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Abstract

Systems that must plan, act, and probably learn us-
ing a rational, flexible behavior in real time present a
challenge to current integrated schemas of planning and
acting. Classical planning is still far from solving prob-
lems on such short time as needed in dynamic domains,
such as Robosoccer, even with new approaches such
as graph-based techniques. Reactive systems on the
other hand, are hard to configure and do not work well
when high level flexible reasoning is required.This pa-
per presents an opportunistic planning-acting schema
based on our model named ABC?. The primary goal
of the model is to compose pre-defined skills in an op-
portunistic way to achieve and intelligent behavior for
robots working autonomously.

Introduction

The design of intelligent controllers for autonomous
robots (known as intelligent robots) has been an at-
tractive research area for many years. In a first stage,
controllers used a cybernetic approach (Wiener 1948),
where controllers were based on the classical nega-
tive feedback loop of control. Some of them achieved
interesting results considering the stage of the elec-
tronic technologies in that moment, such as Walter’s
turtle (Walter 1953). These types of controllers were
used till the generalization of digital computers and the
emergence of Artificial Intelligence (AI) as the main
paradigm used for controlling robots.

Since the beginning of AI, two basic trends have
driven the research in this field: the cognitive and
the reactive approaches. This paper summarizes both
“schools” in order to compare their planning and
execution approaches with the one we proposed in
ABC? (Agenda Based Control for Agents Behaviors
Coordination). In this way, a brief historical review of
their influence in the robotics field is presented. Dur-
ing the seventies, most approaches were based on the
classical AT paradigms (abstraction, planning, heuristic
search, etc.) (Nilsson 1984). These type of controllers
were based on the advances achieved in the automatic
generation of plans. Systems mainly used the large dig-
ital computers available in those days. They operated
under assumptions such as (Fikes & Nilsson 1971):

e The state of the real world can be formally and cor-
rectly observed and defined.

e The robot is the only agent which can modify the
world.

e The robot actions have only the effects specified in
its formal definition.

In the last eighties, there was a strong criticism
(Brooks 1991) to this approach, mainly based on its
limitations to cope with real world uncertainties and
dynamics. They claimed that intelligence results from
the interaction with the environment, which gave the
name to the trend: “reaction”. In this way, autonomous
robots intelligence will be a result of its interaction with
the real world through its sensors and actuators. Sys-
tems built using these ideas, such as the Herbert robot
(Connell 1990), were able to deal with the real world
successfully.

These ideas are not new. In fact, they are a new re-
lease of the cybernetic approach, that in turn, was influ-
enced by dominant ideas in the psychology during the
first decades of this century (Pavlov 1927). These ideas,
based only on the stimulus-response approach, were re-
jected by cognitive psychology (Neisser 1967) using sim-
ilar arguments to the ones used nowadays by researchers
using classical planners. The main one is that the inco-
herence between locally decided actions and final goals,
can cause the robot never be able to achieve its global
goals. Another one is their lack of flexibility; systems
are built for an special application, and they are hardly
reusable. Both are very related to the fact that high
level goals cannot be explicitly formulated in a reactive
system. Only low-level goals are considered, and their
formulation may not be very explicit; it depends on the
underlying paradigm used to implement the behaviors.
The only way high level goals are achieved in this kind
of systems is by combining the low level behaviors in
a prefixed and invariant way. For instance, in the sub-
sumption architecture (Brooks 1986) this combination
is made by describing an activation/inhibition network
of behaviors.

The problem of controlling a group of robots natu-
rally extends research on single robot control. So, the
two main Al trends have their own reflection in the
field of multiagent systems. The one based in reac-



tive approaches is known as “collective behavior” (Mc-
Farland & Bsser 1993) where intelligent behavior arises
out of the interaction among not very capable agents
and it is the result of innate behavior of the individu-
als. The other one, based on traditional (symbolic) Al
paradigms, is named “cooperative behavior” and it is
based on the intentional desire to cooperate in order to
increase individual utility. ABC? model was designed
to cope with multiagent problems and we took this last
approach. We supposed that our model will provide
selfish agents able to cooperate in order to face com-
mon problems.

Nowadays, the dominant trend in planning systems
applied to control is to build hybrid systems. On one
hand the cognitive approach tries to deal with the
uncertainties using statistical models, such as (Blythe
1996). On the other hand, reactive systems help high-
level planners to deal with complex real-time problems
(Saffiotti, Konolige, & Ruspini 1995). In this way,
ABC? can be defined as an hybrid model, mainly based
in the opportunistic control proposed in (Hayes-Roth et
al. 1979). Next section describes this model. The for-
malization of the planning algorithm of ABC? is pre-
sented in Section and it is compared with traditional
nonlinear planners and also with reactive approaches.
Then, a discussion about this model is presented, show-
ing its advantages and disadvantages. Some domains
where it has been used are presented in order to show
its applicability. Finally, Section presents some con-
clusions.

ABC?

ABC? is a general approach that can be applied to
any kind of agent (hardware or software), though the
experiments we report all refer to robotic agents. The
aim of this model is to allow explicit cooperation among
the team members using opportunistic planning to com-
bine agents actions. This actions will be based on pre-
defined skills

The model defines an intelligent autonomous agent
as a knowledge structure defined by a set of static and
dynamic attributes. Among the static ones, as shown
in Figure 1, there is the name of the agent (IV), the list
of its skills (S), the knowledge about its team-mates
names and skills, called yellow-pages (Y), the current
state of the world, defined using a language (L), and
the set of heuristic rules that governs the behavior of
the agent (H). So, an agent (A) can be represented as
the tuple: A =< N,S,Y,L,H >

Among the dynamic information that defines the cur-
rent situation of an agent there is the agenda (A,)
that contains the acts currently under consideration,
the queues of messages (@) received or pending to be
sent, and the information (I) about the current state of
the world, defined using the language L. So, an agent
in a given moment is defined by < A,4,1,Q >.

This model is based on Skills, similar concept to clas-
sical planning operators, defined as a set of simple and
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Figure 1: Architecture of the ABC? Robots.

reactive controllers. These controllers implement pre-
defined behaviors that an individual agent can accom-
plish. They can be implemented using any type of
decision-making mechanism or learned ability. The def-

inition of a particular skill requires:
e Setting the condition for triggering the controller

(named Ready in the figure) in order to know if the
controller can be executed or not, which is the equiv-
alent of requiring the truth value of the preconditions
in classical operators.

e The design and implementation of the controller that
performs the desired action represented by a function
named Ezecute, whose effect is equivalent to the rep-
resentation of the post-conditions of classical plan-
ning operators.

e Providing a list of skills that can make it “executable”
in the case of the skill being evaluated but not being
able to execute its associated controller (the Ready
function returns a FALSE value). This list has been
named Needs and simplifies the search of potential
operators that provide the preconditions in classical
planners.

e Establishing the Priority assigned to the behavior.
This value will be used by heuristic rules to select acts
from an agenda and holds the “a priori” importance
of that skill.

Classical reactive behaviors compute the outputs for
the actuators of an agent directly from the raw numer-
ical data perceived by its sensors. In other environ-
ments, like the RoboCup simulator(Itsuki 1995), the
inputs are not numerical data obtained from the sen-



sors, but a mixture of linguistic and numerical infor-
mation. In order to be able to handle this information
we will use a reduced language that allows the agent
to define the inputs of the skills and to keep significant
information about the current state of the world.

One of the distinctive capabilities of agents is their
ability to communicate with other agents. In order to
be able to manage the intrinsic complexity of the com-
munication (protocols, queues, etc.) we provide our
agents with a specialized entity, named Communica-
tions in Figure 1 to cope with it.

The Agenda, represented in Figure 1, is a dynamic
structure that contains items named acts. These acts
represent the potential actions that the robot is consid-
ering at a moment. We have considered four kinds of

acts:
e REQUESTED, to indicate that the action in the argu-

ment of the act has been requested by another robot
in order to be performed by this one.

e REQUEST, to ask another agent a particular action.

e INFORMED, presenting a piece of information sent by
another robot.

e SUPPLY_INFO, to point out that some information has
to be sent to another robot.

e DO, that represent potential skills that the robot can
perform by itself.

Heuristics decide at any time what act to select from
the agenda. We have used fuzzy rules for the current
implementation. The input variables of these rules can
be, for instance, the priority of the skill associated to
an act, the time that an act has been in the agenda,
the number of acts that require an act to be evaluated,
information about the environment, etc. The output
will be the weight of each act in the agenda. Once the
acts have been weighted, the eligible act to be executed
will be the one with the highest weight. The whole
algorithm can be summarized to:

Initialize (Agenda)
while Agenda # 0

Recursively Remove Act; from Agenda if Act;.Called=0
Actsqapp= {Act; € Agenda such that Act;.Ready=True }

for all Act;s € Agenda such that Act;s € Actsqpp do
if not (Act;.Skill).Expanded then
Ezpand Act;.Skill
Act <= Select Act from Acts,p, using Heuristics
Evaluate (Act)

where Agenda is the agenda of the robot, Actsgpp the
subset of the acts contained in the agenda whose asso-
ciated skill is Ready, and Initialize inserts the initial act
into the Agenda. This loop will finish when the Agenda
becomes empty.

The way this algorithm works is as follows: first, the
Agenda of each agent has to be initialized in order to
achieve any particular task. This is performed by in-
serting an initial act into its agenda. For instance, a
DO act with a skill requiring high attention. This act
can be considered as its main goal or its initial goal.

Other acts will be generated as they would be required
in order to achieve this initial goal, for instance as needs
of this act. Another way acts can be inserted into the
agenda, apart from their insertion as needs of other
acts, is directly by the Ezecute() function of a skill that
can indicate the addition of another act to the agenda.

Then, the applicable acts of the agenda (Actsg,,) are
selected. This is achieved by consulting the Applicable
feature of the act. The way this feature is calculated
depends on the type of act. For example, in a DO act
it is set from the value of the Ready function of its
associated skill.

If a DO act is not applicable, then the Expanded switch
of its skill is checked. If it has not been expanded, its
needs are inserted into the agenda as [DO: <need>]
acts. When adding acts to the agenda it checks if the
considered act had been previously added to the agenda
by other acts. If the act was already in the agenda, the
counter Called of the act is increased; otherwise, a new
act is added to the agenda.

At the same time that the applicable acts are se-
lected, the acts whose Called counter is equal to zero
(no other act requires them) are removed from the
agenda and the counter Called of all its needs that
were in the agenda are decreased. This is repeated re-
cursively until there is no modification neither in the
number of acts into the agenda nor in the values of the
Called counters.

Once the applicable acts have been selected, the do-
main heuristics are applied to select the one that will be
evaluated. The application of the heuristic rules results
in a selected act. Finally, the selected act is evaluated.
If the selected act is a DO act, it executes the skill asso-
ciated to that act. If the selected act was a REQUESTED,
it inserts a new DO act containing the requested skill
into the agenda, etc.

This control cycle continues while the agenda con-
tains any act. That is, the control cycle of the agent
exists (and the agent itself) while it has something to
do. If an agent with unlimited life is needed, it is
only needed an act DO whose associated skill has a null
Ezxecute controller and a Ready function that will never
be true.

An Example of use

ABC? has been used in different domains. For instance,
it has been used two coordinately push an object by
to simulated robots (Matelldn, Molina, & Sommaruga
1996). This same experiment has also been carried out
using real mini-robots (Matelldn & Borrajo 1998) with
similar results. Another type of environment where it
has been successfully used is the competition of simu-
lated robotic soccer players, named RoboCup (Kitano
et al. 1995). ABC? was used directly in this environ-
ment, without any adaptation, apart from the design
of the specific skills. Each simulated robot was con-
trolled by its own implementation of the model, using
its own subset of skills, set of heuristic rules and initial
act (Matelldn & Borrajo 1997).



Figure 2: An example in the RoboCup domain.

The example shown in Figure 2 employs a reduced
and simplified subset of the skills used in the competi-
tion. This example consists of one forwarder (in light
gray in Figure 2) that tries to score (using a skill named
Kick_Goal); a goal-keeper (dark gray player number 1)
that will remain in the center of the goal till the ball
is near enough to Came_QOut trying to catch the ball,
and, if it succeeds, it will try to Pass it to one of the
defenders. Defenders will remain in its position waiting
for the ball. If the ball come by its surroundings they
will kick it towards the opponent goal.

Figure 2 shows the execution of this example. In the
first image, the forwarder kicks towards the goal. Then
the goal-keeper comes out, and catches the ball. In
the third capture, it passes the ball to its team-mate,
and in the final one the defendant kicks it towards the
opponents goal. An example of the skills used in this
experiment is, for instance, the Kick_Goal skill. This
skill can be defined given the description of its two main

features:
Ready: Distance to ball is less than 2 meters (kick-

able), opponents goal direction is known.
Ezecute: Kicks at maximum speed (100) towards goal.
The position of obstacles in the way towards the goal

is considered to calculate the direction of the kick.
These skills may have been heuristically designed or

may have been learned. Both mechanisms for designing
can be mixed in the same agent with no restriction. In
the real implementation, skills are C++ classes derived
from a base class. So, a learned behavior has to be
implemented in this way, overloading functions Ready
and Execute of the class.

Once the skills have been implemented, players can
be defined. A player consists of the definition of its
skills, the relations among them, the heuristics, and an
initialization. In order to make the definition of agents
easier in different domains, ABC? provides an Agents
Definition Language (ADL). In order to show how ADL
is used, let us present the configuration of one of the
agents of the last example, such as the goal keeper
(goalie). Its desired behavior will be to stay in its goal,
remain in its position looking at the ball, and try to
catch the ball if it approaches closer than 15 meters.
Then, if it catches the ball, it will try to clear it. The
definition of this player will be made as follows:

* Initial parameters
-50 0 0 3 goalkeeper
* Skills

Go_Position 0.7 { }
Look_for_Ball 0.6 { }

Keep_Looking_at_Ball 0.75 { Go_Position Look_for_Ball }

Get_Out 0.8 { Keep_Looking_at_Ball }



Kick_off 0.9 { Get_Out }

Win_Match 1 { Kick_off }

% Initial Skill

Win_Match

* Skills of team-mates

Left_Defender: Kick_off, Pass, Receive,

* Heuristic definition
goalie.heuristics
* End_of_File

Lines starting by * are comments and they separate
the different parts. The first part sets the initial po-
sition in the field: (X,Y) coordinates, orientation and
tolerance in that position, as well as the name of the
player, where its position (X = —50,Y = 0) corre-
sponds to the center of its own goal. Then, the skills
that the robot can use are defined. For each skill an ini-
tial weight (Priority), is set, as well as its list of needs.
For instance, the skill Keep_Looking at Ball has two
needs Go_Position and Look_for_Ball and an initial
weight of 0.75. Every need of a skill has to be previ-
ously defined, and it has to correspond with an appro-
priate implementation (providing the Ready, Fzecute,
etc. functions).

Once the skills of the robot have been defined, it is
the turn of the heuristics. In the current version of
ABC?, fuzzy rules are used to implement the heuristics.
These rules are defined in a separate file, in this case
in goalie.heuristics file. The design of the rules has
been made heuristically attending to the experience in
previous matches, but learning methods can be used to
improve them, because they are defined in a high level
language. The real behavior implemented for the goalie
used some other skills (trying for example, not only to
clear the ball, but to pass it towards a team-mate, etc.)
and more sophisticated heuristics.

ABC? model has been tested in different domains, as
it has been mentioned in the first paragraph of this sec-
tion. In those domains, it has shown that it is feasible.
That is, it works and it is able to solve usual problems
in different domains (Robosoccer, cooperation between
robots, cooperative software agents, etc.). The model
is also flexible, adaptable to different domains, as

Besides, ABC? integrates reactive responses and
planning in a convenient way. The agent is able to
deal with contingencies in a reactive way, as well as, it
can use classical search mechanisms when dealing with
high level problems.

ABC? vs. classical and reactive systems

Under classical assumptions, planners are given a com-
plete description of the initial state of the world, the
potential actions (called operators) that the robot can
perform, and a set of desired goals. The role of the
planner will be to perform a search, usually exponen-
tial, into the tree of possible operators combinations to
produce the sequence of robot actions (called plan) that
leads from the initial situation to a situation on which
the goals are fulfilled. Typically, these systems produce

off-line complete plans. The whole plan is generated
considering only the previously described assumptions.
The execution of the plan obtained is usually trusted
to a different module called the scheduler. The sched-
uler compares the real situation of the world with the
one foresight by the planner. If the difference between
them is bigger than a given value, a new planning pro-
cess considering the actual situation is started.

In ABC? there is no instantiation of operators, nei-
ther the concept of “state”, nor any reasoning about
foresight states. Actions are decided based on the ac-
tual situation of the world and the specific opportuni-
ties to act. In this way, it is similar to the reactive
approach. However, reactive systems offer only one
“optimal” action for execution at each point in time.
For example, under the reactive model, a robot triggers
and immediately executes the action “avoid obstacle”
if it is nearer than a value to a moving obstacle. Run-
time events control robot’s actions because the reactive
model hard-wires the robot’s goals hierarchy.

By contrast, ABC? uses only enabling conditions for
triggering actions and may identify several possible ac-
tions at each point in time. For example, the robot in
the former example controlled by ABC? may not trig-
ger the “avoid obstacle” in some conditions, for instance
if its goal in that moment is to stop the moving obsta-
cle. That is, the robot may or may not execute the
triggered action depending on its goals, and they can
be modified by heuristics. In summary, an agent can
change its goals without changing the way its actions
are triggered and run-time events enable, but do not
control, an agent’s actions.

The main difference between ABC? and classical
planners is the way by which goals are specified. In
classical planners they are explicitly defined as world
configurations; in ABC? they are implicitly described
in the definition of the skills. This means that the pair
(Operator; - goal;) is indivisible. In the same way, the
list of (Operator; — goal;)* that can make executable
the (Operator; (list of needs) is also indivisible. When
a skill cannot be executed, all its Needs are introduced
in the agenda. This means that all its Needs can be
considered as conjunctive preconditions. However, the
insertion in the agenda does not mean that all its pre-
conditions have to be executed. Typically, only one of
them will be enough to let its parent skill be executable.
Thus, skills in the list of needs of another skill should
be interpreted as an OR of possibilities.

Another difference is the way planning is carried out.
In classical planners, it is based on a search in the tree
of possible operators combinations that leads from the
initial situation to the desired one or in the plans space.
They generate this tree by looking at the effects of avail-
able operators, choosing the ones that produce the de-
sired effects, and generating a subgoal with their pre-
conditions. This search can be made because each op-
erator symbolically defines the effects that it produces
in the world.

In ABC? this search is pre-compiled in the list of



Needs that each skill has. It is not possible to make any
search because the Execute feature of the skills does not
explicitly define its effects. There is no believes to add,
or certainties to remove from the world model. It also
allows to produce an action that with an uncertain ef-
fect. In the same way, the Ready function represents
the degree of certainty in the fulfillment of its precondi-
tions, where they can be defined over any information
available for the agent.

From other point of view, it can be considered that
there is some kind of depth-first search. However, the
use of the heuristics prevent the agent from being clas-
sify in this kind of systems. On the other hand, Skill
can be implemented using any kind of AI paradigm,
which includes searching algorithms.

There are also some similarities and differences in
the way pending goals are handled. Classical planners
expand the preconditions of the operators considered as
new goals. In ABC? the Called counter guarantees that
each goal is defined only once, and also that the more
they are required, the more important they become.

In summary, the ABC? model resembles traditional
planning in some of its components, and it works in
some way as reactive systems. This is the main idea:
to combine planning and reaction to act in dynamic
environments.

Conclusions

In summary, the ABC? model resembles traditional
planning in some of its components, and it works in
some way as reactive systems. Thus, the main idea of
the paper is to present a model to combine planning
and reaction to act in dynamic environments. So, we
have presented a model, named ABC? for the control
of robots that mixes high speed reaction an decision
making with reduced planning capabilities. This model
has been tested in different domains showing that not
only it can take appropriate decisions, but it can do it
in an appropriate time.

This model is well suited for domains where there is
a need of great flexibility in the accomplishment of the
skills, that is, environments where opportunistic plan-
ning can be used. Besides, it allows an intuitive method
to deal with cooperation among agents by letting agents
define their own skills, and the rest of the group having
knowledge of them. We have also shown how this ar-
chitecture adapts to different environments by the defi-
nition of the particular skills, the relation among them
and the heuristics to control their execution.
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