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Abstract. Position estimation is one of the classic problems in mobile
robotics. The goal of this paper is to compare two probabilistic localiza-
tion methods based on local vision for a mobile robot. The experimental
set up is based on the Aibo league of the RoboCup, where the robotic
dogs major sensor is the on-board camera. Two localization algorithms,
Bayesian and Montecarlo (MCL), have been implemented and compared,
and their behaviour studied in several situations using a simulator.

1 Localization

Robots have to know where in the map they are in order to perform any task
involving navigation. Even in highly dynamical environments, like the RoboCup
competition, the robot behaviour depends on its position in the playground.

One approach to the localization problem is to rely on explicit position infor-
mation provided by sensors. Other strategies require environmental engineering
such as the placement of active beacons, passive marks, etc... Aproaches such as
Kalman filtering [Welch02] and fuzzy logic [Buschka00], integrate the information
obtained from sensors non directly related to position.

Probabilistic algorithms have proved very successful [Thrun00a] in many
robotic environments. They calculate the probability of each possible position
given some sensor readings and movement data provided by the robot. They
cope with uncertainty and sensor errors and can recover from major localization
issues. Their main drawback is the computational cost of keeping the history
of the probabilities for all the possible locations in the map. Because of this
limitation, several sampling techniques have been probed, keeping the power of
the Bayes reasoning. In particular, MCL techniques, where a small number of
representative samples are randomly selected and continuously updated, have
gained popularity recently [Thrun01,Montemerlo02].

2 Environmental set up

We developed a simulator which emulates a robot walk through a RoboCup
like scenario, as the one showed in figure 1. The environment is provided to the
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simulator through a map file which describes the white lines of the field and the
position of the beacons and their colours. It can be easily changed.

The simulator generates a log file with the record of the images perceived
and the encoders data stored while walking. Such information is used by the
localization algorithms to estimate the robot position. This way both algorithms
use exactly the same data collection. It adds actuation noise to the commands
ordered to the motors and sensor errors to the perceived images. For the motors
it adds a Gaussian noise both in translation and rotation. For the camera it
adds false positive and negative beacons (mutation error), and a displacement
in beacon position inside the images (offset error).
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Fig. 1. Sample map provided to the simulator (left) and camera model used (right)

3 Experiments

Bayesian localization was implemented following the formulation developed at
[Margaritis98]. Figure 2 represents a typical run using the RoboCup map shown
in the left part of figure 1 (real dimension 290cmx240cm). The map was tes-
sellated in 5cmx5cmx1◦ cells. We held the 58x48x360=1,002,240 possible poses
where the robot could be located in what we called probability cubes. For each
possible 3D cell the algorithm stores and updates its likelihood given the set of
observations and motor actions.

Such likelihood is shown on figure 2 in a greyscale, the darker the cell, the
lower its probability. The top left slot represents the initial estimation. All the
cells have the same likelihood. After the first image is obtained, positions com-
patible with such observation rise in probability. As can be seen in the top right
slot, one cone includes all the compatible cells. A robot forward movement of
10 cells causes the corresponding displacement of the robot evidence, as can be
noted in the second row of figure 2. After the 45◦ turn, shown in the fourth row,
the robot sees the C-beacon. This observation lets the robot discriminate the
most likely cells once fused with the prior evidence, as displayed in the bottom
right figure.

Typically, the Bayesian algorithm locates the robot in 2-4 iterations, which
takes 24-48 seconds long in a Pentium-III at 1.1 GHz. Bayesian localization
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Fig. 2. Probability accumulation using Bayes’s rule

has proved to be very robust to actuation and sensor errors. Combining all
noises, which resembles the real scenario, it delivers localization errors smaller
than 2.5cm in x, y and 5◦ in orientation. In addition, multiple experiments were
carried out in many scenarios studying the effect of different parameters in the
performance. It has proved robustness in all the tests performed.

Montecarlo localization was also implemented. Instead of computing the
probability of all plausible poses, a population of samples evolves in time as
new images are collected. The samples are relocated using the information from
the last image and they converge to the real location after some iterations as
can be seen in the typical run in the left picture on figure 3.

Fig. 3. Samples evolution using Montecarlo localization (left) and typical deviation of
samples in x (right)

Typically, 13-16 iterations are required to locate the robot. Nevertheless,
those iterations are much faster than the Bayesian ones, as they take only 4 sec-
onds long in the same machine. It provides real location of the robot with 10cm
maximum deviation, and 0.12 in cos θ. Regarding noise, Montecarlo localization
has proved to be more sensitive to actuation and sensor errors than the Bayesian
algorithm. The bigger the noise, the further from real position is the mean value
in the final sample set, and fewer samples fall close to it.
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To study how well the Montecarlo algorithm scales up, we tested it over
a bigger map, a 580cmx480cm. Initial deviations are naturally bigger as the
samples are spread over a larger area. After the same number of iterations the
localization error was bigger than the one obtained in the regular map in absolute
terms, but the ratio error/map size kept constant (right picture on Fig. 3).

Fine parameter tuning is a must for MCL. A key parameter is the movement
error introduced to shift a little bit the samples after every ideal motor command.
The bigger this random movement, the more stable the algorithm is, although
worse resolution is achieved. Several tests were carried out to study the effect
of other parameters in the performance. The algorithm is very sensitive to the
probabilistic sensor model. In contrast, it is very robust to the number of beacons
and samples once a minimum of them is provided.

4 Conclusions

The aim of this work was to test the Bayesian and the Montecarlo methods
before their implementation on real robots endowed with camera.

The Bayesian algorithm has proved to be very robust to model parameters,
motor and sensor errors, which makes it suitable to cope with uncertainty in real
sensors and actuators. Despite its good resolution it doesn’t scale up to larger
environments because it computes the probability of all plausible locations. Such
processing greediness prohibits its implementation on board a regular robot.

Compared to the Bayesian approach, the Montecarlo algorithm speeds up
the localization process, making it easier to implement on board the robot and
for bigger environments. In addition, this method doesn’t require the tessella-
tion of the space, and so it potentially offers higher resolution than Bayesian
localization, when its parameters are tuned properly. Its main drawback is the
sensitivity to sensor and motor errors and to its own parameters.

We are working in implementing the MCL algorithm on board an Aibo robot
and testing it with other “sensors” like the wireless network card.
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