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Visual object tracking in 3D with color based
particle filter

Pablo Barrera, José M. Cañas, Vicente Matellán

Abstract— This paper addresses the problem of determin-
ing the current 3D location of a moving object and robustly
tracking it from a sequence of camera images. The ap-
proach presented here uses a particle filter and does not
perform any explicit triangulation. Only the color of the
object to be tracked is required, but not any precise motion
model. The observation model we have developed avoids
the color filtering of the entire image. That and the Monte-
Carlo techniques inside the particle filter provide real time
performance. Experiments with two real cameras are pre-
sented and lessons learned are commented. The approach
scales easily to more than two cameras and new sensor cues.

Keywords— Particle filters, Monte Carlo sampling, visual
tracking.

I. Introduction

OBJECT tracking is a useful capability for autonomous
systems like ambient intelligence or mobile robotics,

and even for computer-human interaction. Cameras are
cheap and ubiquitous sensors. Images may provide much
information about the environment, but usually it takes lot
of computing power to extract relevant data from them.
A basic information they may provide is the 3D location
of an object or person who is moving around the camera
environment.

Many commercial applications may take benefit from a
robust object tracking. For instance, Gorodnichy et al [12]
employ a tracking system which allow a person to use her
nose as a mouse in front of a personal computer endowed
with two off-the-self cameras. In security applications, un-
supervised cameras may autonomously track moving per-
sons and trigger an alarm if the person approached to any
protected location.

The object tracking techniques may be also used in
robotics to cope with the self-localization problem. If the
mobile robot tracked the relative 3D positions of some sur-
rounding objects, and their absolute locations are known,
then it could infer its own position in such absolute frame
of reference. Such objects may not be dynamic, but
the robot’s motion causes a relative movement which de-
mands a tracking. Davison work [3] is a good example for
this. Actually, object tracking and localization share much
mathematical background of dynamic state estimation like
Kalman filters, grid based methods and MonteCarlo sam-
pling methods [11], [2].
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The approach described here uses a particle filter based
on the CONDENSATION algorithm [1], but in a differ-
ent scenario from the contour tracking inside an image. A
similar approach [5] has been recently followed to track ob-
jects inside images based on movement, color and speech
cues. While our algorithm shares the 2D observations (the
images), it focuses on a 3D tracking and uses only color.
It requires calibrated cameras and uses projective geom-
etry to forward project particles into all the images. The
color of such projection and its neighbors provides feedback
about the closeness of the particles to the real 3D location
of the coloured object. A gaussian random noise is used as
the motion model of the particles. Such model allows the
particle population to follow any object movement.

The rest of the paper is organized as follows. Second
section explains our particle filter, detailing the observa-
tion and motion models used. Third section introduces the
experimental setup and some tests of the system. Finally
some conclusions and future lines are sketched out.

II. Color based particle filter for 3D tracking

Our approach uses the CONDENSATION algorithm [1]
to estimate location of a coloured object. This is an itera-
tive algorithm which includes three steps on each iteration:
prediction, update and resampling. CONDENSATION is
a Bayesian recursive estimator which uses Sequential Mon-
teCarlo Importance Sampling.

In short, it estimates the current multidimensional
state X(t), using a collection of sequential observations
[obs(t), obs(t − 1), obs(t − 2)..., obs(t0)]. The observations
are related to the state through a probabilistic observa-
tion model p(X(t)/obs(t)). The state itself may be dy-
namic, and such dynamism is captured in a motion model
p(X(t)/X(t − 1)). The sequential nature of the algo-
rithm provides iterative equations, and its sampling na-
ture makes it to manage a set of N particles to represent
the p(X(t)/obs(t), obs(t−1)...). A more rigorous and broad
description of probabilistic estimators can be found in [10],
[2].

Each particle si(t) represents an state estimate and has
a weight wi(t) associated, regarding the importance sam-
pling. Global estimates can be made from the whole parti-
cle set, like choosing that of the higher weight (Maximum
a Posteriori) or a weighted mean (Minimum Mean Square
Error).

The prediction step in each iteration of CONDENSA-
TION samples the motion model for every particle, ob-
taining a new si(t), and so building a new particle set. In
the update step, the weights of all particles are computed
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following the observation model: wi(t) = p(si(t)/obs(t)).
Those particleswhich are likely given the current observa-
tion increase their weights. In the resampling step, a new
set of particles is built sampling from the weighted dis-
tribution of current particles. The higher the weight, the
more likely that particle appear in next set. Full details
are provided at the original paper [1].

In our approach the state to be estimated is the 3D lo-
cation of the object X = [x, y, z], so the particles have the
shape of si(t) = [xi(t), yi(t), zi(t)], they are 3D positions.
The observations are just the color images on M cameras
and the motion model is just a simple one that randomly
move the particles through the three dimensions following
a gaussian distribution for each step.

A. Movement model

Similar to [4], our approach uses a weak motion mod-
elling, in order to accomodate to any real movement of the
object. This provides robustness to the tracking algorithm
as it avoids the need of a precise movement modelling to
perform properly.

The motion model is a gaussian distributed one, with the
same typical deviation σm for x,y and z axis. It follows the
equations (1), (2) and (3). There is no privileged motion
direction, as the object may equally move in any of them.
The size of σm has influence on the particle speed while
walking inside the state space.

xi(t) = xi(t− 1) + N(0, σm) (1)
yi(t) = yi(t− 1) + N(0, σm) (2)
zi(t) = zi(t− 1) + N(0, σm) (3)

B. Observation model

The update step gives the new weights of the particles
according to the last sensor observation. Our observation
model is color based and works with any number M of
cameras. It takes each camera separatedly, treates them
as if they were independent observations and so multiplies
all the partial conditioned probabilities. For two cameras
it takes the form of (5).

wi(t) = p(si(t)/images(t)) (4)
wi(t) = p1(si(t)/img1(t)) ∗ p2(si(t)/img2(t)) (5)

Each individual conditioned probability like p1(si(t)/img1(t))
is computed as follows. First, we project the particles
into the corresponding image plane using a pinhole camera
model. We assume cameras have no distortion.
• If such projection falls outside the image limits, then
p1(si(t)/img1(t)) = 1/25
• If the projection falls inside the image limits, its vicinity
is explored to count the number m of pixels with a color
similar to the target color. The vicinity is a 5x5 window
around projected pixel. This can be seen in figure 1. The
equation (7) assigns a probability proportional to m. To

avoid probability locks with zeroes and to tolerate occlu-
sions, m is set to 1 when no pixel matches the target color
description.

outside : p1(si(t)/img1(t)) = 1/25 (6)
inside : p1(si(t)/img1(t)) = m/25 (7)

The color is described in HSI space which is more robust
to changes in illumination than RGB. A target color is
defined with two pairs Hmin,Hmax and Smin, Smax. Pixels
with very low or very high intensity are silenty discarded
and do not match any color description.

Fig. 1. 5x5 vicinity window for observation model computation.

The observation model in 5 clearly rewards those 3D lo-
cations which are compatible with several cameras simul-
taneously. In the case of two, the 3D locations compatible
with one camera but which project badly in the other score
poorly, because p1(si(t)/img1(t)) or p2(si(t)/img2(t)) is set
to a minimum, and that keeps the wi(t) at small values.
This combined reward will lead the particles to the right
3D positions.

Another advantage of this observation model is that it
avoids the need to color filtering of the entire image. De-
pending on the number of particles this can be convenient
and reduce the number computations. In our experimen-
tal setup, for instance, filtering the whole image requires
320x240 pixel evaluations and the model requires Nx25
pixel evaluations. So for N < 3072 it is worthwhile.

In addition the observation model doesn’t require any
segmentation in the images neither the search for salient
points.

C. Considerations

Our approach requires calibrated cameras, but no back-
projection or triangulation is performed. Only the forward
projections, from 3D particles into image planes, are used.
Actually, there is no matching between the stereo images,
no correlation involved, and no explicit triangulation are
carried out. The observation model rewards those 3D lo-
cations with are color compatible in all images. This may
include more space areas than the true one, and may lead
to the particle cloud to be splitted into such areas. This
reflects the fact that particle filter can represent multiple
simultaneous hypothesis about the state. New observations
will eventually break the ambiguity and the population will
converge to the real object position.
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The developed algorithm is a true multi-image algorithm
[9]: there is no privileged camera, all images are treated
equal and it may be used with an arbitrary number of cam-
eras.

III. Experiments

The algorithm has been tested in our lab with two real
cameras to track a pink ball. The setup is shown in figure
2, where camera 1 is located at (0.5, 0.0, 0.195) (m) and
camera 2 at (0.07, 0.485, 0.085) (m) of that coordinate sys-
tem. The cameras are two webcams, which have been cal-
ibrated using OpenCV library. Their external parameters
like absolute position and orientation have been manually
adjusted using a tape measure and projecting an absolute
3D grid into the images. They provide 320x240 color im-
ages through the video4linux API. Right camera was ro-
tated 90o so it delivers 240x320 images.

Fig. 2. Experimental setup (left) and projected grid (right)

The particle filter has been tuned to 200 particles, and a
typical deviation σm = 0.03 (m). The vicinity window for
observation model was set up to 5x5 pixels, as described
previously. A typical filter iteration including all the pre-
diction, update and resampling steps takes around 5 ms
(on a Pentium IV, 2’7 GHz with HyperThreading) which
is enough to real time performance.

The figure 3 shows a regular run of the particle filter
displaying their projection in both images at three different
times (iteration 2, 50 and 60). The figure 4 shows the
projection of the same particle cloud in the XY plane.

The particles are initially located at position (0.4, 0.1, 0.2)
(m), just in front of the camera 1 (this initalization will be
justified later on). In two iterations they spread following
the gaussian motion model. As can be seen in the upper
pair of figure 3, particles project around the pink ball for
the left camera (camera 1), but are out of scope of the right
camera (camera 2).

After 50 iterations, the particle cloud has moved itself
away from the camera 1, along its optical axis and always
keeping their projections around pink ball such camera. In
figure 4, the typical deviation in Y (optical axis of camera
1) is greater than in X. Also, the middle pair of figure 3
shows some of the particles entering inside the scope of
right camera while keeping around the ball in left image.

Finally, at 60th iteration the particles converge around
real 3D location of the ball, and their projections into both
cameras are coherent with the ball. If the ball doesn’t
move, the population remains stable around its real posi-
tion. Once the population has converged, smooth move-
ments of the ball are successfully tracked in any direction.

Fig. 3. Particle projections in left (camera 1) and right cameras
(camera 2) at iterations 2, 50 and 60

It can be noticed that convergence of the whole popula-
tion speeds up as soon as some particles enter into the ball
projection.

We have observed a systematic pernicious trend of the
particles to move far away from the cameras along their
optical axis. This can be noticed in the figure 4. Experi-
ments were also carried out with random initalization, and
starting the particles at a point further than the ball to a
given camera. All such runs resulted in no convergence at
all: the systematic drift evolved the particles cloud consis-
tently with one image, but always moving away from the
other.

Given the conic shape of the projective observation
model, after the prediction step there is equal chance to
fall closer or further to the camera than the current loca-
tion, but falling closer makes less likely to project inside
the image, makes harder to achive a good observation like-
lihood, and so, smaller the chance of surviving after the
resampling. This can be seen in figure 5.



4 INT. CONF. ON PATTERN RECOGNITION AND COMPUTER VISION

Fig. 4. Three eyebird snapshots of the particles at iterations 2, 50
and 60
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Fig. 5. Particle and its likely positions at t + 1

IV. Conclusions and future lines

The work presented here summarizes the preliminary re-
sults on particle filter for object 3D tracking based on color
information. The algorithm doesn’t need any explicit tri-
angulation or stereo matching at all, and it scales to an
arbitrary number of cameras. The observation model used
avoids the color filtering of the whole images and looks at
the vicinity of the particle projections to estimate the par-
ticle’s likelihood.

The results are promising as convergence has been vali-
dated in real experiments and the algorithm implementa-
tion exhibits real time performance. The real location of
the object is an stable point for the particle cloud, and
the particles successfully track smooth movements of the
object. An interesting systematic drift in the particle be-
havior has been discovered and explained.

The experiments carried out are just a proof of concept.
More experiments are necessary in order to validate the al-
gorithm. Further improvements of the algorithm are com-
ing. First, the use of more than 2 cameras simultaneously,
in order to expand the volume inside which objects are suc-
cesfully tracked. Second, we are also exploring some pro-
posal distributions inside the filter which hopefully would
increase convergence speed of the cloud and its recovery
capacity in case of losing the object.
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