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Abstract. Small-world networks are currently present in many distributed appli-
cations and can be built augmenting a base network with long-range links using a
probability distribution. Currently available distributed algorithms to select these
long-range neighbors are designed ad hoc for specific probability distributions.
In this paper we propose a new algorithm called Biased Selection (BS) that, us-
ing a uniform sampling service (that could be implemented with, for instance, a
gossip-based protocol), allows to select long-range neighbors with any arbitrary
distribution in a distributed way. This algorithm is of iterative nature and has a
parameter r that gives its number of iterations. We prove that the obtained sam-
pling distribution converges to the desired distribution as r grows. Additionally,
we obtain analytical bounds on the maximum relative error for a given value of
this parameter 7. Although the BS algorithm is proposed in this paper as a tool to
sample nodes in a network, it can be used in any context in which sampling with
an arbitrary distribution is required, and only uniform sampling is available.

The BS algorithm has been used to choose long-range neighbors in complete and
incomplete tori, in order to build Kleinberg’s small-world networks. We observe
that using a very small number of iterations (1) BS has similar error as a simula-
tion of the Kleinberg’s harmonic distribution and (2) the average number of hops
with greedy routing is no larger with BS than in a Kleinberg network. Further-
more, we have observed that before converging to the performance of a Kleinberg
network, the average number of hops with BS is significantly smaller (up to 14%
smaller in a 1000 x 1000 network).

1 Introduction

Overlay networks are currently present in many distributed global applications and ser-
vices. Overlay networks based on a small-world topology are an efficient and flexible
alternative to structured overlays. Small-world networks can be built augmenting a base
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network with long-range links, where the long-range neighbors are chosen using a prob-
ability distribution [10,7]. In order to obtain small-world networks by augmentation, a
few distributed protocols have been proposed [5]. Among them, the simplest are epi-
demic protocols based on gossiping. However, these protocols only implement specific
probability distributions to select long-range neighbors, i.e., each protocol is designed
in an ad-hoc way for a given distribution. Gossip-based protocols have been designed
for the uniform distribution and an approximation of Kleinberg’s harmonic distribution
[9,3,2]. In this paper we propose a local algorithm that, using a uniform sampling ser-
vice (that could be implemented with, for instance, a gossip-based protocol), allows to
select long-range neighbors with any arbitrary distribution. This algorithm is of iterative
nature and we have found experimentally that in a small number of iterations converges
to the desired distribution.

1.1 Related Work

Small world networks have been introduced in an attempt to explain the properties
of social networks, and in particular the surprisingly small diameter and short rout-
ing in these networks [11]. One line of work on small-world networks has to do with
synthesizing networks that have these properties. This can be done by starting from a
base network (representing acquaintances geographically close) and adding long-range
links (representing distant acquaintances). This process is called augmentation of the
base network. Watts and Strogatz [14] considered a network augmentation in which the
long-range neighbors are chosen uniformly at random. However, Kleinberg [10] has
shown that a polylogarithmic greedy routing is achieved only if the long-range neigh-
bors are chosen with specific distributions. A network built this way is commonly called
a Kleinberg network. This seminal result has led to a large amount of subsequent work
on construction of small-world networks [1,5,6,7]. Most of the algorithms that have
been proposed are centralized. As far as we know, the first distributed algorithm to
build a small world network is due to Duchon et al. [S]. Bonnet et al. [3] have proposed
two gossip-based protocols to select long-range links, which are modified versions of
Cyclon [13]. One selects the long-range neighbors with uniform probability, while the
other selects them with an approximation to the Kleinberg distribution. This latter proto-
col has been improved in [2]. There have been other gossip-based protocols that sample
the network nodes with uniform probability [4,9,13].

1.2 Contributions

In this paper we provide an algorithm, called Biased Selection (BS), that implements
a sampling service in a set .S with any probability distribution. The probability distri-
bution is proportional to probabilities (represented as weights) assigned to the element
in S. The algorithm BS is very simple and completely local. It only needs access to
a uniform sampling service (that could be implemented with a gossip-based protocol)
and to the weight assigned to each element returned by this service. This algorithm has
a parameter r that determines the number of times the uniform sampling service is used
(number of rounds) before returning a sample. (In fact, the times the uniform sampling



service is used is exactly 7 + 1.) We prove that the obtained sampling distribution con-
verges to the desired distribution as r grows. Additionally, we obtain analytical bounds
on the maximum relative error for a given value of this parameter r. Although the BS
algorithm is proposed in this paper as a tool to sample nodes in a network, it can be
used in any context in which sampling with an arbitrary distribution is required, and
only uniform sampling is available.

To evaluate by simulation the performance of the algorithm, we use it to choose long
range neighbors in a torus, in order to build small-world networks similar to Kleinberg’s
[10]. In this network, every node 7 in the torus chooses another node j as its long-range
neighbor with a probability proportional to 1/d(i, )2, where d(i, j) is the Euclidean
distance’ from 4 to j. For simplicity, we will call this the Kleinberg distribution. The
obvious way to choose the long range neighbor of a node ¢ implies to know all the nodes,
the distance from ¢ to each of them, and to compute the associated probabilities, which
requires {2(n) operations in a network of n nodes. To do this for all nodes requires
2(n?) operations. On the other hand, BS does not need to know all the nodes, and only
requires the distance from ¢ to the nodes returned by the uniform sampling service. If
BS uses r rounds, the overall number of operations needed for each node i is O(r),
and O(rn) operations for the whole network. We have observed experimentally that the
value of r required is much smaller than n.

Comparing the samples obtained simulating BS and samples from a simulation of
the Kleinberg distribution, we observe that in a very small number of rounds (10 in a
100 x 100 torus), both simulations have matching average relative error and very similar
maximum relative error. Then, we build networks by adding to each node in the torus
a long range neighbor. We evaluate the performance of greedy routing in networks in
which the long range neighbor is chosen with the BS algorithm (BS-network) when
different number of rounds is used. We compare these results with networks that use
the Kleinberg distribution (K-network) and the uniform distribution (U-network). We
observe that the average number of hops of greedy routes in the BS network converges
to the values obtained in the K-network as the number of rounds increases. Furthermore,
with only a few rounds, the average number of hops in the BS network is sensibly
smaller than in the U-network (especially for large networks). Surprisingly, we have
observed that before converging to the K-network performance, the average number of
hops of the BS-network is significantly smaller (up to 14% smaller in a 1000 x 1000
network). In fact, the best performance of BS-networks is achieved with a small number
of rounds. The origin of this behavior is left for future study. Finally, we have done
similar experiments adding long range neighbors to incomplete tori. These are obtained
by deciding whether to remove each node with a fixed probability. The experiments
have been done with two probability values, namely 0.8 and 0.3, obtaining dense and
sparse networks. The results observed are consistent with those obtained in the complete
torus.

> Observe that Kleinberg used, instead, Manhattan distance on a grid.



1.3 Structure of the Rest of the Paper

In Section 2 we introduce concepts and notation that will be used in the rest of the
paper, along with the description of the experimental environment that will be used. In
Section 3 the BS algorithm is presented, its correctness is proven, and a bound on its
convergence rate is derived. Finally, in Section 4 simulation and experimental results
are presented.

2 Definitions and Experimental Setup

2.1 Definitions

Although the BS algorithm is proposed in this paper as a tool to sample nodes in a
network, it will be presented in a more general form, to emphasize the fact that it could
possibly be used in other contexts. Let S be a set of n elements such that each element
i € S has an associated weight w(¢) > 0. The problem to solve is to sample the set S
with a probability distribution p such that the probability of choosing 7 is proportional
to w(i). Letus denote 7 = . w(j). Then, the sampling probability of i € S has to
be p(i) = w(i)/n. The challenges of sampling .S are the following:

1. We assume that the whole set is not available.
2. The weight values can only be consulted for individual previously known elements.

These restrictions prevent, for instance, from even computing the value n. However, in
order to be able to solve the problem, we assume the availabilty of a sampling primitive
USelg that returns an element ¢ of S’ chosen with uniform probability. Once an element
i € S is obtained using USelg, its weight w(%) can also be obtained.

2.2 Experimental Setup

In the experiments conducted in this paper, we consider a 2-dimensional torus topology.
A pair of integer values (i, y) is used to locate each node into the 2-dimensional space.
The former node coordinates range from 0 to m — 1, and so the number of nodes in the
network is m?. In this topology, the distance between two nodes located at positions
(z1,y1) and (x2, y2) is the Euclidean distance in the torus, computed as:

de = \/(minﬂl’l — @af,m — |y — 22]))* + (min (jy1 — ya|,m — g1 — v2]))?

To test the BS algorithm, we design two different types of experiments. The first
experiment (Section 4.1) shows the average and maximum relative error values of the
BS algorithm with respect to the Kleinberg probability distribution. These values are
also compared with the relative error values obtained with a real simulation of the ideal
Kleinberg distribution. The second group of experiments (Sections 4.2 and 4.3) com-
pares BS with the Kleinberg simulator with respect to the average number of hops when
these algorithms are used to greedily route packets in a network. This group of exper-
iments is executed in two different scenarios. Firstly, a complete torus with m? nodes



is used. In this torus, each node has four local neighbors and one long range neighbor.
Secondly, we use an incomplete torus, where nodes are eliminated using a random uni-
form probability. In this network, the expected number of present nodes is m?q, being
q the probability of node presence. Note that g is equal for every node, and the presence
of each node is independent of the presence of other nodes. In this case, to allow for
greedy routing, each node ¢ has links to seven neighbors. These include one long range
neighbor, and six local neighbors, that are the closest node in each of the six 60° wedge
in a circle centered on node 7 [15].

Additionally, when using the BS algorithm, the number of rounds r will determine
the accuracy of the values obtained. Hence, experiments are executed several times. We
start with » = 0 rounds (uniform distribution) and we gradually increase r until the
BS algorithm converges to the Kleinberg distribution. Each experiment is repeated 10
times with different seeds, and we present the average of these executions.

3 Biased Selection

3.1 The Biased Selection Algorithm

We present here the algorithm that can be used to sample the set S' as defined in Sec-
tion 2 with the desired probability distribution. The algorithm is called Biased Selection
and presented in Figure 1. The input of the algorithm is a value r that specifies the
number of rounds the algorithm must execute before returning the sample. As will be
shown, the larger the number of rounds r, the closer the output of BSelg(r) gets to the
desired probability distribution.

1 function BSels(r)

2 x « USels

3 fori «— 1tordo

4 y «— USels

5 set x <« y with probability %
6 end for

7 return

Fig. 1. Biased Selection Algorithm for set S.

3.2 Correctness

We first show that, as r goes to infinity, the probability distribution of the output values
of BSelg(r) converges to the desired probability distribution p. Let ; be the value
stored in variable x after ¢ iterations of the for loop, being x the value assigned to = in
Line 2. Let us consider the infinite run of BSelgs(c0). The infinite sequence of values



Zo, 1, ... can be seen as a Markov chain® M on the finite state space S. We will first
show that M has a unique stationary distribution 7 such that m = Ax, where A is the
transition matrix of M. Finally, we show that m matches the probability distribution p.

The transition matrix A = [a,;] of the Markov chain M can be obtained from the
algorithm of Figure 1 in the following way. For each i, j € S and i # 7,

o Prlpas il e = L 0@ 1 p()
aij = Prlzi = jlay = i nw() + 0@ npG) +pG)

Additionally, a; = 1 — > i @ij- Observe that for all j # i, a;; < 1/n (recall that

n = |S|), and hence a;; > 0. We show now that M is ergodic. Let agj.) be the probability

of reaching state j in s steps starting from state ¢. A Markov chain is ergodic if it is finite,
irreducible (Vi,j € S, 3s : a,g‘;-) > 0), and aperiodic (Vi,j € S, ged{s : a,g‘;-) >0}=1)
[12]. Ergodicity implies that the stationary distribution is unique.

Lemma 1. The Markov chain M is ergodic, and hence has a unique stationary distri-
bution T that satisfies 1 = wA.

Proof. The fact that the Markov chain M is irreducible follows directly from the fact
that a;; > 0 for all 7, j € S. Additionally, since a;; > 0 for all ¢ € S, M is aperiodic.
Hence, it is ergodic, and has a unique stationary distribution 7 that satisfies 7 = 1A
[12].

Let us now prove that the stationary distribution is in fact the desired distribution p.

Theorem 1. The output of BSels(r) converges to the probability distribution p as r
tends to infinity.

Proof. From the above lemma, the distribution of values z, output by the algorithm
converge to the stationary distribution 7 of Markov chain M as r goes to infinity. All
that has to be proven is that p = 7, i.e., that p = pA. Consider any i € S, we need to

prove that p(i) = >, s p(j)a;i. Replacing,

W) _ 5~ ul)

=

w1 w) el s,
T2y e Ty T2
_ye®1 wl) el s,
S Zon o nw(@)+w@) o t ;J
_ w() S a1 Za”)

" J#i J#i
_ w®)

n

Since this holds for all ¢ € S, the proof is complete.

® Some familiarity of the reader with Markov chains is assumed.



3.3 Convergence Rate

We study now the number of rounds r that are needed for the distribution of the output
values of BSels(r) to be almost the same as the probability distribution p. To measure
the distance between both distributions, we will use the relative pointwise distance as
defined in [12]. This parameter measures the largest relative error between the distri-
butions, for all possible final and initial values. Observe that az(-;) is the probability that

BSelg(r) outputs j if the initial value of x is i, i.e. al(-;

the maximum relative error is defined as

) = Prlz, = jlzo = i]. Then,

A(r) = max .
(r) ijes  p(j)

In order to bound A(r) we first prove that the Markov chain M is time-reversible,
which holds if a;;p(i) = a;;p(j) [12].

Lemma 2. The Markov chain M is time-reversible.
Proof. Replacing in a;;p(i) = a;;p(j), we get

L ) w1 w6 wG)
WP =G @ 0 G e g Y

Lemmas | and 2 are useful to bound A(r) because of the following result, derived
from Proposition 3.1 in [12].

Lemma 3 ([12]). Let A be the transition matrix of an ergodic time-reversible Markov
chain, p its stationary distribution, and 1 = Mg > Ay > Ao > -+ > \,_1 its (real)
eigenvalues. Then, for all r > 1 the maximum relative error satisfies

)\T‘

)
Pmin

A(r) <

where X = maxy>1 |A\g| and pmin = min;eg p(i).

Clearly, A = max(\1, |[An—1|), Wwhere Ay < |A\,,—1] only if A,,_1 < 0. Let us define
Qmin = Min;cg a;;. From the Gershgorin Circle Theorem [8], we have that A\,,_; >

2amin — 1. Then, A < max{A1,1 — 2ami, }. To bound A\; we use the conductance of
M.

Definition 1. Consider the Markov chain M. For any set B C S, denote C(B) =
>icpP(i) and F(B) =3, g ;a5 aijp(i). The conductance of M is defined as

. F(B
b = min —.
pcBcs:c(B)<1/2 C(B)

~—

Lemma 3.3 in [12] shows that \; < 1 — %2. Then, we can bound A as follows.



Lemma 4. The eigenvalue \1 of the ergodic time-reversible Markov chain M satisfies

)\1 < 1-— % (max{(l - 1/n)pmina 1/(4npmax)})2 )

where pmin = min;eg p(i) and pmax = max;es p(4).

Proof. Consider any set B such that § € B C S and C(B) < 1/2. Let us denote
$(B) = %. We will obtain two lower bounds for ¢(B).

First, since C(B) < 1/2,then #(B) > 2F(B). In order to bound F'(B), we observe
p()p(j)
p(i)+p(i) =

that p’()g.i))fé% decreases with the values of p() and p(j), which implies that

—22“::‘“ = Pmin_On the other hand, |B| - |S'\ B| > n — 1. Then,
. 1 p(Z)p(]) 1 Pmin n — 1 Pmin
(B) ai;p(0) n p(j)+pli) —n 2 ~ n 2

i€B,j¢B i€B,j¢B i€B,j¢B

This implies that ¢(B) > (1 — 1/n)pmin- For the second bound, observe that

! pip) 1 o (Tienp®) (Sgarl)
n ZE;%B 2G) +2(0) = 2 p(i)pi) = CTT— :
Then, since C(B) = ZieB (i),

F(B) > i¢nPU) _ 1

C(B) - 2npmax - 4Tlpmax’

i€B,j¢B

where the second inequality follows from 3., 5 p(j) =1 — C(B) and C(B) < 1/2.
Since both bounds hold for any B, we obtain that & > max{(1—1/7)pmin, 1/(4nPmax)}-
Combining this bound with Lemma 3.3 in [12], the claim follows.

From the above results we can bound the relative pointwise distance as follows.

Theorem 2. The maximum relative error of the Markov chain M satisfies

Ar) < (1 - min{% (max{(1 — 1/7)Pmin, 1/(4npmax)})2 , 2amin}) /Drmin s

where pmin = Milieg P(i), Pmax = MaxX;es P(1), and amin = Min;e g a4;.

4 Experimental Results

4.1 Accuracy of Biased Selection

To be able to evaluate the goodness of BS, we compare its relative error with the one
measured in a simulation of the Kleinberg distribution. We define the relative error e;

.. . imi— fkl; . .
for node i in a collection C' of s samples as ¢; = \fszmﬂciljl’ where fsim; is the
K3
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Fig. 4. Comparative of average routing hops (100 x 100 torus).

number of instances of ¢ in collection C, and fki; = p(i) - s is the expected number
of instances of ¢ with the ideal Kleinberg distribution. The experiments have been done
in a 100 x 100 torus. For each experiment, a collection of around 13.5 million samples
has been used in order to guarantee that every node appears on average at least 100
times. Additionally, in the BS algorithm, experiments have been performed using an
increasing number of rounds, trying to reach a behavior similar to that of the Kleinberg
simulator. In the 10,000-node torus used this happens for relatively small number of
rounds (r = 10). We have not performed this experiment on larger networks (more than
100 x 100 nodes), due to limitations in the execution time needed to handle experiments
above that size.

In Figures 2 and 3 we show, respectively, the average and maximum relative error
values obtained using the BS algorithm against a Kleinberg simulator. Round numbers
approximately follow an exponential sequence of » = 0, 1, 3, 10, 30, 100, 300, 1000,
and 3000. It must be noted that for » = 0, our BS algorithm is equivalent to a uniform
random distribution. We can observe that, for » > 10 the mean values of the relative
errors in the BS algorithm match those obtained using the Kleinberg simulator.

4.2 Building Small-World Networks with Biased Selection

As previously commented, in this scenario we built a complete torus with m? nodes.
In the experiments we perform 500,000 search operations, choosing source and desti-
nation uniformly at random for each search. We measure the average number of hops
needed to reach the destination with greedy routing. Let hx be the average number of
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hops measured with the Kleinberg simulator, and hpg(r) the average number of hops
measured when using BS with r rounds. We consider that BS and Kleinberg have con-
verged for r rounds when, for all 7' > r, it holds that |hps(r') — hi|/hk < 0.05 (they
are off by less than 5%). First, we run the Kleinberg simulator, and then we run the
BS algorithm, starting from r = 0 and gradually increasing the number of rounds until
convergence is reached. We use round numbers that approximately follow an exponen-
tial sequence, r = 0, 1, 3, 10, 30, 100, 300, 1000, 3000, 10,000, and 30,000. We denote
the smallest of these values of r that satisfy convergence as .,y - It must be noted that
using 0 rounds in BS is equivalent to using a uniform distribution to choose the long
range neighbor. The experiment was run using three different torus sizes, 100 x 100
(Figure 4), 300 x 300 (Figure 5) and 1000 x 1000 (Figure 6).
From these experiments, we can conclude that:

— As analytical results showed in section 3.3, the execution of the BS algorithm con-
verges to the Kleinberg simulator results when using a sufficient number of rounds.
The approximate number of rounds needed is 100 in the 100 x 100 torus, 1,000 in
the 300 x 300 torus, and 10,000 in the 1000 x 1000 torus. Note that the number of
rounds needed grows when the torus size increases.

— Using a uniform distribution to choose the long range link (equivalent to BS with 0
rounds) produces worse results than the Kleinberg and BS simulators with » > 1.
The difference increases as the network size grows.

— With a relatively small number of rounds, BS outperforms the Kleinberg simulator.
This singular behavior appears in all the experiment executions. In a 100 x 100
torus, with 10 rounds, BS results are 8% better than the Kleinberg results and 10%
better than the uniform distribution. In a 300 x 300 torus, with 30 rounds, we get
improvements of 12% and 25% when comparing to the Kleinberg simulation and
the uniform distribution, respectively. Finally, in a 1000 x 1000 torus, with 100
rounds, improvements are of 14% and 45% when comparing to the Kleinberg sim-
ulation and the uniform distribution, respectively. It can be seen that the number of
rounds required by BS to obtain the minimum average number of hops grows as
the network size increases. We denote this number of rounds as 7,,,;,,.

In Table 1, we present 7,,,;,, and ¢,y as a function of the size of the network.

4.3 Building Incomplete Small-World Networks with Biased Selection

In this scenario we built an incomplete torus using two different probability values
(0.8 and 0.3) to determine node presence in 100 x 100 and 300 x 300 topologies. As
before, in this experiment, we perform 500,000 search operations, using alternatively
the Kleinberg and the BS simulators. The number of rounds in the BS algorithm started
with 0 and continued until reaching convergence with the Kleinberg simulator.

Figure 7 (100 x 100 torus) and Figure 8 (300 x 300 torus) compare the performance
of the BS algorithm with that of the Kleinberg simulator in a topology with a probability
value ¢ = 0.8 of node presence in the network. Additionally, Figure 9 (100 x 100 torus)
and Figure 10 (300 x 300 torus) compare the former simulators using a topology with
a probability value ¢ = 0.3 for node presence in the network. Finally, in Table 1, we
Show 7,5, and 7¢oy,, for each network considered.
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Topology H Torus size HNodes (avg)“rmmH rcom,‘

Complete 100 x 100 10,000 10 100
Complete 300 x 300 90,000{| 30| 1,000
Complete 1000 x 1000(| 1,000,000 300{{10,000
Incomplete (¢ = 0.8)|| 100 x 100 8,000( 10 100
Incomplete (¢ = 0.8)|| 300 x 300 72,000{| 30| 1,000
Incomplete (¢ = 0.3)|| 100 x 100 3,000 3 30
Incomplete (¢ = 0.3)|| 300 x 300 27,000( 10 300

Table 1. Number of BS rounds for minimal number of routing hops r.,:» and for convergence
T'conv in the different experiments.

From these experiments, we can conclude that:

— The results are similar to those obtained in the previous section when using a com-
plete torus. The values of 7,,,;,, and 7.y, for networks with roughly the same num-
ber of nodes are similar. These results are especially interesting because an incom-
plete torus with ¢ = 0.3 is almost a random network, so it seems that the results
obtained are not associated only to a torus topology. In an incomplete network with
q = 0.8 the obtained improvements are: (a) in the 100 x 100 torus, with 10 rounds,
BS results are 8% better than the Kleinberg results and 11% better than the uni-
form distribution; and (b) in the 300 x 300 torus, with 30 rounds, BS results are
12% better than the Kleinberg results and 26% better than the uniform distribution.
Using ¢ = 0.3: (a) in the 100 x 100 torus, with 3 rounds, BS results are 8% better
than the Kleinberg results and 4% better than the uniform distribution; and (b) in
the 300 x 300 torus, with 10 rounds, BS results are 12% better than the Kleinberg
results and 15% better than the uniform distribution.

— In these experiments, the average number of routing hops and the number of rounds
needed to converge seem to be somewhat smaller than the values obtained in the
complete torus experiments. We presume that this result may be due to two factors:
(a) the number of local neighbors is greater than in the previous experiment (6
neighbors versus 4); and (b) each routing hop in this network generates a larger
advance than in a complete network.

5 Conclusions and Future Work

In this paper we proposed a simple, iterative and local algorithm (BS) that allows us
to select long-range neighbors with any arbitrary distribution to build small-world net-
works. BS uses a uniform sampling service and only needs one parameter determining
the number of rounds needed by the algorithm to converge to the desired distribution.
In this work, we use the Kleinberg distribution as the target. We also proved the algo-
rithm convergence and obtained analytical bounds on the maximum relative error for
a given value of the algorithm parameter. We evaluated the algorithm by simulation
in different scenarios, obtaining convergence with the Kleinberg simulator results. We



also observed that, before converging to the Kleinberg distribution, the BS algorithm
provided a smaller average number of hops, up to 14 % smaller in a 1000 x 1000 net-
work.

Future work will provide an analytical description of this behavior and evaluate the
algorithm with topologies different from the torus. We will also study the algorithm in a
dynamic network scenario. Finally, we would like to compare the properties of BS with
aggregation protocols.
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