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Abstract. We consider Internet-based master-worker computations, where a mas-
ter processor assigns, across the Internet, a computational task to a set of untrusted
worker processors, and collects their responses; examples of such computations
are the “@home” projects such as SETI. Prior work dealing with Internet-based
task computations has either considered only rational, or only malicious and al-
truistic workers. Altruistic workers always return the correct result of the task,
malicious workers always return an incorrect result, and rational workers act
based on their self-interest. However, in a massive computation platform, such
as the Internet, it is expected that all three type of workers coexist. Therefore, in
this work we study Internet-based master-worker computations in the presence
of Malicious, Altruistic, and Rational workers. A stochastic distribution of the
workers over the three types is assumed. Considering all the three types of work-
ers renders a combination of game-theoretic and classical distributed computing
approaches to the design of mechanisms for reliable Internet-based computing.
Indeed, in this work such an algorithmic mechanism that makes use of realistic
incentives to obtain the correct task result with a parametrized probability is de-
signed. Only when necessary, the incentives are used to force the rational players
to a certain equilibrium (which forces the workers to be truthful) that overcomes
the attempt of the malicious workers to deceive the master. Finally, the mecha-
nism is analyzed in two realistic Internet-based master-worker applications. This
work is an example of how game theory can be used as a tool to formalize and
solve a practical Distributed Computing problem such as Internet supercomput-
ing.
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1 Introduction

Motivation and Prior Work. In recent years, the Internet has become an alternative
(to expensive supercomputing parallel machines) computational platform for process-
ing complex computational jobs. Examples of such Internet-based processing are the
“@home” projects [3], such as SETI [23] (a classical example of volunteer computing)
and Grid computing [8]. However, Internet-based computing (referred sometimes as
P2P computing–P2PC [13, 39]) has not reached its full potential due to the untrustwor-
thiness nature of the platform’s components [3, 16]. Typically, in Internet-based com-
puting (e.g, in SETI) the following Master-Worker approach is employed: A master
computer sends jobs (or tasks), across the Internet, to worker computers that are willing
to execute them. These workers execute and report back the result of the task computa-
tion. However, these workers are unavoidably non-trustworthy, and hence might report
incorrect results. Naturally, the master attempts to minimize the impact of these bogus
results (and increase its chance of obtaining the correct task result) by assigning the
same task to several workers and comparing their outcomes (that is, redundant task
allocation is employed [3]).

This problem has recently been studied under two different views: from a “classical”
distributed computing view [11,22] and from a game-theoretic view [12,39]. Under the
first view, the workers are classified as either malicious (Byzantine) or altruistic, based
on a predefined behavior. The malicious workers have a “bad” behavior which results
in reporting an incorrect result to the master. This behavior is, for example, due to a
hardware or a software error or due to an ill-state of the worker (it behaves maliciously
intentionally). Altruistic workers exhibit a “good” behavior, that is, they compute and
truthfully return the correct task result (they are essentially the “correct” nodes). Under
this view, “classical” distributed computing models are defined (e.g., a fixed bound on
the probability of malicious nodes is assumed) and typical malicious-tolerant voting
protocols are designed.

Under the game-theoretic view, workers act on their own self-interest and they do
not have an a priori established behavior, that is, they are assumed to be rational [1,16].
In other words, the workers decide on whether they will be honest (and hence compute
and truthfully report the correct task result) or cheat (and hence report a bogus result)
depending on which strategy increases their benefit (utility). Under this view, Algo-
rithmic Mechanisms [1, 7, 32] are employed, where games are designed to provide the
necessary incentives so that processors’ interests are best served by acting “correctly.”
In particular, the master provides some reward (resp. penalty) should a worker be hon-
est (resp. cheat). The design objective is for the master to force a desired unique Nash
equilibrium (NE) [31], i.e., a strategy choice by each worker such that none of them has
incentive to change it. That Nash equilibrium is the one in which the master achieves a
desired probability of obtaining the correct task result.

The above views could complement one another, if a certain computation includes
only malicious and altruistic workers, or only rational workers. However, the pragmatic
situation on the Internet is different: all three type of workers might co-exist in a given
computation. One could assume that all workers are rational, but what, for example, if a
software bug occurs that makes a worker deviate from its protocol, and hence compute
and return an incorrect result? This worker is no longer exhibiting a rational behavior,
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but rather an erroneous or irrational one (that from the master’s point of view it can be
seen as malicious).

Contributions. In this work we consider Internet-based master-worker computations
where Malicious, Altruistic and Rational workers co-exist. To the best of our knowl-
edge, this is the first work that considers such co-existence in Internet-based master-
worker (P2PC) computing. Considering all the three types of workers renders a combi-
nation of game-theoretic and classical distributed computing approaches to the design
of mechanisms for reliable Internet-based computing. In particular

– A collection of realistic payoff parameters and reward models are identified (Sec-
tion 2) and the above Internet-based master-worker computation problem is for-
malized as a Bayesian game [20] (Section 3). There is a probability distribution
of workers among the worker types. The master and the workers do not know the
type of other workers, only the probability distribution. The rational workers play
a game looking for a Nash Equilibrium, while the malicious and altruistic workers
have a predefined strategy to cheat or be honest, respectively. The master does not
participate in the game, it designs the game to be played.

– We design a general voting algorithm that the master runs to implement the above-
mentioned game (Section 3). The algorithm is parametrized in terms of a probabil-
ity of auditing pA (defined in Section 3). Under a general type probability distribu-
tion, we analyze the master’s utility and probability of error (probability of obtain-
ing the incorrect task result) and identify the conditions under which the game has
Nash Equilibria.

– Based on specific type probability distributions, an algorithmic mechanism in which
the master chooses the values of pA to guarantee a parametrized bound on the prob-
ability of error is designed (Section 4). Once this is achieved, the master also at-
tempts to maximize its utility. Note that the mechanism designed (and its analysis)
is general in that reward models can either be fixed exogenously or be chosen by
the master. It is also shown that this mechanism is the only feasible approach for
the master to achieve a given bound on the probability of error.

– Finally, under the constrain of the bounded probability of error, it is shown how to
maximize the master utility in two realistic scenarios (Section 5). The first scenario
abstracts a system of volunteering computing like SETI, and the second, a company
that buys computing cycles from Internet computers and sells them to its customers
in the form of a task-computation service.

Related work. Prior examples of game theory in distributed computing include work on
Internet routing [15, 24, 28, 35], resource/facility location and sharing [14, 17], contain-
ment of viruses spreading [30], secret sharing [1, 19], P2P services [2, 25, 26] and task
computations [12,39]. For more discussion on the connection between game theory and
computing we refer the reader to the survey by Halpern [18] and the book by Nisan et
al [33].

Distributed computation in presence of selfishness was also studied within the scope
of Combinatorial Agencies in Economics [4]. The computation is carried out as a game
of complete information where only rational players are considered. The goal in that
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work is to study how the utility of the master is affected if the equilibria space is lim-
ited to pure strategies. To that extent, the computation of a few Boolean functions is
evaluated. If the parameters of the problem yield multiple mixed equilibrium points, it
is assumed that workers accept one “suggested” by the master.

Eliaz [9] seems to be the first to formally study the co-existence of Byzantine (ma-
licious) and rational players. He introduces the notion of k-fault-tolerant Nash Equi-
librium as a state in which no player benefits from unilaterally deviating despite up to
k players acting maliciously. He demonstrates this concept by designing simple mech-
anisms that implement the constrained Walrasian function and a choice rule for the
efficient allocation of an indivisible good (e.g., in auctions). Abraham et al [1] extend
Eliaz’s concept to accommodate colluding rational players. In particular they design a
secret sharing protocol and prove that it is (k, t)-robust, that is, it is correct despite up
to k colluding rational players and t Byzantine ones.

Aiyer et al. [2] introduce the BAR model to reason about systems with Byzantine
(malicious), Altruistic, and Rational participants. They also introduce the notion of a
protocol being BAR-tolerant, that is, the protocol is resilient to both Byzantine faults
and rational manipulation. (With this respect, one might say that our algorithmic mecha-
nism designed in this work is BAR-tolerant.) As an application, they designed a cooper-
ative backup service for P2P systems, based on a BAR-tolerant replicated state machine.
Li et al [26] also considered the BAR model to design a P2P live streaming application
based on a BAR-tolerant gossip protocol. Both works employ incentive-based game
theoretic techniques (to remove the selfish behavior), but the emphasis is on building a
reasonably practical system (hence, formal analysis is traded for practicality). Recently,
Li et al [25] developed a P2P streaming application, called FlightPath, that provides
a highly reliable data stream to a dynamic set of peers. FlightPath, as opposed to the
abovementioned BAR-based works, is based on mechanisms for approximate equilib-
ria [6], rather than strict equilibria. In particular, ε-Nash equilibria are considered, in
which rational players deviate only if and only if they expect to benefit by more than a
factor of ε. As the authors claim, the less restrictive nature of these equilibria enables
the design of incentives to limit selfish behavior rigorously, while it provides sufficient
flexibility to build practical systems.

Very recently, Gairing [15], introduced and studied malicious Bayesian congestion
games. These games extend congestion games [36] by allowing players to act in a mali-
cious way. In particular, each player can either be rational or, with a certain probability,
be malicious (with the sole goal of disturbing the other players). As in our work, play-
ers are not aware of each other’s type, and this uncertainty is described by a probability
distribution. Among other results, Gairing shows that, unlike congestion games, these
games do not in general possess a Nash Equilibrium in pure strategies. Also he studies
the impact of malicious types on the social cost (the overall performance of the sys-
tem) by measuring the so-called Price of Malice. This measure was first introduced
by Moscibroda et al [30] to measure the influence of malicious behavior for a virus
inoculation game involving both rational (selfish) and malicious nodes.
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2 Definitions and Notation

System model. The assumed distributed system is formed by a master processor M
and a set W of n = |W | workers. We assume that the master chooses n to be odd.
The master has a task that wants to compute. For some reason, the master does not
compute the task itself, but chooses to send it to all the workers, wait for their answers,
and decide on a value that it believes to be the correct output of the task. The tasks
considered in this work are assumed to have a unique solution.

Each of the n workers has one of the following types, rational, malicious, or altru-
istic. The exact number of workers of each type is unknown. However, it is known that
each worker is independently of one of the three types with probabilities pρ, pµ, pα, re-
spectively, where pρ + pµ + pα = 1. Malicious and altruistic workers always cheat and
are honest, respectively, independently of how such a behavior impacts their utilities. In
the context of this paper, being honest means returning the correct value, and cheating
means returning some incorrect value. On the other hand, rational workers are assumed
to be selfish in a game-theoretic sense, i.e., their aim is to maximize their benefit (util-
ity) under the assumption that other workers do the same. Hence, they will be honest
or cheat depending on which strategy maximizes their utility. While it is assumed that
rational players make their decision individually, it is assumed that all the (malicious
and rational) workers that cheat return the same incorrect value. This yields a worst case
scenario (and hence analysis) for the master with respect to its probability of obtaining
the correct result. (In some sense, this can be seen as a cost-free, weak form of collu-
sion). Finally, it is assumed that all workers reply (abstention is not allowed) and that
all their answers reach the master.

In order to model the individuality of the non-monetary part of each rational worker
benefit/penalty, the distribution over types could be generalized to different types of
rational workers instead of one. More precisely, define a probability distribution over
each possible combination of payoffs in R4, restricting signs appropriately, so that each
rational worker draws independently its strategic normal form from this distribution.
However, the analysis presented here would be the same but using expected payoffs,
the expectation taken over such distribution. Thus, for the sake of clarity and without
loss of generality, we assume that the strategic normal form is unique for all players,
i.e., all rational workers are of the same type.

The objective of the master is twofold. First, the master has to guarantee that the
decided value is correct with probability at least 1− ε, for a known constant 0 ≤ ε < 1.
Then, having achieved this, the master wants to maximize its own benefit (utility). To
achieve this it has two weapons. On the one hand, it can audit the response of the
workers (at a cost). In particular, the master computes the task by itself, and checks
which workers have been truthful or not. (From the assumptions that cheaters return the
same incorrect answer and tasks have unique solutions, it follows that there can only
be two kind of replies – a correct and an incorrect one.) On the other hand, the master
can punish and reward workers, which can be used (possibly combined with audit)
to encourage rational workers to be honest. When the master audits, it can accurately
punish and reward workers. However, when the replies are not audited, rewards and
penalties can be applied following different models.
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The reward models considered in this paper are presented in Table 1. Two of the
models reward or penalize a worker depending on whether its reply is equal to the ma-
jority of replies (observe that at most two replies are possible, and since n is odd, one
reply has majority). These reward models are sensible when the probability of a major-
ity of honest replies is reasonably large. Observe as well that three models do not punish
(some even reward) the workers whose reply is in the minority. This tries to avoid pun-
ishing honest workers that are outnumbered by cheaters. The payoff parameters used
are detailed in Table 2. All these parameters are non-negative. Observe that there are
different parameters for the reward WBY to a worker and the cost MCY of this reward
to the master. This models the fact that the cost to the master might be different from the
benefit for a worker. In fact, in some applications they may be completely unrelated, as
for example in the SETI-like scenario presented in Section 5.1. It is assumed that WBY
and WPC are chosen by the master whereas the other payoff parameters and the reward
models can be fixed exogenously.

R± the master rewards the majority and penalizes the minority
Rm the master rewards the majority only
Ra the master rewards all workers
R∅ the master does not reward any worker

Table 1. Reward models

Game Theory concepts. We study the problem under the assumption that the rational
workers, or players, will play a game looking for an equilibrium (malicious and altruis-
tic workers have a predefined strategy to cheat or be honest, respectively). The master
does not play the game, it only defines the protocol and the parameters to be followed
(i.e., it designs the game or mechanism). The master and the workers do not know the
type of other workers, only the probability distribution. Hence, the game played is a
so-called game with imperfect information or Bayesian game [20]. The action space is
the set of pure strategies {C, C}, and the belief of a player is the probability distribution
over types. Each player knows in advance the distribution over types, the total number
of workers, and its normal strategic form, which is assumed to be unique. The game
formulation is given in the next section.

WPC worker’s punishment for being caught cheating
WCT worker’s cost for computing the task
WBY worker’s benefit from master’s acceptance
MPW master’s punishment for accepting a wrong answer
MCY master’s cost for accepting the worker’s answer
MCA master’s cost for auditing worker’s answers
MBR master’s benefit from accepting the right answer

Table 2. Payoffs
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Recall from [34], that for any finite game, a mixed strategy profile σ is a mixed-
strategy Nash equilibrium (MSNE) if, and only if, for each player i,

Ui(si, σ−i) = Ui(s′i, σ−i),∀si, s′i ∈ supp(σi),
Ui(si, σ−i) ≥ Ui(s′i, σ−i),∀si, s′i : si ∈ supp(σi), s′i /∈ supp(σi),

where si is the strategy used by player i in the strategy profile s, σi is the probability
distribution over pure strategies used by player i in σ, σ−i is the probability distribution
over pure strategies used by each player but i in σ, Ui(si, σ−i) is the expected utility of
player i when using strategy si with mixed strategy profile σ, and supp(σi) is the set of
strategies in σ with positive probability.

In words, given a MSNE with mixed-strategy profile σ, for each player i, the ex-
pected utility, assuming that all other players do not change their choice, is the same for
each pure strategy that the player can choose with positive probability in σ, and it is not
less than the expected utility of any pure strategy with probability zero of being chosen
in σ. Then, in order to find conditions for equilibria, we want to study for each player i

∆Ui , Ui(si = C, σ−i)− Ui(si = C, σ−i).

If we show conditions such that ∆U = 0, then we have a MSNE.1 If we denote by
pC the probability that player i cheats, then in the MSNE 0 6= pC 6= 1. On the other
hand, if we show conditions that make ∆U < 0 for each player i, we know that there
is a pure strategies NE where all players choose to be honest, i.e. pC = 0. (There is no
NE where some players choose a pure strategy and others do not because the game is
symmetric for all rational players. If a distribution over many types of rational players
is defined, then we would have to consider such a NE.)

The following notation will be used throughout.

P(n)
q (a, b) ,

b∑
i=a

(
n

i

)
qi(1− q)n−i

A table summarizing the notation used throughout the paper is given in the Ap-
pendix.

3 Game Definition and Analysis

In this section we present the protocol that the master uses to obtain the result of the task.
The protocol essentially implements the game to be played by the (rational) workers,
which we also define in this section. Finally we analyze the game under a general type
probability distribution.

1 Given that the utility is the same for all players, we refer to ∆Ui as ∆U .
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3.1 Protocol Description

The basic protocol used by the master to accept the task result can be described as fol-
lows. After receiving the replies from all workers, and independently of the distribution
of the answers, the master processor chooses to audit the answers with some probability
pA. If the answers were not audited it accepts the result of the majority. Then, it applies
the corresponding reward model. The protocol is detailed in Algorithm 1. The specific
values of pA are chosen in the next sections according with the known type distribution
of workers and payoffs.

For computational reasons, besides pA and the task to be computed, the master also
sends a certificate. The certificate includes the strategy that if the rational workers play
will lead them to the unique NE, together with the appropriate data to demonstrate this
fact. More details for the use of the certificate are given in Section 4.5.

Algorithm 1: Master algorithm
send (task, pA, certificate) to all the workers in W1
upon receiving all answers do2

audit the answers with probability pA3
if the answers were not audited then accept the majority4
apply the reward model5

As discussed in Section 2, there are only two values returned to the master – the
correct value and a unique incorrect one. Together with the fact that the master chooses
n to be odd, in line 4 it is not possible to have relative majority. Considering relative
majority could be made possible by making appropriate changes to the model and to
the mechanism analysis. However, the analysis becomes more involved while not giving
more insight to the problem under study.

3.2 Game Definition

Putting together the game-related discussion in Section 2 and the above protocol, we
formulate the Internet-based Master Worker computation considered in this works as
the following Bayesian game

G(W, ε,D, A, pA,R, pfs),

where W is the set of n workers, 0 ≤ ε < 1 is the error probability, D is the type
probability distribution (pρ, pµ, pα), A = {C, C} is the workers’ actions space (recall
that only rational players have a probabilistic choice over pure strategies, malicious
workers always cheat and altruistic workers are always honest), pA is as described in
Algorithm 1, R is one of the reward models given in Table 1, and pfs are the payoffs
as described in Table 2. Recall that the master and the workers do not know the other
workers types, but D is known.
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As mentioned before, the master does not participate in the game, but it designs the
game to be played. In particular, the master runs Algorithm 1 after using a mechanism
designed in Section 4. In order to obtain a mechanism that is useful for any scenario we
do not restrict ourselves to a particular instance of payoffs or reward models. Instead,
we leave those variables as parameters and focus our study on how to choose pA to
have the probability of error bounded by ε. Were payoffs and reward models a choice
of the master, its utility can be maximized choosing those parameters conveniently in
Equation 2 (given below). Two realistic examples are given in Section 5.

3.3 Game Analysis

We now analyze the game under a general type probability distribution. In the next
section we design a mechanism for specific families of type probability distributions.

Error Probability and Master Utility. Recall that n is assumed to be odd. Letting q =
pµ + pρpC , where pC is the probability that a rational player chooses strategy C, the
probability that the master obtains the wrong answer is

Pwrong = (1− pA)P(n)
q (dn/2e, n). (1)

On the other hand, the expected utility of the master is

UM = pA
(
MBR −MCA − n(1− q)MCY

)
+ (1− pA)

(
MBRP(n)

q (0, bn/2c)−MPWP(n)
q (dn/2e, n) + γ

)
. (2)

Where,

γ =

−MCY(E(n)
1−q(dn/2e, n) + E(n)

q (dn/2e, n)) for theRm andR± models.
−nMCY for theRa model.
0 for theR∅ model.

and E(n)
p (a, b) ,

∑b
i=a

(
n
i

)
ipi(1− p)n−i, p ∈ [0, 1].

Equilibria Conditions. For any player i, let wCsi be the payoff of player i when using
strategy si in the strategy profile s if the majority of workers cheat and the master does
not audit, wCsi if the minority of workers cheat and the master does not audit, and wAsi
otherwise.

Using this notation, the payoffs for each reward model, are detailed in Table 3.
Then, for each player i,

∆U = (wAC − wAC )pA + (1− pA)(
(wCC − wCC)P

(n−1)
q (dn/2e, n− 1) + (wCC − wCC)P

(n−1)
q (0, bn/2c − 1)

+ (wCC − wCC)
(
n− 1
bn/2c

)
qbn/2c(1− q)bn/2c

)
.
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R± Rm Ra R∅

wAC −WPC −WPC −WPC −WPC

wAC WBY −WCT WBY −WCT WBY −WCT WBY −WCT

wCC WBY WBY WBY 0

wCC −WPC −WCT −WCT WBY −WCT −WCT

wCC −WPC 0 WBY 0

wCC WBY −WCT WBY −WCT WBY −WCT −WCT

Table 3. Payoffs for each reward model.

Notice in Table 3 that wAC −wAC = WCT −WPC −WBY for all models. Also notice

from Table 3 that, for any reward model, wCC = wCC −WCT and wCC = wCC −WCT .
Replacing,

∆U = WCT − pA(WPC + WBY) + (1− pA)

(wCC(P
(n−1)
q (bn/2c, n− 1)−P(n−1)

q (0, bn/2c))

+ wCC(P
(n−1)
q (0, bn/2c − 1)−P(n−1)

q (dn/2e, n− 1))). (3)

In the remainder of the paper, in some cases, we will be using the notation∆U(parameter)
to denote the evaluation of ∆U under a certain value of parameter.

The following observation, whose proof is left to the appendix for brevity, will be
useful.

Lemma 1. For any i ∈W , ∆U(pC) is a non-decreasing function in pC ∈ [0, 1].

4 Algorithmic Mechanism

Appropriate strategies to carry out the computation with the desired probability of error
under various scenarios are considered in this section. It is important to stress again
that, in order to obtain a mechanism that is useful for any of those scenarios we do
not restrict ourselves to a particular instance of payoffs or reward models leaving those
variables as parameters. Thus, we focus our study here on how to choose pA to have
the probability of error bounded by ε for each of the reward models assuming that the
payoffs have already been chosen by the master or are fixed exogenously. For settings
where payoffs and reward models are a choice of the master, its utility can be easily
maximized choosing those parameters conveniently in Equation 2, as demonstrated in
Section 5.

In order to design an efficient mechanism, the following issues must be taken into
account. Although known, the worker-type distribution is assumed to be arbitrary. Like-
wise, the particular value of ε is arbitrary given that it is an input of the problem. Finally,
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although the priority is to obtain Pwrong ≤ ε, it is desirable to maximize the utility of
the master under such restriction. Thus, the mechanism to choose pA is designed taking
into account two scenarios that we name: guided rationals – when a specific behavior
of rational workers (pC) has to be enforced – and free rationals – otherwise. We ana-
lyze these scenarios in the following sections. An explicit protocol implementing this
mechanism, is detailed in Algorithm 2.

Algorithm 2: Master protocol to choose pA. Ri is a Boolean variable indicating
if modelRi is used.

Free rationals:1

if P
(n)
pµ (dn/2e, n) > ε then /* even if pC = 0, Pwrong is big */2

pA ← 1− ε/P(n)
pµ+pρ

(dn/2e, n); q ← pµ + pρ3

else if P
(n)
pµ+pρ

(dn/2e, n) ≤ ε then /* even if pC = 1, Pwrong is low */4
pA ← 0 ; q ← pµ + pρ5

else if ∆U(pC = 1, pA = 0) ≤ 0 and (Rm ∨R±) then /* pC = 0, even if6
pA = 0 */

pA ← 0 ; q ← pµ7

Guided rationals:8
else /* pC = 0 enforced */9

q ← pµ10
caseRm11

pA ← 1− WPC+WBY−WCT

WPC+WBY (P
(n−1)
pµ+pρ

(bn/2c,n−1)+P
(n−1)
pµ+pρ

(dn/2e,n−1))12

caseRa ∨R∅13

pA ← WCT
WPC+WBY

+ ψ /* ψ > 0 is an arbitrarily small14

constant. */

caseR±15

pA ← 1− WPC+WBY−WCT

(WPC+WBY )(P
(n−1)
pµ+pρ

(bn/2c,n−1)+P
(n−1)
pµ+pρ

(dn/2e,n−1))16

if UM (pA, q) < UM (1− ε, pµ + pρ) then pA ← 1− ε17

4.1 Free Rationals

We study in this section the various cases where the behavior of rational workers does
not need to be enforced. As mentioned before the main goal is to carry out the com-
putation obtaining the correct output with probability at least 1 − ε. Provided that this
goal is achieved, it is desirable to maximize the utility of the master. Hence if, for a
given instance of the problem, the expected utility of the master utilizing the mecha-
nism described below is smaller than the utility of setting pA = 1− ε, the latter is used,
because this value trivially guarantees the desired probability of error while yielding
better utility.
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Lemma 2. In order to guarantee Pwrong ≤ ε, it is enough to set pA = 1− ε.

First, we consider pesimistic worker-type distributions, i.e., distributions where pµ
is so large that the probability of having a majority of bad answers is above the de-
sired upper bound, more precisely, when P(n)

pµ (dn/2e, n) > ε. Thus, even if all ra-
tionals choose to be honest, the probability of error is too large. Hence, in order to
lower Pwrong, the master has to audit with a probability big enough, perhaps bigger
than the minimum needed to ensure that all rationals are honest. Rational workers still
might use some pC < 1 corresponding to some NE. However, as argued later in The-
orem 2, the only unique NE that can be obtained in this game is pC = 0 and, if the
parameters of the game are such that there is some NE such that pC > 0 there is also
another NE in pC = 1. Therefore, to give error-probability guarantees it has to be as-
sumed that all rational workers cheat. Thus, in this case pA is set from Equation 1 to
1− ε/P(n)

pµ+pρ(dn/2e, n).

Lemma 3. In order to guaranteePwrong ≤ ε, it is enough to set pA = 1−ε/P(n)
pµ+pρ(dn/2e, n).

Now, we consider cases where no audit is needed to achieve the desired bound on
the probability of error. The first case occurs when the type-distribution is such that,
even if all rational workers cheat, the probability of having a majority of bad answers
is at most ε. More precisely, if P(n)

pµ+pρ(dn/2e, n) ≤ ε, then pA is set to 0. A second
case happens when the particular instance of the parameters of the game force a unique
NE such that rationals do not cheat even if they know that the result will not be audited.
More precisely, if P(n)

pµ (dn/2e, n) ≤ ε and there is a unique NE in pC = 0 if pA = 0,
then pA can be set to 0. To decide under which parameter conditions this case occurs,
we observe the following. Replacing in Eq. 3 the value pA = 0 and the payoffs for
each reward model (Table 3), it can be shown that ∆U(pC , pA = 0) is increasing in the
interval pC ∈ [0, 1] for the Rm and R± models, and a positive constant for the Ra and
R∅ models. Thus, if ∆U(pC = 1, pA = 0) ≤ 0 and one of the Rm and R± models
are used, the rate of growth of ∆U implies a single pure NE at pC = 0. In this case, no
rational worker cheats and if P(n)

pµ (dn/2e, n) ≤ ε then pA is set to 0.

Lemma 4. In order to guaranteePwrong ≤ ε, if P(n)
pµ+pρ(dn/2e, n) ≤ ε, or if P(n)

pµ (dn/2e, n) ≤
ε and there is a unique NE in pC = 0 when pA = 0, it is enough to set pA = 0.

4.2 Guided Rationals

We study in this section worker-type distributions such that the master can take advan-
tage of a specific NE to achieve the desired bound on the probability of error. Given that
the scenario where all players cheat was considered in Section 4.1, in this section it is
enough to study Equation 3 for each reward model conditioning ∆U(pC = 1) ≤ 0 to
obtain appropriate values for pA. As proved in the following lemma, the specific value
pA assigned depends on the reward model and it is set so that, simultaneously, a unique
pure NE is forced at pC = 0 (rendering the rationals truthful) and the error bound is
achieved.
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Lemma 5. In order to guaranteePwrong ≤ ε, if P(n)
pµ+pρ(dn/2e, n) > ε and P(n)

pµ (dn/2e, n) ≤
ε, it is enough to set pA as follows.

pA


= 1− WPC+WBY−WCT

WPC+WBY(P
(n−1)
pµ+pρ

(bn/2c,n−1)+P
(n−1)
pµ+pρ

(dn/2e,n−1))
forRm,

> WCT
WPC+WBY

forRa andR∅,
= 1− WPC+WBY−WCT

(WPC+WBY)(P
(n−1)
pµ+pρ

(bn/2c,n−1)+P
(n−1)
pµ+pρ

(dn/2e,n−1))
forR±.

Proof. It was shown in Lemma 1 that, for any of the reward models, ∆U(pC) is an
increasing function in the interval pC ∈ [0, 1]. Then, in order to enforce a unique NE,
it is enough to condition ∆U(pC = 1) ≤ 0 while minimizing the cost of verification.
Thus, replacing the payoffs from Table 3 making Equation 3∆U(pC = 1) ≤ 0 for each
model the claimed values of pA are obtained.

4.3 Correctness

The following theorem summarizes the previous analyses and proves the correctness of
the mechanism designed. Its proof is the simple aggegation of the results presented.

Theorem 1. The game obtained by combining the parameters of the system with the
values of pA obtained in Sections 4.1 and 4.2 satisfy that Pwrong ≤ ε.

4.4 Optimality

In this section we show that only two approaches are feasible to bound the probability
of accepting an incorrect value. In this respect, the strategy enforced by the mechanism
designed is optimal.

Theorem 2. In order to achieve Pwrong ≤ ε, the only feasible approaches are either
to enforce a NE where pC = 0 or to use a pA such that (1− pA)P(n)

pµ+pρ(dn/2e, n) ≤ ε.

Proof. It can be shown as in Lemma 5 that ∆U is increasing for all q, so ∆U(pC <
1) ≤ ∆U(pC = 1). Then, the only NE that can be made unique corresponds to pC = 0
(recall the NE conditions). Consider any other NE where pC > 0 which is not unique.
Then pC = 1 is one of these NE. In face of more than one equilibrium to choose from,
different players might choose different pC’s. Thus, for the purpose of a worst case
analysis with respect to the probability of error, it has to be assumed that all players
cheat. But then pA has to be chosen so that (1− pA)P(n)

pµ+pρ(dn/2e, n) ≤ ε.

4.5 Computational Issues

In previous sections, a mechanism for the master to choose appropriate values of pA
for different scenarios was designed. A natural question is what is the computational
cost of using such mechanism. In addition to simple arithmetical calculations, there are
two kinds of relevant computations required: binomial probabilities and verification of
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conditions for Nash equilibria. Both computations are n-th degree polynomial evalu-
ations and can be carried out using any of the well-known numerical tools [21] with
polynomial asymptotic cost. These numerical methods yield only approximations, but
all these calculations are performed either to decide in which case the parameters fit in,
or to assign a value to pA, or to compare utilities. Given that these evaluations and as-
signments were obtained in the design as inequalities or restricted only to lower bounds,
it is enough to choose the appropriate side of the approximation in each case.

Regarding the computational resources that rational workers require to carry out
these calculations, notice that the choice of pA in the mechanism either yields a unique
NE in pC = 0 or does not take advantage of the behavior of rational workers. Further-
more, pC = 1 was assumed as a worst case. Notice from Table 3 and Equation 3 that
setting WPC = WBY = 0 for the later cases we have a dominant strategy in pC = 1.
(Recall that WBY and WPC can be chosen by the master.) Thus, the mechanism is en-
riched so that rational workers are enforced to use always a unique NE, either pC = 0
or pC = 1. Then, in order to make the computation feasible to the workers, the master
sends together with the task a “certificate” proving such equilibrium. Such a certificate
is the value of pA and the payoff values, which is enough to verify uniqueness (recall
the analysis in Section 4).

5 Putting the Mechanism into Action

In this section two realistic scenarios in which the master-worker model considered
could be naturally applicable are proposed. For these scenarios, we determine how to
choose pA and n in the case where the behavior of rational workers is enforced, i.e.,
under the conditions of Lemma 5.

5.1 SETI-like Scenario

The first scenario considered is a volunteering computing system such as SETI@home,
where users accept to donate part of their processors idle time to collaborate in the
computation of large tasks. In this case, we assume that workers incur in no cost to
perform the task, but they obtain a benefit by being recognized as having performed
it (possibly in the form of prestige, e.g., by being included on SETI’s top contributors
list). Hence, we assume that WBY > WCT = 0. The master incurs in a (possibly
small) cost MCY when rewarding a worker (e.g., by advertising its participation in the
project). As assumed in the general model, in this model the master may audit the values
returned by the workers, at a cost MCA > 0. We also assume that the master obtains
a benefit MBR > MCY if it accepts the correct result of the task, and suffers a cost
MPW > MCA if it accepts an incorrect value.

Plugging WCT = 0 in the lower bounds of Lemma 5 it can be seen that, for this
scenario and conditions, in order to achieve the desired bound on Pwrong, it is enough
to set pA to 0 for the Rm and R± models and arbitrarily close to 0 for the Ra and R∅
models. So, we want to choose δ ≤ pA ≤ 1, δ → 0, so that the utility of the master
is maximized. However, using calculus, it can be seen that UM is monotonic in such
range. Nevertheless, the growth of such function depends on the specific instance of the
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master-payoff parameters. Thus, it is enough to choose one of the extreme values of pA.
I.e.,

UM ≈ max{MBR −MCA − n(1− pµ)MCY ,

MBRP(n)
pµ (0, bn/2c)−MPWP(n)

pµ (dn/2e, n) + γ} (4)

Where,

γ =

−MCY(E(n)
1−pµ(dn/2e, n) + E(n)

pµ (dn/2e, n)) for theRm andR± models.
−nMCY for theRa model.
0 for theR∅ model.

The approximation given in Equation 4 provides a mechanism to choose pA and n
so that UM is maximized for Pwrong ≤ ε for any given worker-type distribution, re-
ward model, and set of payoff parameters in the SETI scenario. For example, given
that E(n)

1−pµ(dn/2e, n) + E(n)
pµ (dn/2e, n) ≥ n(1 − pµ), if Rm or R± is used and

MPWP(n)
pµ (dn/2e, n) > MCA for some n, the best choice is pA = 1. On the other

hand, if R∅ is used, pµ < 1/2, and MBR + MPW ≤ 2MCA + nMCY , pA = 0 is the
best choice. Hence, if the master were to choose the reward model, it is clear that in the
above case it would chooseR∅. Similar examples can be given for each combination.

5.2 Contractor Scenario

The second scenario considered is a company that buys computational power from In-
ternet users and sells it to computation-hungry costumers. In this case the company
pays the users an amount S = WBY = MCY for using their computing capabilities,
and charges the consumers another amount MBR > MCY for the provided service.
Since the users are not volunteers in this scenario, we assume that computing a task is
not free for them (i.e., WCT > 0), and that rational workers must have incentives to
participate (i.e., U > 0). As in the previous case, we assume that the master verifies and
has a cost for accepting a wrong value, such that MPW > MCA > 0.

As mentioned before, using calculus it can be seen that UM is monotonic on pA
but the growth depends on the specific instance of master-payoff parameters. Thus, the
maximum expected utility can be obtained for one of the extreme values. Naturally,
pA = 1 is the upper bound. For the lower bound, pA must be appropriately bounded so
that the utility of rational workers is positive and Pwrong ≤ ε. For example, for theR∅
model, using Lemma 5 and conditioning U > 0, we get,

UM ≈ max
{

MBR −MCA − n(1− pµ)S,

WCT
S

(
MBR −MCA − n(1− pµ)S

)
+
(

1− WCT
S

)(
MBRP(n)

pµ (0, bn/2c)−MPWP(n)
pµ (dn/2e, n)

)}
(5)

As in the previous section, the approximation given in Equation 5, and similar equa-
tions for the other reward models which are omitted for clarity, provide a mechanism
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to choose pA and n so that UM is maximized for Pwrong ≤ ε for any given worker-
type distribution, reward model, and set of payoff parameters in the contractor scenario.
Specific examples can be given for each combination of these parameters either if they
are fixed exogenously or by the master.

6 Discussion
In this paper we have combined a classical distributed computing approach (voting)
with a game-theoretic one (cost-based incentives and payoffs) that lead to an algorithm
that enables a master to reliably obtain a task result despite the co-existence of mali-
cious, altruistic and rational workers. To the best of our knowledge, this is the first work
to consider such Internet-based master-worker computations under these assumptions.

Several future directions emanate from this work. For example, in this work we
have considered a cost-free, weak version of worker collusion (all rational cheaters
and malicious workers return the same incorrect task result). It would be interesting to
study more involved collusions, as the ones studied in [1] or [5]. Another interesting
extension of our work would be to consider the case in which the network is unreliable,
and hence the replies of some workers might not reach the master. This should greatly
affect the decision policy and the reward scheme of the master. Finally, in this work,
we have considered a single-task one-shot protocol, in which the master decides which
task result to accept in one round of message exchange with the workers. It would
be interesting to consider several task waves over multiple rounds, that is, view the
computation as a Repeated Game [27]. The master could use the knowledge gained in
the previous rounds to increase its utility and decrease its probability of error in future
rounds. Issues such as worker reputation could be taken into account.
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Appendix

Proof of Lemma 1

Proof. In order to prove this lemma, it is enough to replace the payoffs from Table 3 in
Equation 3 for each model as follows.
Rm model.

∆U = WCT −WPC −WBY + (1− pA)(
(WPC + WBY)P(n−1)

q (bn/2c, n− 1)

+ WPCP(n−1)
q (0, bn/2c − 1) + WBYP(n−1)

q (dn/2e, n− 1)
)
.

∆U = WCT −WPC −WBY + (1− pA)(
WPC + WBY(P(n−1)

q (bn/2c, n− 1) + P(n−1)
q (dn/2e, n− 1))

)
.

It can be seen that ∆U is an increasing function in the interval q ∈ [0, 1] hence the
claim follows for this model.
Ra andR∅ models.

For theRa model,

∆U = WCT −WPC −WBY + (1− pA)

(WPC + WBY)(P(n−1)
q (bn/2c, n− 1) + P(n−1)

q (0, bn/2c − 1)).

∆U = WCT −WPC −WBY + (1− pA)(WPC + WBY).

And for theR∅ model,

∆U = WCT −WPC −WBY + (1− pA)(
WPCP(n−1)

q (bn/2c, n− 1) + WBYP(n−1)
q (0, bn/2c)

+ WPCP(n−1)
q (0, bn/2c − 1) + WBYP(n−1)

q (dn/2e, n− 1)
)
.

∆U = WCT −WPC −WBY + (1− pA)(WPC + WBY).

Thus, ∆U is a constant with respect to pC hence it is non-decreasing for this model.
R± model.

∆U = WCT −WPC −WBY + (1− pA)(WPC + WBY)(
P(n−1)
q (bn/2c, n− 1) + P(n−1)

q (dn/2e, n− 1)
)
.

Again, it can be seen that ∆U is an increasing function in the interval q ∈ [0, 1]
hence the claim follows for this model.
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W = {1, 2, . . . , n} set of n workers
M master processor
pρ probability of a worker to be of rational type
pµ probability of a worker to be of malicious type
pa probability of a worker to be of altruistic type
pA probability that the master audits (computes task and checks worker answers)

Pwrong probability that the master obtains a wrong value
ε desired bound on the probability of error (master not accepting correct answer)

{C, C} action space of a worker
pC probability of a worker to cheat
s strategy profile (a mapping from players to pure strategies)
si strategy used by player i in the strategy profile s
s−i strategy used by each player but i in the strategy profile s
σ mixed strategy profile (mapping from players to prob. distrib. over pure strat.)
σi probability distribution over pure strategies used by player i in σ
σ−i probability distribution over pure strategies used by each player but i in σ

Ui(si, σ−i) expected utility of player i with mixed strategy profile σ
supp(σi) set of strategies of player i with probability > 0 in σ

∆Ui or ∆U or ∆U(·) Ui(si = C, σ−i)− Ui(si = C, σ−i)
P

(n)
q (a, b)

Pb
i=a

`
n
i

´
qi(1− q)n−i

Table 4. Summary of Symbols


