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From an asynchronous intermittent rotating
star to an eventual leader

Antonio Fernández Anta and Michel Raynal

Abstract—Considering an asynchronous system made up of n processes and where up to t of them can crash, finding the
weakest assumption that such a system has to satisfy for a common leader to be eventually elected is one of the holy grail
quests of fault-tolerant asynchronous computing. This paper is a step in that direction. It has two contributions. Considering
a simple and general asynchronous system model where processes generate asynchronous pulses during which they send
and receive messages, it first introduces an additional assumption that allows to elect an eventual leader in all the runs that
satisfy that assumption. That assumption is captured by the notion of asynchronous intermittent rotating t-star. An x-star
is made up of one process p (the center of the star) plus a sequence of sets of x processes (the successive points of the
star), that satisfies some properties. Intuitively, the intermittent rotating t-star assumption means that there are a process p,
a subset of pulse numbers pn, and associated sets of processes Q(pn) such that each process of Q(pn) receives from p

a message sent in pulse pn in a timely manner or among the first (n − t) messages tagged pn it ever receives. The t-star
is called rotating because the set Q(pn) is allowed to change with pn; it is intermittent because it can disappear during
finite periods; it is asynchronous because the points of a star are not required to be simultaneously at the same pulse. (That
assumption combines and generalizes several synchrony and time-free assumptions that have been previously proposed
to elect an eventual leader; e.g., eventual t-source, eventual t-moving source, message pattern assumption.) The second
contribution of the paper is an algorithm that eventually elects a common leader in the systems that satisfy the asynchronous
intermittent rotating t-star assumption. That algorithm enjoys, among others, two noteworthy properties. Firstly, from a design
point of view, it is simple. Secondly, from a cost point of view, only the pulse numbers increase without bound. This means
that, even in infinite executions, be links timely or not (or have the corresponding sender crashed or not), all the other local
variables (including the timers) and message fields have a finite domain.

Index Terms—Assumption coverage, Asynchronous system, Distributed algorithm, Eventual t-source, Eventual leader,
Failure detector, Fault-tolerance, Message pattern, Moving source, Omega, Partial synchrony, Process crash, System
model, Timely link.

✦

1 INTRODUCTION

1.1 Leader oracle: motivation

A failure detector is a device (also called oracle) that
provides the processes with guesses on which processes
have failed (or not failed) [4], [30]. According to
the properties associated with these estimates, several
failure detector classes can be defined. It appears that
failure detector oracles are at the core of a lot of
fault-tolerant protocols encountered in asynchronous
distributed systems. Among them, the class of leader
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failure detectors is one of the most important. This class,
also called the class of leader oracles, is usually denoted
Ω. (When clear from the context, the notation Ω will be
used to denote either the oracle/failure detector class or
an oracle of that class.) Ω provides each process with
a leader variable, that contains a process id, and such
that, after some finite but unknown time, the variables
of all correct processes (the processes that do not fail)
permanently contain the same id, that is the identity
of a correct process. Such an oracle is very weak: (1)
a correct leader is eventually elected, but there is no
knowledge on when it is elected; (2) several (correct or
not) leaders can co-exist before a single correct leader
is elected.

The oracle class Ω has two fundamental features.
The first is that, despite its very weak definition, it
is powerful enough to allow solutions to fundamental
problems such as the consensus problem [5]. More
precisely, it has been shown to be the weakest class
of failure detectors that allows consensus to be solved
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in message-passing asynchronous systems with a
majority of correct processes (let us remind that,
while consensus can be solved in synchronous systems
despite Byzantine failures of less than one third of the
processes [21], it cannot be solved in asynchronous
distributed systems prone to even a single process
crash [12]). Basically, an Ω-based consensus algorithm
uses the eventual leader to impose a value to all the
processes, thereby providing the algorithm liveness.
Leader-based consensus protocols can be found in
[15], [20], [26]. The second noteworthy feature of Ω
lies on the fact that it allows the design of indulgent
protocols [14]. Let P be an oracle-based protocol
that produces outputs, and PS be the safety property
satisfied by its outputs. P is indulgent with respect to
its underlying oracle if, whatever the behavior of the
oracle, its outputs never violate the safety property PS .
This means that each time P produces outputs, they are
correct. Moreover, P always produces outputs when the
underlying oracle meets its specification. The only case
where P can be prevented from producing outputs is
when the implementation of the underlying oracle does
not meet its specification. (Let us notice that it is still
possible that P produces outputs despite the fact that its
underlying oracle does not work correctly.) Interestingly,
Ω is a class of oracles that allows designing indulgent
protocols [14], [15]. More precisely, due to the very
nature of an eventual leader, it cannot be known in
advance when that leader is elected; consequently, the
main work of an Ω-based consensus algorithm is to
keep its safety property, i.e., guarantee that no two
different values can be decided before the eventual
leader is elected.

Unfortunately, Ω cannot be implemented in pure
asynchronous distributed systems where processes can
crash. (Such an implementation would contradict the
impossibility of solving consensus in such systems [12].
Direct proofs of the impossibility to implement Ω in
pure crash-prone asynchronous systems can be found in
[2], [27].) But thanks to indulgence, this is not totally
bad news. More precisely, as Ω makes possible the
design of indulgent protocols, it is interesting to design
“approximate” protocols that do their best to implement
Ω on top of the asynchronous system itself. The periods
during which their best effort succeeds in producing a
correct implementation of the oracle (i.e., when there is
a single leader and it is alive) are called “good” periods
(and then, the upper layer Ω-based protocol produces
outputs and those are correct). During the other periods
(sometimes called “bad” periods, i.e. when there are
several leaders or the leader is a crashed process), the
upper layer Ω-based protocol never produces erroneous

outputs. The only bad thing that can then happen is that
this protocol can be prevented from producing outputs,
but when a new long enough good period appears,
the upper layer Ω-based protocol can benefit from that
period to produce an output.

A main challenge of asynchronous fault-tolerant dis-
tributed computing is consequently to identify properties
that are at the same time “weak enough” in order to be
satisfied “nearly always” by the underlying asynchronous
system, while being “strong enough” to allow Ω to be
implemented during the “long periods” in which they are
satisfied.

1.2 Existing approaches to implement Ω

Up to now, two main approaches have been investigated
to implement Ω in crash-prone asynchronous message-
passing distributed systems. Both approaches enrich the
asynchronous system with additional assumptions that,
when satisfied, allow implementing Ω. These approaches
are orthogonal: one is related to timing assumptions, the
other is related to message pattern assumptions.

The eventual timely link approach The first approach
considers that the asynchronous system eventually sat-
isfies additional synchrony properties. Considering a
reliable communication network, the very first papers
(e.g., [4], [22]) assumed that all the links are eventually
timely1. This assumption means that there is a time τ0

after which there is a bound δ -possibly unknown- such
that, for any time τ ≥ τ0, a message sent through the
link at time τ is received by time τ + δ.

This approach has then been refined to obtain weaker
and weaker assumptions. It has been shown in [1]
that it is possible to implement Ω in a system where
communication links are unidirectional, asynchronous,
and lossy, provided that there is a correct process whose
n − 1 output links are eventually timely (n being the
total number of processes). This assumption has further
been weakened in [2] where it is shown that Ω can
be built as soon as there is a correct process that has
only t eventually timely links (where t is a known upper
bound on the number of processes that can crash); such a
process is called an eventual t-source. (After the receiver
has crashed, it is considered that the link from a correct
process to a crashed process is always timely.)

Another time-based assumption has been proposed
in [24], where the notion of eventual t-accessibility is
introduced. A process p is eventual t-accessible if there
is a time τ0 such that, at any time τ ≥ τ0, there is a set

1. The algorithm described in [4] uses that assumption to build an
eventually perfect failure detector. The Ω protocol presented in [22]
requires only the output links of the correct process with the smallest
identity to be eventually timely.
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Q(τ) of t processes such that p /∈ Q(τ) and a message
broadcast by p at τ receives a response from each process
of Q(τ) by time τ +δ (where δ is a bound known by the
processes). The very important point here is that the set
Q(τ) of processes whose responses have to be received
in a timely manner is not fixed and can be different at
distinct times.

The notions of eventual t-source and eventual t-
accessibility cannot be compared (which means that
none of them can be simulated from the other). In a very
interesting way these two notions have been combined
in [17], where the notion of eventual t-moving source
is defined. A process p is an eventual t-moving source
if there is a time τ0 such that at any time τ ≥ τ0 there
is a set Q(τ) of t processes such that p /∈ Q(τ) and a
message broadcast by p at τ is received by each process
in Q(τ) by time τ + δ. As we can see, the eventual
t-moving source assumption is weaker than the eventual
t-source as the set Q(τ) can vary with τ .

Other time-based approaches are investigated in [9],
[18]. They consider weak assumptions on both the ini-
tial knowledge of processes and the network behavior.
Protocols building Ω are presented [9], [18] that assume
the initial knowledge of each process is limited to its
identity and the fact that identities are totally ordered
(so, a process knows neither n, t, nor the ids of the other
processes). An unreliable broadcast primitive allows
the processes to communicate. As far as the network
behavior is concerned, one of the protocols presented in
[9] requires only that (1) each pair of correct processes
be connected by fair lossy links, and (2) there is a
correct process whose output links to the rest of correct
processes are eventually timely. It is shown in [18] that
Ω can be built as long as there is one correct process that
can reach the rest of the correct processes via eventually
timely paths (formed by eventually timely links and
correct processes).

The message pattern approach A totally different
approach to build Ω has been introduced in [25]. That
approach does not rely on timing assumptions and
timeouts. It states a property on the message exchange
pattern that, when satisfied, allows Ω to be implemented.
The statement of such a property involves the system
parameters n and t.

Let us assume that each process regularly broadcasts
queries and, for each query, waits for the corresponding
responses. Given a query, a response that belongs to the
first (n−t) responses to that query is said to be a winning
response. Otherwise, the response is a losing response
(then, that response is slow, lost, or has never been sent
because its sender has crashed). It is shown in [27] that Ω

can be built as soon as the following behavioral property
is satisfied: “There are a correct process p and a set Q of
t processes such that p /∈ Q and eventually the response
of p to each query issued by any q ∈ Q is always a
winning response (until -possibly- the crash of q).” When
t = 1, this property becomes: “There is pair of processes
p and q such that, after some time τ (and until possibly q
crashes), the round trip delay q−p−q is never the slowest
among all the round trips delays experienced by q.” A
probabilistic analysis for the case t = 1 shows that such
a behavioral property on the message exchange pattern
is practically always satisfied [25].

This message pattern approach and the eventual timely
link approaches cannot be compared. Interestingly, the
message pattern approach and the eventual t-source
approach have been combined in [28]. This combination
shows that Ω can be implemented as soon as there is a
correct process p and a time τ0 after which there is a set
Q of t processes q such that p /∈ Q and either (1) each
time a process q ∈ Q broadcasts a query, it receives a
winning response from p, or (2) the link from p to q
is timely. As it can be seen, if only (1) is satisfied, we
obtain the message pattern assumption, while, if only (2)
is satisfied, we obtain the eventual t-source assumption.
Here, the important point is that the message pattern
assumption and the timely link assumption are combined
at the link level.

1.3 Content of the paper: towards weaker and
weaker synchrony assumptions

A quest for a fault-tolerant distributed computing holy
grail is looking for the weakest synchrony assumptions
that allow implementing Ω. Differently from the quest
for the weakest information on failures that allows
solving the consensus problem (whose result was Ω
[5]), it is possible that this quest be endless. This is
because we can envisage lots of base asynchronous
computation models, and enrich each of them with ap-
propriate assumptions that allow implementing Ω in the
corresponding system. Such a quest should be based on
a well-formalized definition of a low level asynchronous
model, including all the models in which Ω can be
implemented. There is no guarantee that such a common
base model does exist. So, this paper is only a step in
that direction.

The pulse model For convenience and simplicity of
the presentation, this paper considers a simple base
asynchronous computing model where processes can
crash, that we call the pulse model. Each process (that
does not crash) executes an infinite sequence of pulses.
During a pulse a process first sends a message to all
processes, and then receives and processes the messages
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it has received since the previous pulse. Then, it asyn-
chronously proceeds to the next pulse. The processes
communicate through a reliable network [4], [12] (fair
lossy links could be used instead of reliable links2 but
we do not consider that possibility in order to keep the
presentation simple).

Observe that the pulse model can be directly simulated
on top of the classical asynchronous send (or broad-
cast)/receive message-passing model. Moreover, it is
easy to simulate the classical send (or broadcast)/receive
model on top of the pulse model (which means that
the pulse model is general enough to support many
applications). Hence, the pulse model and the classical
send/receive model are equivalent. It is important to
notice that the pulse-based model is different from, and
more general than, the round-based model [3], [23]3.
From a global point of view, we have the structure
described in Figure 1, where the pulse model is consid-
ered as base model. On top of it, (1) the EVENTUAL

LEADER module implements Ω in all its runs that
satisfy the additional assumption described below, and
(2) a PARTICULAR MODEL module that simulates the
desired model needed by the upper layer application
(send/receive, broadcast, round-based, etc.)4.

Base pulse model

EVENTUAL LEADER PARTICULAR MODEL

Figure 1. A particular model enriched with Ω

An eventual leader-based algorithm is communication-
efficient if after some time, only the elected leader sends
messages. Several communication-efficient leader algo-
rithms have been designed (e.g., [2], [7]). It is important
to notice that such algorithms cannot be designed in the
round-based model or the pulse-based model, as in these
models processes send messages in every round.

2. This can easily be done by using message acknowledgments
and piggybacking: a message is piggybacked on the next messages
until it has been acknowledged. So, a message sent by the underlying
communication protocol can be made up of several messages sent by
the upper layer algorithm. It is nevertheless important to remark that
such a piggybacking + acknowledgment technique is viable only if the
size of the messages sent by the underlying communication protocol
remains manageable.

3. In the round-based model, at every round r, a process receives
and processes only messages sent during the very same round r.

4. The EVENTUAL LEADER module may use the even pulses of the
underlying pulse model, while the PARTICULAR MODEL module uses
its odd pulses.

The proposed assumption The assumption to be used
to implement Ω will be denoted A. To make the pre-
sentation easier, an assumption A+, of which A is a
weakening, is first described. A+ is as follows. There
is a correct process p and a finite pulse number α
such that, at each pulse pn ≥ α, there is a set Q(pn)
such that |Q(pn)| = t, p /∈ Q(pn), and for each
process q ∈ Q(pn) that has not crashed, the message
PULSE(pn,−) sent by p is received by q at most δ
time units after it has been sent (the corresponding
bound δ can be unknown), or among the first (n − t)
PULSE(pn,−) messages received by q. The sequence
of pairs 〈p, Q(pn)〉, pn ≥ α, defines a structure that
we call a t-star: its permanent center is the process p
while the processes of Q(pn) define its t points at pulse
pn. As the set Q() can change at each pulse (while p
is fixed forever), we say that it is an eventual rotating
t-star (“eventual” because there is an arbitrary finite
number of pulses during which the requirement may not
be satisfied). Finally, as there is no synchrony constraint
on the processes that are the points of the star (the pulses
of the processes are never synchronized), the star is said
to be asynchronous.

While A+ defines an eventual rotating t-star that
allows implementing Ω, it appears that a weakened
form of that assumption, denoted A, that defines an
intermittent rotating t-star, is sufficient to implement
an eventual leader. Basically, the difference between
A+ and A is related to the notion of observation level
[16]. While A+ considers a base level including all
the pulses, A provides an abstraction level that allows
eliminating irrelevant pulses. Of course, as it cannot
be known in advance which are the relevant pulses, an
A-based algorithm has to consider a priori all the pulses
and then find a way to dynamically skip the irrelevant
ones.

After having introduced A+ and A, the paper in-
crementally presents first an A+-based Ω algorithm,
and then enriches it to obtain an A-based Ω algorithm.
The A-based algorithm enjoys a noteworthy property,
namely, all the local variables and message fields, but
the pulse numbers, have a finite domain, even if the
execution is infinite. This means that the timeout values
used by each process eventually stabilize. From an algo-
rithmic point of view, the proposed algorithm combines
new ideas with mechanisms also used in [2], [9], [17],
[25], [28]. (An early version of the proposed Ω A-based
algorithm, expressed in the classical send/receive model,
can be found in [11].)
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1.4 Road-map

The paper is composed of 8 sections. Section 2 presents
the system model and defines the class of eventual leader
oracles. Section 3 presents the additional assumptions
A+ and A. The presentation of the eventual leader algo-
rithm is then done incrementally. First, Section 4 presents
and proves an algorithm based on the assumption A+.
Then, Section 5 enriches the previous algorithm to take
into account the weaker assumption A. Finally, Section
6 improves the previous algorithm to obtain an A-based
algorithm whose variables (but the pulse numbers) take
a finite number of values even if the execution is infinite.
Section 7 explores a framework suited to the definition
of A-like assumptions. Finally, Section 8 concludes the
paper assumptions.

2 DEFINITIONS

2.1 Basic distributed system model

The underlying system model is made up of a set Π of
n ≥ 2 processes, namely, Π = {p1, p2, . . . , pn}. The
identity of pi is its index i. The set of identities I =
{1, . . . , n} is assumed to be known. We sometimes use
p and q to denote processes.

Failure model A process can fail by crashing (halting
prematurely). It behaves correctly (i.e., according to its
specification) until it (possibly) crashes. By definition, a
correct process is a process that does not crash. A faulty
process is a process that is not correct. As previously
indicated, t denotes the maximum number of processes
that can crash (1 ≤ t < n). The value t is known to the
processes.

The only atomic operation of a process is the sending
of a message to another process, which means that a
message is sent entirely or not at all.

Pulse model A process pi executes a sequence of pulses.
This sequence of pulses captures its asynchronous
progress (it can be seen as a local logical time). If the
process is correct, that sequence is infinite. A pulse is
made up of three phases.

• Send phase. During that phase, a process pi sends
a message to all processes, including itself. Such a
pulse message, denoted PULSE(), carries the current
pulse number (and possibly other data according to
the algorithm executed by pi).

• Receive phase. During that phase, a process pi

receives all the pulse messages that are in its input
buffer. Those are the messages that have arrived
since its last receive (in the previous pulse). Without
loss of generality and for ease of exposition, a

process always receives during a pulse the message
it has sent during that pulse.

• Local computation phase. During that phase, the
process p executes some local computation. When
it has terminated, it proceeds to the next pulse.

Figure 2 presents the basic execution behavior of a
process pi in the pulse model.

Observe that the pulse model can be directly simulated
on top of the classical asynchronous send/receive model.
To do so, processes must simply maintain a pulse counter
(as in Line 3 of Figure 2), label pulse messages appro-
priately, send the pulse counter in each pulse message,
and perform the computation following the sequence of
pulses, and phases within pulses as described in Figure
2. Hence, the pulse model is not stronger than the
asynchronous message passing model, and any algorithm
that executes on the pulse model can be executed on the
asynchronous model. The pulse model is used in this
work for convenience and ease of presentation.

It is also important to see that this pulse-based model
is weaker (i.e., more general) than the classical asyn-
chronous round-based model [3], [23], or the asyn-
chronous round-by-round failure detector model (RRFD)
[13]. In both these models, a message sent at round r is
received at the very same round r or is never received:
these models are communication-closed [8]. Differently,
the pulse model is not communication closed: a message
sent at pulse pn can be received by its destination
process at any pulse. There is no relation linking the
pulse at which a message is sent and the pulse at which
it is received. More explicitly, there is no synchrony
assumption hidden in the pulse notion.

Each process has also a local clock that can accurately
measure time intervals. The clocks of the processes are
not synchronized. To simplify the presentation, and with-
out loss of generality, we assume in the following that
the execution of the local statements (send, receive and
local computation) take no time. Only message transfers
and, for each process, the progress from one pulse to
another consumes time. Moreover, these time durations
are finite but arbitrary: the system is asynchronous.

The underlying communication channels are assumed
to be reliable: they do not create, alter, or lose messages.
In particular, if p sends a message to q, then eventually
q receives that message unless one of the two processes
fails. The channels are asynchronous in the sense
that they are not necessarily FIFO and there is no
assumption about message transfer delays (except that
they are finite).

We assume the existence of a global discrete clock.
This clock is a fictional device which is not known by
the processes; it is only used to state specifications or
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init: pni ← 0.

(1) repeat forever
(2) begin pulse
(3) pni ← pni + 1; % Proceed to the next local pulse %
(4) for each pj ∈ Π do send PULSE(pni, i,−) to pj end for; % Send phase %
(5) for each PULSE(pn,j,−) received since the previous pulse do % Receive phase %
(6) process the message PULSE(pn,j,−)
(7) end for;
(8) % Local computation phase %
(9) end pulse.

Figure 2. Process behavior of process pi under the pulse model

prove protocol properties. The range of clock values
is the set of integers. We assume that each event in a
run has a global time (an integer) associated, and that
all references to time in the rest of the paper (like, for
instance, the δ-timeliness of a message) are relative to
global clock time.

Each process has a timer that can be used to accu-
rately measure global clock intervals (possibly using the
process’ local clock)5. A process uses its timer by setting
it to some value, and waiting for the timer to expire. If
a process sets its timer to some value x at some global
time τ , the timer will locally notify the process that it
has expired at a global time τ + x.

Notation In the following, ASn,t[∅] denotes the asyn-
chronous pulse-based model as just described (made up
of n processes among which up to t < n can crash).
More generally, ASn,t[P ] will denote an asynchronous
pulse-based model made up of n processes among which
up to t < n can crash, and satisfying the additional
assumption P (so, P = ∅ means no additional as-
sumption). For convenience, sometimes ASn,t[P ] will
also be used to denote a system that runs under the
corresponding computation model. Whether ASn,t[P ]
refers to a system or a model will be clear from the
context.

2.2 The oracle class Ω

The oracle class Ω, informally presented in the intro-
duction, has been defined in [5]6. A leader oracle is a
distributed entity that provides each process pi with a
variable leader i that contains a process id. A process
is a leader when its id is in some variable leader i of
a process pi that has not crashed. A unique correct

5. We assume accurate timers for simplicity. In reality for the cor-
rectness of the algorithms it is enough that the timers are asymptotically
well-behaved [10].

6. The terminology used in [5] is slightly different from the one
used here: While [5] uses the words “failure detector” we use the
word “oracle”.

process is eventually elected, but there is no knowledge
of when the leader is elected. Different leader variables
can contain different process ids (we say “several leaders
coexist”) during an arbitrarily long period of time, and
there is no way for the processes to learn when this
“anarchy” period is over. A leader oracle satisfies the
following property [5]:

• Eventual Leadership: There is a time τ and a
correct process p such that, after τ the leader
variable of every correct process pi contains p, i.e.,
leader i = p.

Ω-based consensus algorithms are described in [15],
[20], [26] for asynchronous systems where a majority of
processes are correct (t < n/2). These algorithms can
then be used as a subroutine to solve other problems
such as atomic broadcast (e.g., [4], [20]).

As noticed in the introduction, whatever the value of
t ∈ [1, n − 1], Ω cannot be implemented in ASn,t[∅].
Direct proofs of this impossibility can be found in [2],
[27] (“direct proofs” means that these proofs do not rely
on the impossibility of solving another given problem -
such as the consensus problem [12]- in an asynchronous
system).

3 THE ADDITIONAL ASSUMPTION A

This section defines a system model, denoted ASn,t[A]
(ASn,t[∅] enriched with the assumption A) in which
oracles of the class Ω can be built. (Said differently,
this means that there is an algorithm that implements Ω
in all the runs of ASn,t[∅] that satisfy A.)

3.1 Preliminary definitions

As indicated in Section 2.1, each pulse message carries
its sending pulse number. A message PULSE(pn,−)
can be δ-timely or winning. These notions are central
to state the assumptions A+ and A (it is important
to remark that they are associated with messages and
pulses, not with links.) Let δ denote a bounded value
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(not necessarily known by the processes).

Definition 1: A message PULSE(pn,−) is δ-timely if
it is received by its destination process at most δ time
units after it has been sent.

Definition 2: A message PULSE(pn,−) is winning if
it belongs to the first (n − t) PULSE(pn,−) messages
received by its destination process.

Remark Let p be a correct process and q a faulty
process. As in [1], we define that, after q has crashed,
any PULSE(pn,−) message sent by p to q is δ-timely
(this is because one can always consider that the
message has been received by δ time units after its
sending).

Definition 3: A process p is (α, β)-timely if for all
pulse numbers pn ≥ α, pulse messages PULSE(pn,−)
and PULSE(pn+1,−) are sent by p separated by at most
β time units.

Definition 4: Given a process p, a pulse pn of p is a
δ-flare of p if there is a set of processes Q(pn) such that

• p /∈ Q(pn) and |Q(pn)| = t,
• ∀ q ∈ Q(pn): the message PULSE(pn,−) sent by p

to q is δ-timely or winning.

3.2 The system model ASn,t[A+]

It is important to see that, in the definitions that follow,
the process p, and the bounded values α, β and δ are
not known in advance, and may never be explicitly
known by the processes.

Definition 5: The Assumption A+ is satisfied in a run
if there is a correct process p, and three bounds α, β,
and δ such that:

H1 Process p is (α, β)-timely,
H2 ∀ pn ≥ α, pulse pn is a δ-flare of p.

Definition 6: In the runs that satisfy assumption A+,
the sequence 〈p, Q(α)〉, 〈p, Q(α + 1)〉, . . . defines an
eventual rotating t-star centered at p.

The A+ assumption is very flexible. One of its flexi-
bility dimensions is related to the fact that the sets Q()
are not required to be the same set, i.e., if pn 6= pn′,
Q(pn) and Q(pn′) can be different. This is the rotating
notion (first introduced in [17], [24] under the name
moving set). A second flexibility dimension is the fact
that two different processes q1, q2 ∈ Q(pn) are allowed

to satisfy different properties, one satisfying the “δ-
timely” property, while the other satisfying the “win-
ning” property. Finally, if q appears in Q(pn)∩Q(pn′),
the message PULSE(pn,−) can satisfy the “δ-timely”
property while the message PULSE(pn′,−) satisfy the
“winning” property (or vice-versa).

Particular system models Albeit they have not been
stated in the pulse model, it is interesting to notice
that several assumptions encountered in the literature
can be revisited as particular instances of the more
general assumption A+. For this comparison we consider
an underlying classical broadcast/receive asynchronous
system in which the previously defined assumptions are
satisfied, and we compare them with the A+ assumption
on a simulated pulse model on top of such a system.

• If the set Q(pn) is constrained to be the same for
all pulse numbers pn ≥ α, and

– Only the δ-timely notion is considered, A+ is
equivalent to the eventual t-source assumption
introduced in [2]. Consider process p and α as
in assumption A+. All the (pulse) messages
sent by p with number at least α are then
received at most δ time after being sent, and
hence p is an eventual t-source. Reversely, let
p be an eventual t-source, then there is a time
τ0 after which all the pulse messages sent by
p on its t eventually timely links are δ-timely.
Setting α to be at least the first pulse number
sent by p after τ0, [H2] is satisfied. The system
assumptions in [2] also guarantee that [H1] p
is (α, β)-timely, for some α and β. Hence A+

holds.
– Only the message winning notion is consid-

ered, A+ boils down to the message pattern as-
sumption introduced in [25]. This follows triv-
ially if a message PULSE(pn,−) from process
p is the response to the message PULSE(pn,−)
from process q. Moreover, it also holds that
the message pattern assumption of [25] implies
[H2]. Observe that a response may arrive be-
fore the corresponding query is broadcast, but
that is not restricted in [25].

– If both the δ-timely notion and the message
winning notion are considered, A+ boils to the
assumption used in [28]. This follows from the
two previous cases.

• If the set Q(pn) is allowed to vary according to the
pulse numbers, and:

– Only the δ-timely notion is considered, A+

is equivalent to the eventual t-moving source
assumption introduced in [17].

– Only the message winning notion is consid-
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ered, A+ provides a t-moving message pattern
assumption generalizing the assumption intro-
duced in [25].

This shows that the assumption A+ can be seen as
a very flexible generic assumption. Not only it includes
several existing proposals, but, as we are about to see,
it can be weakened, allowing thereby more runs of the
underlying system to implement an Ω oracle.

3.3 The system model ASn,t[A]

As indicated in the introduction, A is a weakening of
A+ that allows the previous properties to be satisfied
by only a subset of the pulse numbers. (To the best of
our knowledge, none of the assumptions proposed so
far has investigated such an assumption weakening.) A
is A+, where property H2 is weakened as follows:

H2′ There is an infinite subsequence S of increasing
pulse numbers α = α0, α1, . . . , αx, αx+1, . . . and a
bound D (not necessarily known) such that ∀ x ≥ 0:
αx+1−αx ≤ D, and ∀ pn ∈ S, pulse pn is a δ-flare
of p.

When D = 1, A boils down to A+. So, A weakens
A+ by adding another flexibility dimension, namely, a
dimension related to time. It is sufficient that the rotating
t-star centered at p appears from time to time in order
for Ω to be built. This is why we say that A defines an
intermittent rotating t-star. The limit imposed by A on
this flexibility dimension is expressed by the bound D:
the constraining subsequence S cannot be fully arbitrary.

4 AN A+-BASED LEADER ALGORITHM

This section presents and proves the correctness of
an algorithm that builds an oracle of the class Ω in
ASn,t[A+]. This algorithm will be improved in the next
sections to work in ASn,t[A] (Section 5), and then to
have only bounded variables (Section 6).

4.1 Principles and description of the algorithm

As a lot of other eventual leader algorithms (e.g., [2],
[25]), the proposed algorithm strives to elect the process
that is currently the least suspected to have crashed (if
several processes have this property, their ids are used
to break ties)7.

Local variables To attain this goal each process pi uses
the following local variables:

7. Let X be a non-empty set of pairs (integer, process id). The
function min(X) returns the smallest pair in X, according to lexico-
graphical order. This means that (sl1, i) is smaller than (sl2, j) iff
sl1 < sl2, or (sl1 = sl2) ∧ (i < j).

• leaderi contains the id of the process that pi

currently considers as the common leader. It is
initialized to any process identity (e.g., 1 or i).

• pni is a local variable containing the current local
pulse number. Its value is used to tag the pulse
messages sent by pi.

• timeri is pi’s local timer.
• susp level i[1..n] is an array such that

susp level i[j] counts, from pi’s point of view,
the number of pulses during which pj is strongly
suspected.
A process pj is “strongly suspected” during a pulse
pn, if at least (n − t) processes suspect it to have
crashed while they execute pulse pn. Let us observe
that, due to asynchrony, two processes px and py

can suspect a process pj during the same pulse but
at different physical times.

• rpni is a local variable containing a (receive) pulse
number that is used in connection with the array
rec from i[1..]. That array is such that rec from i[x]
keeps the ids of the processes from which pi has
received and taken into account a PULSE(x,−)
message. At any time, only the entries rec from i[x]
such that x ≥ rpni are meaningful for the algo-
rithm.

• suspicionsi[1.., 1..n] is an array such that
suspicionsi[px, j] counts, as far as the pulse px
is concerned, how many processes weakly suspect
pj to have crashed. A process pj is ”weakly
suspected” by pi with respect to the pulse px, if
pi does not receive and process a PULSE(px,−)
message from pj . (The predicate indicating if pj

is weakly suspected by pi during the pulse rpni

involves the timer of pi, and the value of the
integer |rec from i[rpni]|.)

• suspectedi is a local variable that contains either
the default value ⊥, or two fields, namely, a pulse
number rpn and a set of processes weakly sus-
pected during that pulse.

Process behavior The algorithm executed by each
process pi is described in Figure 3. A process pi

executes first its sending phase: it proceeds to the
next pulse (Line 3), and sends a pulse message to
each process pj (including itself). In addition to its
pulse number pni, a pulse message piggybacks three
data elements: the id i of the sender, and the current
values of its array susp level i and its local variable
suspectedi (Line 4).

Then, pi receives and processes all the pulse mes-
sages that are in its input buffer (Lines 5-17). If the
PULSE(pn,−) message is “on time” (i.e., such that
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init: for each x ≥ 1 do rec from i[x]← {i} end for;
for each x ≥ 1, j ∈ I do suspicionsi[x, j]← 0 end for;
for each j ∈ I do susp level i[j]← 0; end for;
pni ← 0; rpni ← 1; suspectedi ← ⊥; leaderi ← 1; set timeri to 1.

(1) repeat forever
(2) begin pulse
(3) pni ← pni + 1; % Proceed to the next local pulse %
(4) for each pj ∈ Π do send PULSE(pni, i, susp level i, suspectedi) to pj end for;
(5) for each PULSE(pn,j, sl, suspected) received since the previous pulse do
(6) if pn ≥ rpni then rec fromi[pn] ← rec from i[pn] ∪ {j} end if;
(7) for each k ∈ I do susp level i[k]← max(susp leveli[k], sl[k]) end for;
(8) if suspected 6= ⊥ then
(9) let (px, suspects) = suspected;
(10) for each k ∈ suspects do
(11) suspicionsi[px, k]← suspicionsi[px, k] + 1;
(12) if (suspicionsi[px, k] = n− t)
(13) then susp leveli[k]← susp level i[k] + 1
(14) end if
(15) end for
(16) end if
(17) end for;
(18) leaderi ← ` where ` is such that (susp level i[`], `) = min(

�
(susp leveli[j], j) �

j∈I
)

(19) suspected i ← ⊥;
(20) if (timeri has expired) ∧ (|rec from i[rpni]| ≥ n− t) then
(21) let suspectsi = I \ rec from i[rpni];
(22) suspected i ← (rpni, suspectsi);
(23) rpni ← rpni + 1;
(24) set timeri to max(

�
susp level i[j] �

j∈I
)

(25) end if
(26) end pulse.

Figure 3. An Ω algorithm for ASn,t[A+] (code of process pi)

pn ≥ rpni), pi updates rec from i[pn] (Line 6) to
remember it has received on time that PULSE(pn,−)
message from pj .

The pulse messages are used to gossip values,
thereby allowing the receiving process to update its
local state. So, pi updates its array susp level i[1..n]
containing the number of strong suspicions of each
process pk (Line 7). Then, if it is different from ⊥,
the value suspected carried by the pulse message is
meaningful and pi processes it (Lines 9-15). That value
is a pair (px, suspects) where px is a pulse number
and suspects a set of processes. Its meaning is the
following: as far as the pulse px is concerned, the
sending process pj weakly suspects all the processes
pk whose id are in the set suspects (Line 22 executed
by pj). Consequently, pi increases its weak suspicion
counter suspicionsi[px, k] (Line 11), and increases
also its strong suspicion counter susp level i[k] if
enough processes (“enough” is here n− t) have weakly
suspected pk during the pulse px (Lines 12-13).

After having processed the pulse messages it has
received, the value of leaderi is recomputed as it could
have changed (Line 18). Then, pi computes the new

value of its local variable suspectedi (Lines 19-25). It
first checks if it weakly suspects processes with respect
to the pulse rpni. In order to suspect processes, the
timer has to have expired (this is to benefit from the
“δ-timely message” side of the assumption A+), and all
the messages that are winning with respect to the pulse
rpni have to be arrived and processed (this is to benefit
from the “winning message” side of the assumption).
This is captured by the predicate of Line 20.

If this predicate is true, the processes from which
a PULSE(rpni,−) message has not been received and
processed are weakly suspected (Lines 21-22), rpni is
increased (Line 23), and the timer is reset (Line 24).
Finally, pi proceeds to the next pulse after an arbitrary
but finite period.

The timer has to be reset to a value higher than the pre-
vious one when pi discovers that it has falsely suspected
some processes because its timer expired too early8. A
way to ensure that the timeout value increases when

8. Let us remark that a PULSE(pn,−) message that arrives after
the timer has expired, but is a winning PULSE(pn,−) message, is
considered by the algorithm as if it was received before the timer
expiration. So, such a message cannot give rise to an erroneous
suspicion.
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there are such false suspicions, consists in adopting a
conservative approach, namely, systematically increasing
the timeout value. So, a correct statement to reset the
timer (at Line 24) could be “set timeri to pni” as this
pulse number monotonically increases.

As shown in the proof (Lemma 1), the local variable
susp level i[j] is unbounded if pi is correct and pj is
faulty. So, another possible value to reset timeri is
max({susp level i[j]}j∈I). The reason to reset timeri

that way (instead of using pni) will become clear in
the last version of the algorithm (Section 6) where we
will show that all the susp level i[j] variables can be
bounded, and so (if needed) all the timeout values can
also be bounded (while the pulse numbers cannot be
bounded). Let us notice that bounded timeout values can
allow reducing stabilization time.

4.2 Proof of the algorithm

Lemma 1: Let pi be a correct process and pj a faulty
process. susp level i[j] increases forever.

Proof Once pj has crashed, it does no longer send
PULSE() messages. Let pn be the highest pulse number
used by pj to send a PULSE() message (Line 4). Then,
as no correct process pk will ever receive from pj a
PULSE(pn′, j,−) message with pn′ > pn, we have
j /∈ rec fromk[pn′] for all these pulse numbers pn′.
So, at each rpnk = pn′ > pn, each correct process pk

updates suspectedk to (rpnk, {· · · , j, · · · }) (Line 22).
Since there are at least (n − t) correct processes,

each of them sends a PULSE(pn′,−,−, {. . . , j, . . . })
message, at each pulse pn′ > pn. As the underlying
communication network is reliable, each correct process
receives at least (n− t) such pulse messages, and conse-
quently executes the Lines 9-15, and susp level i[j] is in-
creased. As this happens for all pn′ > pn, susp level i[j]
increases without bound. 2Lemma 1

Let us now consider the following time notations, for
any correct process pj .

• send time(j, pn) is the time instant at which pj

sends PULSE(pn,−).
• predicate time(j, pn) is the time instant at which

the predicate of Line 20 becomes true at pj for
rpnj = pn (the Lines 21-24 are then atomically
executed at that time).

• ∀pn > 1 : ∆(j, pn) = predicate time(j, pn) −
predicate time(j, pn − 1).
The values of ∆(j,−) are the time durations that
elapse, at process pj , between consecutive execu-
tions of the Lines 21-24.

The two lemmas that follows (Lemma 2 and lemma
3) are two technical lemmas that are used in Lemma 4
to show that, if p` is a correct process that is the center
of an eventual rotating t-star, there is a finite time after
which no process pi suspects p`.

Lemma 2: Let p` be a correct process that is (α, β)-
timely (Definition 3). If some process pi increases
susp level i[`] without bound then, for any correct pro-
cess pj and any constant c, there is a pulse num-
ber, denoted pn(j, c), such that ∀m ≥ pn(j, c) :
predicate time(j, m) ≥ send time(`, m) + c.

Proof The proof is based on the following sequence of
observations.

1) As susp level i[`] increases forever, it follows from
the permanent gossiping issued by pi (Lines 4 and
7) and link reliability, that susp level j [`] increases
without bound.

2) As (a) the timeout value used to reset timerj

is max({susp level j [x]}x∈I), (b) susp level j [`]
increases without bound (previous item), and (c)
∆(j, pn) is no smaller than the timeout value
used to reset timerj when rpnj = pn − 1, it
follows that there is a pulse number pn′ such that,
∀ pn′′ > pn′, ∆(j, pn′′) ≥ β + 1 (recall that
β is the maximal duration that eventually elapses
between two consecutive broadcasts of PULSE()
messages by p`).

3) As p` is (α, β)-timely, it follows that ∀ pn > α:
send time(`, pn) − send time(`, pn − 1) ≤
β. Moreover, send time(`, pn) ≤
send time(`, α) + β(pn − α).

4) The previous items 2 and 3 state that, from some
pulse number pn > max(α, pn′), the difference
between two consecutive times at which the pred-
icate of Line 20 is satisfied at pj is always greater
than the difference between any two consecutive
broadcasts of PULSE() messages by p`.
It follows that, for any constant c, there is
a pulse number s > max(α, pn′) such that,
∀pn′′ ≥ s, we have predicate time(j, pn′′) ≥
send time(`, pn′′) + c. Such a pulse number s
defines pn(j, c).
More explicitly, for instance we can fix s =
send time(`, α) + β(pn′ − α) + pn′ + c (where
pn′ is the value defined in item 2). We have the
following:
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predicate time(j, s)
= predicate time(j, pn′) + Σpn′<x≤s∆(j, x)

[Definition of ∆(j, x)]
≥ predicate time(j, pn′) + (β + 1)(s − pn′)

[Item 2]
≥ (β + 1)(s − pn′)

[predicate time(j, pn′) ≥ 0]
= send time(`, α) + β(s − α) + c

[Definition of s]
≥ send time(`, s) + c[Item 3].

2Lemma 2

In the following, δ is the bound associated with the
notion of δ-timely message used in the definition of
A+. Due to Lemma 2, if p` is a correct process that is
(α, β)-timely and any process pi increases susp level i[`]
without bound, there is a pulse number pn(j, δ) for each
correct process pj . If this happens, let pulse PN be
defined as follows (where C stands for the set of the
indexes of the correct processes).

PN =

{

max({pn(j, δ)}j∈C) if ∃ δ-timely messages,
0 if no δ-timely message.

Lemma 3: Let p` be a correct process that is (α, β)-
timely. Let susp level i[`] increase without bound, for
some process pi (and hence PN is well defined). Let m
be any pulse number such that m > PN and pulse m
is a δ-flare of p`. For any correct process pj such that
pj ∈ Q(m) ∪ {p`}, we have ` ∈ rec fromj [m].

Proof Let us first observe that, due to the initialization,
we have ` ∈ rec from`[m]. Let us now consider pj

such that pj ∈ Q(m). Due to the fact that pulse m is a
δ-flare of p`, it follows that the message PULSE(m,−)
sent by p` is δ-timely or winning. It follows that,
when the predicate of Line 20 of pj becomes true for
rpnj = m, the PULSE(m,−) from p` has been received
before the timer expiration (case where the message is
δ-timely, because m ≥ pn(j, δ)), or among the first
(n − t) PULSE(m,−) messages received by pj (case
where the message is winning). Consequently, when the
message PULSE(m,−) from p` has been received, we
had m ≥ rpnj , and accordingly ` has then been added
to rec fromj [m] (Line 6). 2Lemma 3

Lemma 4: Let p` be a correct process that is the
center of an eventual rotating t-star (i.e., it makes true
A+). There is a time after which, for any process pi,
susp level i[`] is never increased.

Proof If pi is faulty, the lemma is trivially satisfied.
Assuming pi is correct, the proof is by contradiction.
So, let us assume that there is a correct process pi

that increases susp level i[`] infinitely often. Since p`

satisfies assumption H1, it is (α, β)-timely, Lemma 2
applies, and then PN is well defined. As p` satisfies
assumption H2, all pulse numbers m > max(PN , α) are
δ-flares of p`. Hence Lemma 3 holds for all these pulses.
It follows that, for any m > max(PN , α), no process pj

such that pj ∈ Q(m)∪{p`} piggybacks in any PULSE()
message a variable suspectedj = (m, suspects) such
that suspects includes `. Due to the assumption A+,
p` /∈ Q(m), from which we conclude that |Q(m) ∪
{p`}| ≥ t + 1. Consequently, at any receiving phase
m > max(PN , α), no process px can receive (n − t)
values suspected = (m, suspects) with suspects con-
taining `. It follows that no local variable susp levelx[`]
can increase without bound. This contradicts the initial
assumption and proves the lemma. 2Lemma 4

Theorem 1: The algorithm described in Figure 3 im-
plements Ω in ASn,t[A+].

Proof Due to Lemma 1, for any correct process pi and
any faulty process pk, susp level i[k] increases forever.
Consequently, the bounded entries (if any) of any array
susp levelx are associated only with correct processes.

Due to the gossiping mechanism of the susp levelx

arrays (Lines 4 and 7) and link reliability, it follows that
if there is a process pj such that after some time no
susp level i[j] local variable is increased at Line 13, then
all the susp level i[j] local variables of correct processes
stabilize to the same bounded value.

Let us now observe that, due to Lemma 4, there
is at least one correct process p` such that, for any
process pi, susp level i[`] is eventually never increased.
Consequently, at least the ` entry of each susp level i

array is bounded.
Finally, as the process that is currently elected leader

by a process pi is the one that currently is locally the
least suspected (the ids being used to break ties if several
processes are the least suspected), it follows that there
is a time after which all the processes pi (that have not
crashed) always select the same process px such that
susp level i[x] is bounded, from which we conclude that
eventually the same correct process is elected forever by
the processes. 2Theorem 1

5 AN A-BASED LEADER ALGORITHM

5.1 From A+ to A

A+ states the eventual existence of a rotating t-star,
while A states the eventual existence of an intermittent
t-star. The property H2 has only to be satisfied on
an infinite subsequence S of increasing pulse numbers
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α0, α1, . . . , αx, αx+1, . . . such that there is a bound D
(not necessarily known) such that ∀ x ≥ 0: αx+1−αx ≤
D.

This means that, when compared to an A+-based
algorithm, an A-based Ω algorithm has to filter the
pulse numbers in order to skip the irrelevant ones, i.e.,
the pulse numbers that do not belong to S. This can
be attained by adding a single line (more precisely, an
additional test) to the A+-based algorithm described
in Figure 3. The corresponding A-based algorithm is
described in Figure 4 where the only new line is prefixed
by “∗”.

The variable susp level i[k] must no longer be sys-
tematically increased when there is a pulse number px
such that suspicioni[px, k] = n − t. This is in order
to prevent such increases when px is a pulse number
that does not belong to the sequence S. But, on the
other side, susp level i[k] has to be forever increased
if pk has crashed. To attain these “conflicting” goals,
the variables susp level i[k] and suspicioni[px, k] are
simultaneously used as follows: susp level i[k] is in-
creased if suspicioni[px, k] = n − t and, ∀y such
that max(0, px − susp level i[k]) < y < px, we have
suspicioni[y, k] ≥ n− t. When it is satisfied, this addi-
tional predicate means that pk has been continuously sus-
pected during “enough” pulses in order susp level i[k]
to be increased. The exact meaning of “enough” is
dynamically defined as being the pulse number window
[max(0, px−susp level i[k])+1, px−1], thereby avoid-
ing the explicit use of the bound D (that constraints the
sequence S) in the text of the algorithm.

5.2 Proof of the algorithm

The statements of the lemmas and theorem that follow
are similar as in Section 4. As A is weaker than A+

their proofs are different.

Lemma 5: Let pi be a correct process and pj a faulty
process. susp level i[j] increases forever.

Proof The proof is by contradiction. Let us assume that
susp level i[j] is bounded by X . Let pn j be the highest
pulse number used by pj to send PULSE() messages. It
follows from the algorithm that, for each pn > pn j,
each correct process sends a pulse message with the vari-
able suspected = (pn, {. . . , j, . . . }). Consequently, the
following observation O holds: for each pn > pn j and
any correct process pk, eventually suspicionsk[pn, j]
becomes at least n − t.

So, let us consider the time τ at which
susp level i[j] = X and for each pn ∈ [pn j +
1, . . . , pn j + X ] we have suspicionsi[pn, j] ≥ n − t
(due to the assumption on X and Observation O, the

time instant τ does exist). Let pn′ be the smallest
pulse number, such that at τ , pn′ > pn j + X
and suspicionsi[pn′, j] < n − t (as transfer delays
of the PULSE() messages are finite, there is such
a pulse number pn′; on another side, it is possible
that some predicates suspicionsi[pn′′, j] ≥ n − t
with pn′′ > pn′ be satisfied). Due to Observation O,
eventually suspicionsi[pn′, j] becomes equal to n − t.
The condition stated at Line “*” becomes then true and
susp level i[j] is increased, which contradicts the initial
assumption and proves the lemma. 2Lemma 5

Lemma 6: Let p` be a correct process that is the
center of an intermittent rotating t-star (i.e., it makes
true A). There is a time after which, for any process pi,
susp level i[`] is never increased.

Proof The proof is by contradiction and follows similar
lines as the proof of Lemma 4. If pi is faulty, the lemma
is trivially satisfied. So, let us assume that there is a
correct process pi that increases susp level i[`] infinitely
often.
Claim C1: For any correct process pj , there is a
pulse number, denoted pn(j), such that the value of
susp level j [`] is greater than or equal to D − 1 at time
send time(`, pn(j)).
Proof of the claim. By the assumption used to show
contradiction, susp level i[`] increases forever for
the correct process pi. It follows that eventually
susp level i[`] ≥ D − 1. Then, the claim follows from
the gossiping mechanism of the susp level x arrays.
End of the proof of the claim C1.

Since p` satisfies assumption H1 (it is (α, β)-timely),
Lemma 2 applies, and then the value PN (defined in
Section 4.2) exists and is well defined. Due to Claim
C1, pn(j) does exist for each correct process pj . Let
PN ′ = max({pn(j)}j∈C) (where C stands for the set of
correct processes). Moreover, let m be any pulse number
greater than max(PN ′,PN +D− 1, α0) (recall that α0

is the first pulse number of the sequence S, defined in
the assumption A). We have the following.

1) Using m > α0.
Due to the definition of D and the fact that m >
α0, there is some pulse αr in the set {m − D +
1, ..., m} that also belongs to the sequence S of
pulse numbers defined in the assumption A. It then
follows from the definition of sequence S, that p`

satisfies assumption H2′ for pulse number αr.
2) Using m > PN + D − 1.

Let us first observe that m > PN +D−1 implies
αr > PN (where αr is the pulse number defined
in the previous item). Since p` satisfies assumption
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—————- The lines from the beginning until Line 8 are the same as in Figure 3 ————-

(9) let (px, suspects) = suspected;
(10) for each k ∈ suspects do
(11) suspicionsi[px, k]← suspicionsi[px, k] + 1;
(12) if (suspicionsi[px, k] = n− t)
(*) ∧ � ∀y : max(0, px− susp level i[k]) < y < px : (suspicionsi[y, k] ≥ n− t) �

(13) then susp level i[k]← susp leveli[k] + 1;
(14) end if
(15) end for.

—————- The lines from Line 16 until the end are the same as in Figure 3 ——————

Figure 4. Algorithm for process pi in ASn,t[A]

H2 and αr ∈ S, pulse αr is a δ-flare of p`. Then,
from Lemma 3 it follows that, for any correct
process pj such that pj ∈ Q(αr) ∪ {p`}, we have
` ∈ rec fromj [αr]. It follows that no process
px can ever receive (n − t) pulse messages with
suspected = (αr, suspects) and ` ∈ suspects.
Therefore, for any process px, it is not possible
that the value of suspicionsx[αr, `] ever reaches
n − t.

3) Using m > PN ′.
Since m > PN ′, for any correct process pj

the value of susp level j [`] is at least D − 1
when pj starts receiving pulse messages with
suspected = (m, suspects) containing ` (if any
is ever received). Combining this observation with
the previous item (on the existence of pulse
αr such that no suspicionsx[αr, `] ever reaches
n − t), it follows that the condition in Line “*”
(namely, ∀y : max(0, m − susp level i[k]) <
y < m : suspicionsi[y, k] ≥ n− t)) is never sat-
isfied when such a message arrives. Consequently
susp level j [`] cannot be incremented in pulse m.

To conclude the proof, let us notice that this holds for
any m > max(PN ′,PN + D − 1, α0), from which it
follows that no local variable susp level x[`] can increase
without bound. This contradicts the initial assumption
and proves the lemma9. 2Lemma 6

Theorem 2: The algorithm described in Figure 4 im-
plements Ω in ASn,t[A].

Proof The proof is verbatim the proof of Theorem 1
after having replaced Lemmas 1 and 4 by their new ver-
sion, namely Lemmas 5 and 6, respectively. 2Theorem 2

9. The reader can observe that this proof boils down to the proof of
Lemma 4 when D = 1.

6 A BOUNDED VARIABLE A-BASED
LEADER ALGORITHM

When we examine the A-based leader algorithm de-
scribed in Figure 4, it appears that, for each process
pi, the size of its variables is bounded, except for the
pulse numbers pni and rpni, and some local variable
susp level i[j] (e.g., when pj crashes). Since the current
value of max({susp level i[j]}j∈I) is used by pi to reset
its timer, it follows that the timeout values are potentially
unbounded (e.g., this occurs as soon as one process
crashes).

We show here that, in any run, each local variable
susp level i[j] can be bounded whatever the behavior of
pj and the time taken by the pulse messages sent by
pj to pi. Consequently, in each run, all the variables
(except the pulse numbers) are bounded even if the
execution is infinite. It follows that all the timeout values
are bounded, whether processes crash or not, and the
messages are timely or not. This is a noteworthy property
of the algorithm. (Of course, it remains possible to use
pni or rpni if, due to specific application requirements,
one needs to have increasing timeouts.)

It is important to notice that each run of ASn,t[A]
is characterized by a particular bound on the local
variables susp level i[j]. This bound is of the “same
nature” as the particular (unknown) bounds α, β, δ and
D associated with each run of ASn,t[A]. Although the
determination of that bound seems very difficult (if it is
ever feasible, as it depends on the bounds α, β, δ, D, and
on the system asynchrony -including the order in which
the pulse messages are received and processed-), it is
important to notice that it practically always prevents
“memory overflow” when the memory words used for
the susp level i[j] variable are reasonably large (e.g., 64
bits), despite the fact that runs can be infinite.

6.1 Bounding all the variables susp level i[k]

Let us observe that if susp level i[k] is not the smallest
value of the array susp level i, pi does not currently
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considers pk as the leader. This means that it is not nec-
essary to increase susp level i[k] when susp level i[k] 6=
min({susp level i[j]}j∈I). The proof shows that this
intuition is correct.

Let B be the final smallest value in the array
susp level i, once the eventual leader has been elected.
The previous observation allows us to conclude that no
value in this array will ever be greater than B + 1, and
consequently, all the values are bounded.

As for the previous algorithm (Figure 4), the resulting
algorithm can be obtained by adding a single line (more
precisely, an additional test) to the algorithm described
in Figure 3. To provide the reader with a global view,
the resulting algorithm associated with a pulse is entirely
described in Figure 5. The new additional line is the line
marked “**”.

6.2 Proof and properties of the algorithm

This section shows first that the algorithm described
in Figure 5 is correct, and then that it is bounded. To
that end, it uses previous lemmas and a few new lemmas.

Lemma 7: Let p` be a correct process that is the
center of a intermittent rotating t-star (i.e., it makes true
A). There is a time after which, for any process pi,
susp level i[`] is never increased.

Proof The proof is the same as the proof of Lemma 6.
In the first part of that proof, we have only to replace
the occurrence of Line “*” by an occurrence of both
the Lines “*” and “**”. For the rest of the proof, it is
sufficient to observe that the new test (Line “**”) does
not involve pulse numbers. 2Lemma 7

Definition 7: Let Bj be the greatest value (or +∞ if
there is no such finite value) ever taken by a variable
susp level i[j], ∀i ∈ I . Let B = min(B1, . . . , Bn) or
+∞ if all Bj are equal to +∞.

Lemma 8: B is bounded.

Proof This lemma follows directly from the fact that no
entry of susp level i[1..n] ever decreases and Lemma 7.

2Lemma 8

Lemma 9: Let pi be a correct process and pj a faulty
process. We eventually have susp level i[j] > B.

Proof The proof is a simple combination of arguments
used in the proofs of the Lemmas 1 and 5.

• As in the proof of Lemma 1, there is a pulse
number pn, such that for any pn′ > pn,
each correct process receives at least (n −

t) PULSE(pn′,−,−, {. . . , j, . . . }) messages, from
which it follows that the test of Line 12 is always
satisfied from pn + 1.

• As in the proof of Lemma 5, there is a pulse number
from which the predicate of Line “*” is always
satisfied.

It follows that there is a pulse number from which
both the predicates of Line 12 and Line “*” are always
satisfied.

Let us now consider a time after which
min({susp level i[x]}x∈I) = B (due to the
gossiping mechanism this eventually happens).
If then susp level i[j] > B, the lemma follows
(because susp level i[j] never decreases). Otherwise,
susp level i[j] = B. In that case, the test of Line “**”
is satisfied, and accordingly susp level i[j] is increased.

2Lemma 9

Theorem 3: The algorithm described in Figure 5 im-
plements Ω in ASn,t[A].

Proof It follows from the gossiping mechanism and
Lemma 8 that there is a time after which there is a
process p` such that, for each non-crashed process pi,
we have susp level i[`] = B. Moreover due to Lemma
9, all the processes px such that susp level i[x] = B
are correct processes. It follows that all the processes
eventually elect the same leader which is a correct
process. 2Theorem 3

The next lemma is used in Theorem 4 to show that
the algorithm is bounded.

Lemma 10: ∀ pi, max({susp level i[x]}x∈I) −
min({susp level i[x]}x∈I) ≤ 1 is always satisfied.

Proof 10 Let INV (sl) be the predicate
max({sl[x]}x∈I) − min({sl[x]}x∈I) ≤ 1, where
sl is a size n array of integers. We show that, for
any process pi, INV (susp level i) is invariant. The
proof of the lemma is by induction. We first show that
INV (susp level i) is initially true and then is left true
each time susp level i is updated (at Line 7 or Line 13).

• INV (susp level i) is initially true (all the entries of
susp level i[1..n] are initially equal to 0).

• Update of susp level i at Line 7.
Let sl1 and sl2 be the two vector arrays from which
the component-wise maximum is computed. Due
to the induction assumption, both INV (sl1) and

10. After having observed that the values taken by the susp level i
arrays define a lattice, the proof of this theorem could be directly
deduced from lattice theory results. We give here a slightly longer but
“self-contained” proof.
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(1) repeat forever
(2) begin pulse
(3) pni ← pni + 1; % Proceed to the next local pulse %
(4) for each pj ∈ Π do send PULSE(pni, i, susp leveli, suspectedi) to pj end for;
(5) for each PULSE(pn,j, sl, suspected) received since the previous pulse do
(6) if pn ≥ rpni then rec from i[pn] ← rec fromi[pn]∪ {j} end if;
(7) for each k ∈ I do susp level i[k]← max(susp level i[k], sl[k]) end for;
(8) if suspected 6= ⊥ then
(9) let (px, suspects) = suspected;
(10) for each k ∈ suspects do
(11) suspicionsi[px, k]← suspicionsi[px, k] + 1;
(12) if (suspicionsi[px, k] = n− t)
(*) ∧ � ∀y : max(0, px− susp level i[k]) < y < px : (suspicionsi[y, k] ≥ n− t) �

(**) ∧ (susp level i[k] = min({susp leveli[j]}j∈I))
(13) then susp level i[k]← susp leveli[k] + 1;
(14) end if
(15) end for
(16) end if
(17) end for;
(18) leaderi ← ` where ` is such that (susp level i[`], `) = min(

�
(susp level i[j], j) �

j∈I
)

(19) suspected i ← ⊥;
(20) if (timeri has expired) ∧ (|rec from i[rpni]| ≥ n− t) then
(21) let suspectsi = I \ rec fromi[rpni];
(22) suspected i ← (rpni, suspectsi);
(23) rpni ← rpni + 1;
(24) set timeri to max({susp leveli[j]}j∈I)
(25) end if
(26) end pulse.

Figure 5. Algorithm with bounded variables in ASn,t[A] (code for pi)

INV (sl2) are satisfied. Let a and b the smallest
value of sl1 and sl2, respectively. Due to the
induction assumption, this means that sl1 (resp.,
sl2) contains only a and possibly a + 1 (resp., b
and possibly b + 1).

– Case a = b. The component-wise maximum of
sl1 and sl2 trivially satisfies the predicate.

– Case a < b. We have then a+1 ≤ b. The proof
follows from the following facts:

∗ max(a, b) = max(a + 1, b) = b.
∗ max(a, b + 1) = max(a + 1, b+ 1) = b + 1.

• Update of susp level i at Line 13.
Due to the test of Line “**”, INV (susp level i) is
trivially maintained when pi executes Line 13.

2Lemma 10

Theorem 4: No variable susp level i[j] is ever larger
than B + 1.

Proof Let p` be a process such that B` = B. Due to
the Lemmas 7 and 9, p` is a correct process. Moreover,
due to the gossiping mechanism, there is a time after
which all the processes pj that have not crashed are such
that min({susp level j [x]}x∈I} = B. The theorem then
follows from Lemma 10. 2Theorem 4

7 A FRAMEWORK FOR A FAMILY OF A-
LIKE ASSUMPTIONS

This section investigates a framework, denoted Af,g ,
from which assumptions similar to A can be designed.
Its aim is to allow the delays experienced by timely mes-
sages or the maximal distance D between the appearance
of the points of the t-stars to grow unbounded. This
framework is based on two additional functions f() and
g() that allow generalizing the definition of the sequence
S, and the the notion of δ-timely message, respectively.
More precisely, we have the following.

The function f() This function is from the set of pulse
numbers into the set of integers such that, for any pulse
number pn, we have f(pn) > −D. (As D is not known,
it is always possible to define f() such that f(pn) ≥ 0
for any pulse number pn.)

The motivation for the function f() is to “weaken”
the constraint αx+1−αx ≤ D used to define the infinite
subsequence S of pulse numbers α0, α1, . . . that appears
in the statement of the assumption A. This constraint can
be made specific to each pulse number, reformulating it
as follows: ∀x ≥ 0 : αx+1 − αx ≤ D + f(αx), thereby
allowing the the intermittence periods during which the
t-star “disappears” to grow without bound.

It is easy to see that the particular function
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∀pn : f(pn) = 0 corresponds to the basic constraint
used in the assumption A. The reader can also check
that the particular function ∀pn : f(pn) = 1 − D does
correspond to the assumption A+.

The funtion g() This function is from the set of pulse
numbers into the time domain. More precisely, g(pn)
defines a time duration. The idea that underlies the
introduction of g() is to “weaken” the δ-timely message
notion (Definition 1) in order to add a dynamic dimen-
sion to the unknown bound δ. This notion is replaced by
the following:

Definition 8: A message PULSE(pn,−) is (δ, g)-
timely if it is received by its destination process at most
δ + g(pn) time units after it has been sent.
If ∀ pn : g(pn) = 0, the (δ, g)-timely message notion
boils down to δ-timely message.

System model ASn,t[Af,g ] Assuming two functions f()
and g() as defined above, the system model ASn,t[Af,g ]
is ASn,t[A] where (1) the constraint αx+1 − αx ≤ D is
replaced by αx+1−αx ≤ D+f(αx) in the definition of
the sequence S, and (2) for all the PULSE() messages,
the notion of δ-timely message is replaced by the notion
of (δ, g)-timely message.

An Af,g-based algorithm Assuming the processes
know the functions f() and g(), a very simple modi-
fication of the A-based algorithm described in Figure 5
provides an Af,g-based algorithm that elects an eventual
leader. These modifications are the following (the new
parts are underlined):

• The timer resetting (Line 24) has now to take into
account the function g() applied to the next pulse
number. Hence, Line 24 becomes: set timeri to
max({susp level i[j]}j∈I)+g(rpni + 1).

• The definition of the interval used in the test of
Line “*” has to take into account the new constraint
αx+1−αx ≤ D+f(αx). This interval is now: ∀y :
max(0, px − (susp level i[k]+f(px))) < y < px.

While D and δ are unknown bounds, the functions
f() and g() appear explicitly in the algorithm and
consequently have to be known by the processes. As
we have seen, the particular functions ∀pn, f(pn) = 0
and g(pn) = 0 give rise to A. The proof of the Af,g-
based algorithm is basically the same as the proof of the
A-based algorithm.

8 CONCLUDING REMARKS

The content of the paper This paper has first proposed
a simple yet general system model in which an eventual
leader can be elected as soon as is verified an assumption

called asynchronous intermittent rotating t-star. That
assumption states the existence of a process p (the center
of the star) and logical times (pulses) such that, for a
subset of these pulses pn, there are sets Q(pn) of t
processes and each process of each Q(pn) receives from
p a message tagged pn in a timely manner or among the
first (n−t) messages tagged pn it ever receives. We have
seen that this assumption, not only combines several
assumptions already proposed, but generalizes them as it
also includes new assumptions not previously stated in
the literature. An appendix explores a framework from
which A-like assumptions could be generated.

The paper has also presented an algorithm based on
that asynchronous intermittent rotating t-star assump-
tion. The presentation has voluntarily been done in a
methodological and incremental way. That algorithm en-
joys several noteworthy properties. From a design point
of view, it is relatively simple (and design simplicity
is a first-class property). From a coverage assumption
point of view [29], it provides a better coverage than
any algorithm based on a single base assumption (such as
the t-moving source assumption or the message pattern
assumption). Finally, except for the pulse numbers, the
proposed algorithm uses only bounded variables, which
means that, eventually, even the timeout values stop
increasing.

Last but not least, combining the result of [4], [5] with
this paper we obtain the following theorem:

Theorem 5: The consensus problem can be solved in
any asynchronous message-passing system ASn,t[A] that
has a majority of correct processes (t < n/2).

The contract framework While the assumptions A
and Af,g are steps into identifying the weakest system
requirements to eventually elect a leader, they are not
the final step. In fact, these assumptions, and most
assumptions in the literature on eventual leader election,
fit within a common framework, which we call a contract
framework11.

In this framework, each process signs a “contract”
with the other processes regarding its behavior, as seen
by them (e.g., the messages of the process will be timely,
or they will arrive in some order, etc.). The system
assumptions must allow the contract specified by at least
one correct process to be respected with respect to a
subset of other processes, and the job of an algorithm is
then to elect a leader when this happens. This contract
framework seems to be a promising approach to capture
the system requirements for eventual leader election, that
we intend to investigate in the future.

11. The distributed round-based models such as the ones described
in [6], [13], [19] can be seen as implicitly referring to a contract notion
that states, for every round, which messages have to be received by
each process.
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