heartbeat messages from pi. As (see the
previous discussion) the number of suspicion messages
that pj sends to pi is 6 nb[i, j], and the link from pj

to pi is fair lossy (assumption C1′) and does not dupli-
cate messages, pi receives a finite number of suspicion
messages from each correct pj . It follows that pi in-
creases susp level i[i] a finite number of times. (Mi is
this number.)
• pi sends an infinite number of heartbeat messages.

We consider here two subcases:
− There is a time τ after which pi continuously
executes the while loop (Lines 04∼06) in Task T1.
This means that, after τ , pi sends forever heart-
beat messages with the same hbci value every η
time units (after τ , it never executes Line 09).

Let τ ′, τ ′ > τ , be a time after which the faulty
processes have crashed, the links from pi to the
correct processes are timely, and all the stop leader
messages sent by pi have been received or are lost.

Let us first observe that any correct process pj

(6= pi) allocates timer j [i]. Moreover, after τ ′, pi

sends an infinite number of heartbeat messages
carrying the same value hbci that is greater than
last stop leaderj [i]. As no stop leader message
carrying a value > hbci is ever sent, it follows that
pj processes all these heartbeat messages, i.e., it
executes Line 19 and resets timer j [i] each time it
receives such a heartbeat message from pi.

It is possible that, after τ ′, timer j [i] expires be-
cause a heartbeat message has not yet been re-
ceived by pj . Each time this occurs, timeoutj [i] is
increased, and a suspicion message is sent by pj to
pi (Line 11). But, as, after τ ′, the link from pi to
pj is timely, this can happen only a finite number
of times. It follows that any process can send to pi

only a finite number of suspicion messages. There
is consequently a time τ ′′ after which pi does no
longer receive suspicion messages. The value of
susp level i[i] at τ ′′ is then a finite value Mi.

Antonio Fernández Anta et al.: Eventual Leader Election with Weak Assumptions 1279

− pi enters and leaves the while loop but never
remains inside forever. This means that pi sends
batches of heartbeat messages. The heartbeat mes-
sages sent in the same batch carry the same hbc k
value (Line 06), and heartbeat messages of consec-
utive batches carry increasing hbc k values (Line
05). Moreover, two consecutive batches are sepa-
rated by the sending of a stop leader message car-
rying the same hbc k value as the heartbeat mes-
sages of the first of these batches (Line 09). Each
batch corresponds to a continuous period during
which pi considers it is the leader. The number of
such periods is infinite (otherwise, we would be in
the case where pi sends a finite number of heart-
beat messages). We show that (as in the previous
item) a process pj sends a finite number of suspi-
cion messages to pi.

The timer timer j [i] of pj can expire (Line
11) only because, since the last heartbeat mes-
sage from pi that entailed the setting of timer j [i]
(at Line 19), pj has not yet received an ap-
propriate message from pi: either 1) a heart-
beat message (to reset the timer, Line 19), or 2)
a stop leader message (to stop the timer, Line
22) carrying a field hbc k such that hb k >
last stop leader j [i]. Each time this occurs, the
timeout delay timeoutj [i] is systematically in-
creased (Line 11). Let us also notice that we are
in a case where each heartbeat message sent by
pi is followed by another heartbeat or stop leader
message carrying an hbc k value equal to or
greater than the previous hbc k values already
sent.
Let τ be a time after which the faulty processes

have crashed, and the link from pi to pj is timely.
After τ , the heartbeat or stop leader messages sent
by pi after each heartbeat message are timely with
respect to pj . It follows that the timer timer j [i] can
expire only a finite number of times, namely, until
timeoutj [i] has increased enough to attain the max-
imal transfer delay experienced by the link from pi

to pj . This means that pj sends a finite number of
suspicion messages to pi, which proves the lemma.

2
Let (M`, `) =lex min({(Mi, i) | i ∈ B}). The follow-

ing observation is a direct consequence of the following
facts: B does not contain faulty processes (definition),
B 6= ∅ (Lemma 8), and no two processes have the same
id (initial assumption).

Observation 1. There is a single process p`. More-
over p` is a correct process.

Lemma 9. Let pi and pj be two correct processes.
There is a finite time after which either 1) the predicate
i /∈ contendersj is always satisfied or 2) (i ∈ B ⇒

susp level j [i] = Mi) ∧ (i /∈ B ⇒ susp level j [i] > M`).
Proof. Either there is a finite time after which pj

does not receive heartbeat messages from pi, or pj re-
ceives infinitely many heartbeat messages from pi. In
the former case, either i was never in contendersj or it is
removed by pj at Line 12 or 22. In the latter case, due to
the fact that the link from pi to pj is fair lossy (assump-
tion C1′), eventually a heartbeat message sent by pi is
received by pj with sl k = Mi if i ∈ B or sl k > M`

if i /∈ B, and pj updates accordingly susp level j [i] at
Line 17. 2

Lemma 10. There is a time after which p` executes
forever the while loop of its Task T1 (Lines 04∼06).

Proof. For each faulty process pj , there is a finite
time after which the predicate j /∈ contenders` remains
forever true (Lemma 7). For each correct process pj ,
there is a finite time after which j /∈ contenders` is
always true, or susp level `[j] > M` (this follows from
Lemma 9 and the fact that M` 6 Mj , ∀ j ∈ B). As
` ∈ contenders` is always true, it follows that there is
a finite time after which p` obtains always true when
it evaluates the predicate leader()=`, from which we
conclude that there is a time after which p` executes
forever the while loop of the Task T1 (without ever
exiting from this loop). 2

Theorem 3. The protocol described in Fig.2 en-
sures that, after some finite time, all the correct pro-
cesses have forever the same correct process p` as com-
mon leader.

Proof. Due to Observation 1, there is a single pro-
cess p`, and that process is correct. Due to Lemma
9, there is a time after which, for each pair of correct
processes pi and pj we have forever j /∈ contendersi or
susp level i[j] > M`. Consequently, to prove the theo-
rem, we have to show that there is a time after which
the predicate ` ∈ contendersi remains permanently true
at each correct process pi.

Once p` has entered the while loop of its Task T1
and never exits from it thereafter (due to Lemma 10,
this happens), it sends infinitely many heartbeat mes-
sages (it sends such an heartbeat message each time it
executes Line 06), and from some time these heartbeat
messages are such that their sl k field is always equal
to M`. We claim that only a finite number of these
heartbeat messages can entail the sending of a suspi-
cion message from pi to p`. After this finite number of
heartbeat messages have entailed the sending of suspi-
cion messages (Line 11) and the associated suppression
of ` from contendersi (Line 12), all the heartbeat mes-
sages that are sent subsequently are such that there is
no timer expiration and ` is added to contendersi each
time such a heartbeat message is received (Line 19). It
follows that after some time ` belongs permanently to

1280 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

contendersi, which proves the theorem.
Proof of the Claim. Let us assume by contradiction

that ` is suppressed infinitely often from contendersi.
Each time it is suppressed (Line 12), a suspicion mes-
sage is sent to p` (Line 11). This means that an infinite
number of suspicion messages are sent by pi to p`. As
the link from pi to p` is fair lossy (C1′), p` receives
at least one of these suspicion messages, and increases
consequently susp level `[`] from M` to M` + 1, con-
tradicting the fact that M` is an upper bound for the
values of susp level `[`]. End of the proof of the claim.⑦

2

5.3 Protocol Optimality

Theorem 4. There is a time after which exactly
one process sends messages forever.

Proof. The proof is an immediate consequence of
the fact that there is a time after which a single cor-
rect leader is elected (Theorem 3), the observation that
a process sends heartbeat messages only if it considers
it is the leader, and the fact that, a finite time after
the common leader has been elected, no process sends
suspicion messages. 2

Theorem 5. In an infinite run, both the local
memory of each process and the size of each message
remain finite in the run.

Proof. Due to Theorem 3, there is a time τ after
which a common correct leader is elected. Moreover,
due to Theorem 4 there is a time after which only the
leader p` sends messages forever. As then susp level `[`]
remains equal to M`, and hbc` keeps on the same value,
it follows that both the local memory of each process
and the size of each message remain finite, whatever
the number of messages that are sent. 2

6 Conclusion

This paper has investigated the eventual leader
election problem in message-passing systems with
weak assumptions on process initial knowledge,
communication reliability and synchrony. Two proto-
cols and a lower bound have been presented. The first
protocol assumes that each process knows only its id,
and a lower bound α on the number of processes that
do not crash (it knows neither the number n of pro-
cesses, nor an upper bound t on the number of faulty
processes). This protocol requires the following behav-
ioral properties from the underlying network: the graph
made up of the correct processes and fair lossy links is
strongly connected, and there is a correct process con-
nected to (n− f)− α other correct processes (where f
is the actual number of crashes in the considered run)

through eventually timely paths (paths made up of cor-
rect processes and eventually timely links). The second
protocol is communication-efficient in the sense that,
after some time, only the final common leader has to
send messages forever. This protocol does not have the
knowledge of α, but requires stronger properties from
the underlying network: each pair of correct processes
is connected by fair lossy links, and there is a correct
process whose n−f−1 output links to the other correct
processes are eventually timely. The lower bound result
shows that this number of eventually links is necessary
in some executions even if each process initially knows
the whole set of identities. Interestingly, the second
protocol has another noteworthy property, namely, each
value carried by a message is from a finite domain.

As open problems we propose the study of other
protocols to implement eventual leader election under
other properties of the network. Additionally, we would
like to explore how to obtain a stronger lower bound
that could relax the t = n− 1 constraint of the current
bound.

Acknowledgments We would like to thank the
referee for his/her constructive comments that help us
improve both the content and the presentation of the
paper.

References

[1] Chandra T D, Toueg S. Unreliable failure detectors for reli-
able distributed systems. Journal of the ACM, 1996, 43(2):
225-267.

[2] Raynal M. A short introduction to failure detectors for asyn-
chronous distributed systems. ACM SIGACT News, Dis-
tributed Computing Column, 2005, 36(1): 53-70.

[3] Chandra T D, Hadzilacos V, Toueg S. The weakest failure
detector for solving consensus. Journal of the ACM, 1996,
43(4): 685-722.

[4] Chen W, Toueg S, Aguilera M K. On the quality of service
of failure detectors. IEEE Transactions on Computers, 2002,
51(5): 561-580.

[5] Défago X, Urbán P, Hayashibara N, Katayama T. Defi-
nition and specification of accrual failure detectors. In
Proc. Int. Conference on Dependable Systems and Networks
(DSN2005), Yokohama, Japan, June 28-July 1, 2005, pp.206-
215.

[6] Fetzer C, Raynal M, Tronel F. An adaptive failure detection
protocol. In Proc. the 8th IEEE Pacific Rim Int. Sympo-
sium on Dependable Computing (PRDC2001), Seoul, Korea,
Dec. 17-19, 2001, pp.146-153.

[7] Gupta I, Chandra T D, Goldszmidt G S. On scalable and
efficient distributed failure detectors. In Proc. the 20th
ACM Symposium on Principles of Distributed Computing
(PODC2001), New Port, USA, Aug. 26-29, 2001, pp.170-179.

[8] Larrea M, Fernández A, Arévalo S. On the implementation of
unreliable failure detectors in partially synchronous systems.
IEEE Transactions on Computers, 2004, 53(7): 815-828.

[9] Wiesmann M, Urbán P, Défago X. An SNMP based failure

⑦One can also conclude that, if any, all the suspicion messages sent by pi to p` after pi has received a heartbeat message from p`

carrying the value M`, are lost.

Antonio Fernández Anta et al.: Eventual Leader Election with Weak Assumptions 1281

detection service. In Proc. the 25th Int. Symposium on
Reliable Distributed Systems (SRDS2006), IEEE Computer
Press, 2006, pp.365-374.

[10] Lamport L. The part-time parliament. ACM Transactions on
Computer Systems, 1998, 16(2): 133-169.

[11] Schiper A. Early consensus in an asynchronous system with
a weak failure detector. Distributed Computing, 1997, 10(9):
149-157.

[12] Mostefaoui A, Raynal M. Leader-based consensus. Parallel
Processing Letters, 2001, 11(1): 95-107.

[13] Guerraoui R, Raynal M. The information structure of in-
dulgent consensus. IEEE Transactions on Computers, 2004,
53(4): 453-466.

[14] Mostefaoui A, Raynal M. Low-cost consensus-based atomic
broadcast. In Proc. the 7th IEEE Pacific Rim Int. Sympo-
sium on Dependable Computing (PRDC2000), Los Angeles,
USA, Dec. 18-20, 2000, pp.45-52.

[15] Pedone F, Schiper A. Handling message semantics with
generic broadcast protocols. Distributed Computing, 2002,
15(2): 97-107.

[16] Fischer M J, Lynch N, Paterson M S. Impossibility of dis-
tributed consensus with one faulty process. Journal of the
ACM, 1985, 32(2): 374-382.

[17] Mostefaoui A, Raynal M, Travers C. Crash-resilient time-free
eventual leadership. In Proc. the 23rd Int. IEEE Symposium
on Reliable Distributed Systems (SRDS2004), Florianpolis,
Brazil, Oct. 18-20, 2004, pp.208-217.

[18] Larrea M, Fernández A, Arévalo S. Optimal implementation
of the weakest failure detector for solving consensus. In Proc.
the 19th IEEE Int. Symposium on Reliable Distributed Sys-
tems (SRDS2000), Nürnberg, Germany, Oct. 16-18, 2000,
pp.52-60.

[19] Aguilera M K, Delporte-Gallet C, Fauconnier H, Toueg S.
On implementing omega with weak reliability and synchrony
assumptions. In Proc. the 22nd ACM Symposium on Prin-
ciples of Distributed Computing (PODC2003), Boston, USA,
Jul. 13-16, 2003, pp.306-314.

[20] Dwork C, Lynch N, Stockmeyer L. Consensus in presence of
partial synchrony. Journal of the ACM, 198, 35(2): 288-3238.

[21] Aguilera M K, Delporte-Gallet C, Fauconnier H, Toueg S.
Communication efficient leader election and consensus with
limited link synchrony. In Proc. 23rd ACM Symposium
on Principles of Distributed Computing (PODC2004), St.
John’s Newfoundland, Canada, Jul. 25-28, 2004, pp.328-337.

[22] Malkhi D, Oprea F, Zhou L. Ω meets paxos: Leader election
and stability without eventual timeley links. In Proc. the 19th
Int. Symposium on Distributed Computing (DISC2005),
Cracow, Poland, Sept. 26-29, 2005, pp.199-213.

[23] Hutle M, Malkhi D, Schmid U, Zhou L. Chasing the weakest
system model for implementing Ω and consensus. Research
Report 74/2005, Technische Universität Wien, Institut für
Technische Informatik, July 2006.

[24] Mostefaoui A, Mourgaya E, Raynal M, Travers C. A time-
free assumption to implement eventual leadership. Parallel
Processing Letters, 2006, 16(2): 189-208.

[25] Mostefaoui A, Raynal M, Travers C. Time-free and timer-
based assumptions can be combined to get eventual leader-
ship. IEEE Transactions on Parallel and Distributed Sys-
tems, 2006, 17(7): 656-666.

[26] Powell D. Failure mode assumptions and assumption cover-
age. In Proc. 22nd Int. Symposium on Fault-Tolerant Com-
puting, 1992, Boston, USA, pp.386-395.

[27] Jiménez E, Arévalo S, Fernández A. Implementing unreliable
failure detectors with unknown membership. Information
Processing Letters, 2006, 100(2): 60-63.

[28] Attiya H, Bar-Noy A, Dolev D, Peleg D, Reischuk R. Renam-
ing in an asynchronous environment. Journal of the ACM,

1990, 37(3): 524-548.

[29] Borowsky E, Gafni E. Immediate atomic snapshots and fast
renaming. In Proc. 12th ACM Symposium on Principles of
Distributed Computing (PODC1993), Ithaca, USA, Aug. 15-
18, 1993, pp.41-51.

Antonio Fernández Anta is
a senior researcher at the Institute
IMDEA Networks in Leganés, Spain,
on leave from his position of profes-
sor at the Universidad Rey Juan Car-
los. Previously, he was on the fac-
ulty of the Universidad Politécnica
de Madrid. He graduated in com-
puter science from the Universidad
Politécnica de Madrid in 1991. He

got a Ph.D. degree in computer science from the University
of Southwestern Louisiana in 1994 and was a postdoc at the
Massachusetts Institute of Technology from 1995 to 1997.
His is a senior member of the IEEE and the ACM. His
research interests include data communications, computer
networks, distributed processing, algorithms, and discrete
and applied mathematics.

Ernesto Jiménez graduated in
computer science from the Univer-
sidad Politécnica de Madrid, Spain,
and got a Ph.D. degree in computer
science from the University Rey Juan
Carlos, Spain, in 2004. He is cur-
rently an associate professor at the
Universidad Politécnica de Madrid.

Michel Raynal is a professor of
computer science at the University of
Rennes, France. His main research
interests are the basic principles of
distributed computing systems. He
is a world leading researcher in the
domain of distributed computing. He
is the author of numerous papers on
distributed computing and is well-
known for his distributed algorithms

and his books on distributed computing. He has chaired
the program committee of the major conferences on the
topic, such as the ICDCS, the DISC, the SIROCCO, and
OPODIS. He has also served on the program committees
of many international conferences, and is the recipient of
several “Best Paper” awards (ICDCS 1999, 2000 and 2001,
SSS 2009, Europar 2010). He has been invited by many
universities all over the world to give lectures on distributed
computing. His h-index is 45. He has recently written two
books published by Morgan & Clayppool: “Communica-
tion and Agreement Abstractions for Fault-Tolerant Asyn-
chronous Distributed Systems” (June 2010) and “Fault-
Tolerant Agreement in Synchronous Distributed Systems”
(September 2010).

