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Mesh-Connected Trees: A Bridge
Between Grids and Meshes of Trees

Kemal Efe, Member, IEEE, and Antonio Fernandez

Abstract—The grid and the mesh of trees (or MOT) are among the best-known parallel architectures in the literature. Both of them
enjoy efficient VLSI layouts, simplicity of topology, and a large number of parallel algorithms that can efficiently execute on them.
One drawback of these architectures is that algorithms that perform best on-one of them do not perform very well on the other. Thus
there is a gap between the algorithmic capabilities of these two architectures.

We propose a new class of parallel architectures, called the mesh-connected trees (or MCT) that can execute grid algorithms as
efficiently as the grid, and MOT algorithms as efficiently as the MOT, up to a constant amount of slowdown. In particular, the MCT
topology contains the MOT as a subgraph and emulates the grid via embedding with dilation 3 and congestion two. This significant
amount of computational versatility offered by the MCT comes at no additional VLS| area cost over these earlier networks. Ma'ny
topological, routing, and embedding properties analyzed here suggests that the MCT architecture is also a serious competitor for the
hypercube. In fact, while the MCT is much simpler and cheaper than the hypercube, for all the algorithms we developed, the running
time complexity on the MCT matches those of well known hypercube algorithms. :

We also present an interesting variant of the MCT architecture that admits both the MOT and the torus as its subgraphs. While
most of the discussion in this paper is focused on the MCT architecture itself, these analyses can be easily extended to the variant of
the MCT presented here. :

Index Terms—~Parallel architectures, interconnection networks, parallel algorithms, product networks, graph embedding, binary free,
grids, hypercubes, mesh of trees,
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RIDS and meshes of trees (or MOT) are among the best-

known interconnection networks devised. Grids are
very efficient in computations that require nearest neighbor
communication in a lattice space. Meshes of trees perform
better with algorithms that require data broadcasting in the
rows or columns. Neither one of these networks is very.
effective in the application domain of the other. In this pa-
per, we propose a new network that bridges the gap that
exists between these two classes of networks. We call this
new network the mesh-connected trees (MCT). The most im-
portant feature of the MCT network is that it can perform
the grid algorithms as efficiently as the grid, and the MOT
algorithms as efficiently as the MOT, up to constant (and
small) factors of slowdown, without increasing the as-
ymptotic VLSI area complexity of these networks. In par-
ticular, it contains the MOT as a subgraph, and emulates
the grid via embedding with dilation three and congestion
two. These capabilities make the proposed network ex-
tremely useful for large classes of computations, because
there is a vast number of algorithms in the literature that
have been developed for grids and meshes of trees. Readers
not familiar with these algorithms may refer to [14] for a
rich collection of such algorithms.
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The MCT neiwork is the multidimensional cross product
of complete binary trees. Informally, the N'-node r-
dimensional MCT, denoted as MCT,(N), is obtained from
the N'-node r-dimensional grid by replacing the linear con-
nections along each grid dimension by the connections of
an N-node complete binary tree. Fig. 1 shows the 49-node
two dimensjonal mesh-connected trees, MCT,(7). We use
the notation MCT to refer generically to the class of net-
works that we call mesh-connected trees, while we use
MCT/N) when we refer specifically to the N'-node r-
dimensional mesh-connected trees. '

®

Fig. 1. A seven-node complete binary tree (a), and the two-dimensional
mesh-connected trees obtained from it (b), denoted MCTx(7).

While the MCT network is not more powerful than the
hypercube, it can be made as powerful as the hypercube
provided that the MCT network is built with a large
enough number of dimensions. This fact aside, we do not
propose the MCT network to be built with a large number
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of dimiensions, even though the bandwidth will be higher
with the higher number of dimensions. The MCT network,
even with a few dimensions, has large enough bandwidth
to be considered- as .a low cost alternative for general-
purpose parallel computers. For many algorithms that we
considered (see Section 8), the MCT architecture with a few
dimensions have the same running time complexity as the
hypercube implementations of these algorithms.

We start our study of the MCT by showing that it has
logarithmic diameter and a large bisection width. Subse-
quently, we éxamine the embedding capabilities of the
MCT and show optimal embedding for various networks.
We then develop a shortest-path routing algorithm from an

arbitrary source to an arbitrary destination, as' well as a

broadcasting algorithm with optimal running time. We also
analyze the number of vertex-disjoint paths between arbi-
trary pairs of vertices. We then turn our attention to the
layout area required by the MCT network. We show that
the layout area required by the MCT is the same as the area
required by the MOT (within a constant factor), and for
more than two dimensions this area is the same as the area
required by the grid. Therefore, the significant computa-
tional power of the MCT comes at no additional cost over
those of the grid or the MOT.

Among the significant contributions of this paper is the
introduction of a simple variant of the basic MCT" architec-
ture. If we connect the leaves of the complete binary tree by a
straight line (see Fig.7), and then construct the product
graph of this extended tree, the resulting graph has all the
capabilities of the regular MCT, and it also contains the cor-
responding-size torus as a subgraph. This is a significant im-~
provement over that of the plain MCT which can only embed
the grid with dilation cost three and congestion cost two.
Note that the cost of this extension will be negligible, since all
the nodes.of the MCT architecture can be build identically,
and the unused I/0O ports at the leaves can be used to realize
these connections. All the theoretical analyses given here for
the basic MCT architecture can be extended to this variant
easily. We therefore focus much of our discussion on the ba~
sic MCT graph rather than this extension.

Finally, we briefly address the complexity of several rep-
resentative algorithms running on the MCT. We find that the
asymptotic running time complexities of these algorithms on
the MCT architecture are same as those of well known algo-
rithms developed for the hypercube.

1.1 Related Work

The cross product operation has been used as a common
framework to-study interconnection networks and as a
way for defining new interconnection networks with in-
teresting properties [1], [9], [17], [20]. Baumslag and An-
nexstein [1] obtained some general off-line permutation
routing algorithms for product networks. El-Ghazawi and
Youssef [9] studied the connectivity of product networks
with respect to the connectivity of their factor networks.
They obtained lower bounds in the connectivity of prod-
uct networks and presented an adaptive fault-tolerant
routing algorithm for them.

Rosenberg [17] introduced the product of de Bruijn
graphs as a potential parallel architecture and analyzed
several of its computational properties. He showed that the
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product of de Bruijn:networks contains rings, grids, com-

- plete binary trees, and meshes of trees as its subgraph. It

can also emulate butterflies, shuffle-exchange and de Bruijn
graphs. with low dilation and congestion. Youssef [20] de-
fined new product networks by combining the hypercube
with various other networks.

Efe  and - Fernandez 5] explored multidimensional
“homogeneous” product networks, i.e., product networks
whose factor graphs are all isomorphic.. General results
were derived regarding structural and embedding proper-
ties of homogeneous product networks, and these results
were applied to three specific cases. In our knowledge the
MCT network first appeared there as a potential candidate
for a parallel architecture.

2  DEFINITIONS

In this paper, a network is seen as an undirected graph,
whose vertices represent processors and whose edges rep-
resent bidirectional links between the processors. We use the
terms graph and network interchangeably. Several properties
of the MCT are derived from those of the complete binary
tree, we therefore list relevant properties of the latter graph.
DEFINITION 1. The h-level complete binary tree, T(h), is the
graph whose vertices comprise the set {1 22— and
whose edges connect each vertex u < i w1th the vertices
2u.and 2u + 1. ‘

The number of vertices of T(h) is 2" — 1. We w111 often de-
note this value as N (1i.e., I islog(N + 1)). The vertex labeled
one; at level one, is the root of the tree. Vertices of the tree at -
some level j are numbered from 27 to 2 - 1, indlusive. The
vertices at level /1 are the leaves of the tree. The parent vertex
of a node # can be obtained aSL%J ;

T(h) has N — 1 edges. The diameter of T(h) is 2(h — 1). The
bisection width is one as the edges incident to the root divide
T(h) into an I_—J -node and an [ _[ -node graph. The mini-
mum vertex degree of T(h) is 1 (for the leaves) and the
maximum vertex degree is 3 (for internal nodes)

Finally, T(h) is k-partitionable for k =2, 0<i<h-1. A
graph is said to be k-partitionable if it contains k disjoint iso-
morphic subgraphs which are consistent with its class defi-
nition. Partitionability of a graph is an useful attribute, as it
implies a recursive partitioning for subproblems of compu-
tations on the architecture.

. We denote a vertex of the MCT,(N) by an r- tuple X=Xpq .
x1xy, where the index position 7 refers to dimension 7, and x;
indicates a vertex in T(h), the factor graph. A formal definj-
tion of the MCT is presented below.

DEFRINITION 2. The N'-node r—dlmenswnal mesh connected trees,

MCT,/(N), is the graph whose vertices comprise all the v-
tuples x = x,.q ... X,X,, such that, for 0 < i <r—1, every x;
is a vertex of T(h), and the pair (x, ) defiries an edge in
MCTJN) if and only if x and y differ in exactly one index
position i and (x;, ;) is an edge in T(h).

An embedding of & “guest” graph G into a “host” graph
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H is a mapping of the vertices of G into the vertices of H,
and a mapping of the edges of G into paths in H connecting
the images of the vertices incident to the edge. The main
cost measures used in embedding efficiency are the fol-
lowing:
¢ Load is the maximum number of vertices of G mapped
to any vertex of H.
¢ Dilation is the maximum path length in H represent-
ing an edge of G.
¢  Congestion is the maximum number of paths (that cor-
respond to the edges of G ) that share any edge of H.

In this paper, we focus on unit-load embeddings and use
the dilation and congestion costs to evaluate the embed-
ding efficiency.

3 STRUCTURAL PROPERTIES

It can be easily seen that the MCT,(N) has N' vertices. Its
number of edges can be computed as follows: MCT,(N)
contains N copies of the complete binary tree T(h) along
each dimension (remembering that & = log (N + 1)). There
are r dlmenswns, and T(h) has N — 1 edges. Therefore
MCT/(N) has rN'""(N - 1) edges.

A highly desirable characteristic of a network is a small
and fixed vertex degree. A fixed vertex degree allows easy
network expansion, while a small vertex degree implies
small cost for communication channels built within each
node. The MCT,(N) has a minimum vertex degree of r and a
maximum vertex degree of 3r. In any implementation,  can
be kept small if desired without limiting the growth of the
network, because arbitrarily large MCT networks can be built
by using correspondingly large trees at each dimension.
Hence, the number of dimensions of the MCT may be kept
small and fixed without sacrificing the expandability.

We begin with discussing the diameter and the bisection
width of the MCT.

THEOREM 1. MCT(N) has diameter 2r(h — 1), whereh = log(N + 1).

PrOOF. We start by showing that 2r(h — 1) is an upper
bound on the distance between any two nodes in

MCT,N). Let x andyy be two nodes of MCT(N). To
reach y from x it is necessary to traverse at most r dif-
ferent T(h) trees, one in each dimension. Since the di-

ameter of T(h) is 2(h — 1), the diameter of MCTN)
cannot be larger than 2r(h - 1).

We now show that this upper bound is tight by pre-
senting two nodes in MCT{N) whose distance is ex-
actly 2r(h — 1). As the diameter of T(h) is 2(h — 1), there
are at least two nodes, say u, v, in T(h) that are at dis-
tance 2(h — 1). Consider a shortest path from the node x
= Xpq .. X1%g to the node y = y,; ... Y1y, where x; = u,
and y; = v for all 0 < i < r — 1. The problem of finding a
path between x and y can be seen as the problem of
transforming the label of x into the label of y by only
traversing edges of MCT/N). From Definition2 we
know that the traversing of an edge of MCT,(N) affects
only one index position of the label. As label changes
must be consistent with the adjacencies of T(h), the
shortest way to transform the ith index position from x;

t

1283

to y; is to follow the shortest path from x; to y; along the
dimension i tree. Since the shortest path from x to y
must traverse r trees with a path of length 2(h - 1) on
each, the distance from x to y is exactly 2r(h — 1).

From this, it follows that the diameter of the MCT is

logarithmic in the number nodes. O
THEOREM 2. The bisection width- of MCT,N) is at least
N¥-1
N NE-1)

PROOF. To prove the theorem, we construct an embedding
of the N'-node directed complete graph into MCT,(N),
such that each edge of the graph is mapped to a path in

MCT,(N). We show that, in that embedding, any edge

of MCT,N) is contained in at most N '(N* — 1)/2 of
these paths. It is known that the bisection width of the

N'-node directed complete graph is (N” ~1)/2, when
N is odd. Therefore, the bisection width of MCT,(N)

has to be at least —N =l
N (N2-1)

could get a bisection of the complete graph by remov-
. ing less edges than the value of its bisection width.

We construct the above mentioned embedding as
follows. We initially map the nodes of the directed
complete graph to the nodes of MCT,(N) one to one.
Then, we map the edges of the complete graph to.
paths in MCT,(N) as follows: we map the edge from
the node mapped to x = x, 1%, ... x; to the node
mapped to ¥ = y,1¥, ... o through the path x,_;x,, ...
Xo = YraXp2 oo X0 = Yr1l¥pa oo Xg e = YoWpn - Yo
such that the shortest (actually the unique) path is
used within each tree. We have to show now that, in
this embeddmg any edge of MCT,(N) is contained in
at most N"(N* = 1)/2 of these paths.

because otherwise we

Consider any edge of MCT,(N) connecting the node
z; .
.. I_T_I . Zg, 1e, the

connection is from vertex z; to its parent in a dimen-

Zyq o Zx o Zp to the node z,

sion-k tree which is uniquely determined by the z; val-
ues for 0 £i<r-1,i# k. Since that-edge is the only

connection between the subtree rooted at z; and the
rest of that tree, it must be traversed for every path
connecting these two parts of the tree. Let s be the

number of nodes in the subtree with root z;, then the
number of possible choices for x; and y; is 2s(N —s).

If a path from a node x = x,4%,., ... X, to a node y =

Yr-1Yr2 -
=z, fori <k, and the edge (zk, [—_D must be contained

. Yo contains that edge, then y; = z;, for i > k, and x;

in the shortest path from x; to y; in the dimension-k tree.
AS X g, oo Xy 1Yty o
number of paths that contain the edge is IN"'s(N - 5) <
NN? = 1)/2 (note that N is odd). Hence, at most N” -
N*=1)/2 paths contain any edge of MCT(N).

Yo can take N possible values, the
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Finaliy, for the purpose of eventual contradiction,
we assume that the bisection width of MCT(N), B, is

less than N—E\{Eif:zl—l_) . If so, MCT(N) can be divided into
two sets of nodes of equal size (within one) connected
by B edges. This partition also induces a partition of the

nodes of the N'-node directed complete graph, where
every one of the B edges embeds the paths that contain
it. Thus, the complete graph has a bisection width of at

most Bl\f "1(1\]’,Z - 1/2 < (Z\]2 "~ 1)/2. Since the bisection

width of the complete graph is (N2 "~ 1)/2, a contradiction
is reached and B must be at least z\ﬂ;l ]
| W)
Thisl large bisection width of the MCT, coupled with the
logaritl‘imic‘diameter, make it an attractive architecture.
Another important structural property for any network
is the partitionability. A partitionable network adapts bet-
ter to different problem sizes, or'it may be used to simulta-
neously solve several problems. MCTAN) contains N ver-
tex—disEoint copies of MCT,;(N) as subgraphs. These are
obtained by removing all the edges of the trees in any di-
mension i in MCT,(N). If this fact and partitionability of
T(h) . are recursively applied, it is easily observed that
MCT(N) is K'-partitionable, for k = 2, 0 <i <k — 1. This high
degreg of partitionability is not surprising due to the parti-
tionability of complete binary trees.

4 EkI\(IBEDDING PROPERTIES

Embedding properties are among the most important
properties of a network, because they transfer the compu-
tational power of a guest network to a host network.
‘Among the well known and important networks, the
torus, and the grid can be embedded into the MCT with con-
stant dilation and congestion. These results are interesting
because several other powerful networks such as the shuffle-
excha ‘ge, de Bruijn, butterfly, cube-connected cycles, or
Benes networks, require logarithmic dilation to embed the
" grid or torus [2]: Next, we show that the MCT is'more pow-
erful than the grid by showing that the MCT cannot be em-
bedded into the grid with constant dilation. We recall from
(5], ad‘ditionally, that the MOT network is a subgraph of the
MCT. Fhus it can perform every computation that the MOT
can without any slowdown. We also improve the embedding
of complete binary trees into the MCT originally presented in
[5];'WJ3 conclude by demonstrating a dilation two congestion
one embedding of the MCT into the hypercube.

4.1 Embedding the Grid and the Torus

It was|shown in [14] that the N-node cycle can be enibedded
into any. N-node. tree with dilation cost three and conges-
tion dost two. Here, we first strengthen this result by
showing that dilation three and congestion two is the best
that can be achieved when embedding the N-node cycle
into the N-node complete binary tree.

LEMM‘A 1. Any embedding of the N-node linear array into the
ﬁ\f—node complete binary tree T(h), where h = 5, requires at
east dilation cost three and congestion cost two.
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Fig. 2. A subtree of T(h), where hz 5.

ProOF. First, consider the dilation cost. For the sake of
eventual contradiction, suppose that there exists a
dilation two embedding of the  N-node linear array
into T(h), where h 2 5. Such an embedding implies a
traversal of all the nodes of T(h) with movements of at
most distance two {rom one node to another so that
each node of the tree is visited only once. We say that
a node is “reachable” from another if the distance
between them is at most two.

If we remove the i — 3 top levels of a tree T(h), where
h> 5, we obtain 2 disjoint subtrees isomorphic to the
one shown in Fig. 2. For instance, when k = 5, four of
these subtrees are obtained by removing the two top lev-
els. Since any traversal of T(h) has only one starting node .
and only one ending node;, at least two of these subtrees
are traversed by entering from the top and exiting from
the top. Now assuming that the tree of Fig.2 is such a
subtree, we focus on the behavior of the traversal.’

It is not possible for the traversal to enter and exit the
subtree of Fig. 3 more than once. This is because there
are only three external nodes “reachable” from the nodes
of this subtree: the parent of 4, the sibling of 4, and. the
grandparent of 4. If, for example, it were possible to trav-
erse the subtree in Fig. 3 by entering and exiting twice,

-this would imply that four external nodes are reachable

from the nodes of this tree, which is niot the case. There-
fore every node in the subtree has to be visited the first
time when the subtree is being traversed.

Fig: 3. Embedding the 4 x 4 MOT into MCT,(7). The 4 x4 MOT. graph
is. shown on the left where the leaves are highlighted as dark nodes. In
the MCT graph on the right, the 4 x 4 MOT .subgraph is- highlighted as
dark nodes and edges.

Since the traversal enters from the top; the first vis-
ited node has to be one of 4, b, or ¢. Also, the last visited
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node has to be one of 4, b, or c. It is easily seen that we
cannot have one of b or ¢ as the first visited node and
the other as the last. This is because there is only one
external node reachable from b or ¢ (it is the parent of
a).-So the only case that needs to be examined is enter-
ing the subtree at 2 and exiting at one of b orc.

If a is the first visited node, the next node is either in
the subtree rooted at b or in the subtree rooted at ¢. In
any case, to go from one subtree to the other the tra-
versal needs to visit both of b and ¢ in order to limit the
dilation -at two. Since at least one of these must be
saved as the exit node, a contradiction has been
reached and there is no way to traverse T(h) with dila-
tion cost two, and the dilation of any embedding must
be at least three.

To prove that the congestion cost must be at least

two, we observe that the N-node binary tree has 31

nodes (leaves) with degree one, while the linear array
has only two nodes with degree one. Then, several
nodes of the linear array must be mapped to the leaves
of the tree. When such a node of the linear array is as-
signed to a leaf, its two neighbors must be mapped in a
way that shares the edge connecting the leaf to its par-
ent. Therefore the congestion must be at least two. [

This result shows that the method of embedding the lin-
ear array into the complete binary tree in [14] is optimal. We
can use this result to construct an embedding for the N'-node
r-dimensional torus into MCT/(N) as follows: We first embed
the N-node cycle into the N-node complete binary tree with
dilation cost three and congestion cost two. Then, by using
Definition 2, we construct the MCT/N). This construction
automatically induces an embedding for - the N'-node
r-dimensional torus into MCTN) with dilation cost three
and congestion cost two. The next result addresses the opti-
mality of these dilation and congestion costs for the embed-
ding of the grid into the MCT graph. The same result also
applies for torus since the grid is a subgraph of the torus.

THEOREM 3. Any embedding of the N -node r-dimensional grid
into MCT,(N) requires at least dilation cost two and conges-
tion cost two.

PROOF. Consider the number of nodes with vertex degree
exactly r. In MCT,(N) there are (%)r nodes with de-
gree exactly r (these correspond to the leaves of the

factor binary tree). In the grid there are only 2’ nodes
with degree exactly r (these correspond to the
end-points of the factor linear array). All the remain-

ing N' - 2" nodes of the grid have larger vertex de-
‘grees. Therefore, for N > 3, several grid nodes must be
mapped to MCT nodes with smaller degree. Once
such a grid node is mapped to an MCT node with
lesser degree, at least one neighbor of the grid node
must be mapped with dilation two and congestion
two. \ O

This theorem shows that the congestion of the simple
embedding method described above is optimal. Dilation of
this embedding differs from the proven lower bound by
one unit. After considering the problem in some detail, we
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conjecture that the dilation of three may also be optimal,
although the theorem above only bounds the dilation as
being at least two.

Later, we will show in Section 7 that simple extensions
made in the basic topology of the MCT allow reducing these
constants to unity. Even without such extensions, the above
embedding is much better than any embedding of the #-node
grid into. the de Bruijn or the shuffle-exchange graphs that
require Q(log log n) dilation [2], or into the butterfly, cube-
connected cycles, or Bene§ networks that require Q(log n)
dilation [2]; [14]. This high cost in embedding a graph as im-
portant as the grid reduces the practical value of these net-
works, and favors the MCT network.

The question of whether the torus or the grid can be em-
bedded into the MOT with constant dilation and constant
congestion is currently open. It seems plausible, therefore,
that such an embedding will probably be complex, should
it exist. The simple embeddings that we have obtained for
the MCT network also favors it over the MOT.

The next theorem establishes that the grid is not very
good at emulating the MCT. Since the MCT graph can emu-
late the grid with constant slowdown, it follows that the
MCT is computationally more powerful than the grid.

THEOREM 4. Any embedding of MCTAN) into the N'-node r-

dimensional grid requires at least dilation cost [ENﬁ%ﬂ .

PROOF. The claim follows from a comparison of the diame-

ters of the two graphs. Diameter of the N'-
r-dimensional grid is (N — 1). Diameter of the

MCTAN) is r(2h — 2). Therefore, there is at least one
edge of MCT/(N) that must be mapped to a path of

length [M-l = [ E-I in the grid. ‘ o

W2h2) |~ | 22

4.2 Embedding the MOT

The following theorem (Theorem 6 in [5]) shows that the
MOT is a subgraph of the MCT.

THEOREM 5. MCT(N) has the r-dimensional mesh of Xt-leaf
trees as subgraph, for 1 <i<h-1.

Theorem 5 allows us to view the MCT as a hierarchy of
nested interconnected meshes of trees of different sizes, so
that it may be adapted to solve multiple problems, or tailored
to a particular size. Fig. 3 shows the two-dimensional MOT
networks contained in MCT,(7). In this figure, there are two
MOT networks contained, one with four leaves for each tree
(shown in dark nodes) and one with two leaves for each tree
(shown in empty nodes, ignoring the center node). The larg-
est MOT that can be embedded into MCT,(N) has O(N)
nodes. This fact will be used in Theorem 10 to obtain a lower
bound on the layout area required by the MCT.

4.3 Embedding the complete binary tree

In [5], it is shown that the (#(h — 1) + 1)-level complete bi-

nary tree is a subgraph of MCT(N), where I = log(N + 1).

For easy reference, this result is included here.

THEOREM 6. T(r(h — 1) + 1) is a subgraph of MCT«N), where
h=log(N +1).
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As an example, Fig. 4 shows the embedding method for
r =2. The complete binary tree subgraph of .the MCT. ob-

tained in this theorem is the largest possible when r = 2, but-

for r > 2, larger trees can be embedded with constant dilation

and constant congestion. We use Theorem 6 here to obtain an-

embedding of a larger complete binary tree than that em-

bedded by Theorem 6 itself when r > 2. In particular, we.

show a method that embeds the largest possible tree when 7
< 3and very close to the largest for small values of 7. For in-
stance, MCTy(7) has-enough nodes to contain-a 25-level com-
plete binary tree and our method embeds a 23-level tree.

Fig. 4. Embedding the complete binary tree into the MCT by Theorem 6.
The complete binary tree subgraph is highlighted by heavy dark lines.

In order to' simplify -the proofs we will first distinguish
special sets of nodes in any MCT network as follows.

DEFINITION 3. A node x = X, ... X1xq is a leaf of MCT,(N) if and
only if x; s a leaf of T(h), forall 0<i<r—1.
DEFINITION 4. The node x = X,y ... XXy is the root of MCT,(N) if and
onlyifx;=1(ie, x;is therootofT(h)) forall 0<i<r-1.
We now define a new class of graphs that is going to be
useful in this section. We do not give a special name to these
graphs, we instead use a short notation to identify them.
DermNrmioN 5. TT(, v, Ny is the graph obtained by conrecting the
roots of N' copies of T() in'the MCT/(N) pattern, i.e., TT(, 7,
N) is obtained by “hanging” a complete bznary tree,‘ T(), at
each node of MICT,(N).
First we show that T( + 5) can be embedded into TT(l 2,7
with constant dilation and congestion and that this embed-

ding has particular properties. These properties are used to

obtain the subsequent results which show how to embed
(31’ - 1_ J) in MCT/7) by iteratively using this first embed-

ding. Finally, by combining this result and Theorem 6 the
general result is obtained in Theorem 7.

LEMMA 2. T( + 5) can be embedded into TTQ, 2, 7), where 1 2 2,
with dilation three and congestion three. In this embedding
the root of the embedded tree coincides with the root of the
MCT(7) subgraph of TT(, 2, 7) and the edges incident to
the root are embedded with dilation one and congestion one.
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Fig. 5. Embedding the (/ + 5)-level complete binary tree intd a subgraph
of TT{1, 2, 7). .

PROOE. Fig. 5a shows a subgraph of TT(l, 2, 7). In this fig-
ure, dark nodes represent T(J) trees collapsed into su-
pernodes for the purpose of a suitable abstraction for
the discussion below. Large empty nodes represent
roots of other T(I) trees, and small empty nodes repre-

~ sent their immedjate children in their T(I) trees. The
subtrees. rooted -at small empty nodes are’ignored.
Fig.-5b shows the tree that can be embedded into this
subgraph. The edges shown correspond. to the edges
of the .complete binary tree embedded. Only dark
nodes in Fig. 5b have T(l) subtrees.

Tt can be easily checked that any edge in F1g 5b cor-
responds to a path of length not more than three in
‘Fig. ba. Dilation three edges are those that connect the
large dark nodes to small empty nodes in Fig. 5b. It can
be also easily seen that the maximum congestion of
three is found i some of the edges connecting large
empty nodes with small empty nodes in Fig. 5a (the
reader can trace the connections sharing the edge from
‘the large empty node to the small empty node at-cen-
ter-right of Fig. ba).

- Since the tree of Fig. 5.(b) has six levels and each
dark node represents a collapsed I-level tree, we have
obtained an’ embedding of T + 5) into TT({, 2,.7),
where the dilation and the congestion costs are three:
From the figure it is easily verified that the root of the
embedded tree coincides with the root of the MCT,(7)
subgraph and that the edges incident to the root of the
tree are mapped to the edges of TT(, 2, 7) with unit di-
lation and congestion. = )

The properties of the embedding highlighted. in the state-
ment of the lemma are needed in order to iteratively apply
the embedding (in the next lemma) without increasing the
congestion of the global embedding.

LEMMA 3. 7 (3, - 254 cant be embedded into MCT,(7), where r is
odd, with dilation three and congestion three. Ini this embed-

ding the oot of the embedded tree is the root.of MCT(7) and
the edges incident to the voot of the embedded. tree have dila-

 tion one and congestion one. ’
PrOOF. We prove the claim by-induction in the number of
dimensions, . The initial condition, r = 1, is. trivially
verified, since MCT(7) is isomorphic to T(3). In the in-
duction step. we have to show that, given an embed-

ding of T(3k - k—;) ‘into MCT(7) as specified, it is-pos-

(k+2)-1
2

sible to embed T(?)(k *2)~ ) into MCTy,» (7).



By removing all the edges along dimensions k and k
+ 1 from MCTy , 5(7) we obtain 49 disjoint copies of
MCT(7). From the induction hypothesis, we can em-
bed a disjoint copy of T(3k - —) into each of these

copies. The root of the embedded tree has label x = Xjeq
.. X1Xo, where x; = 1 for 0 <i <k -1, and the edges inci-

dent to the root are edges of MCT(7).
Now consider only the roots of the embedded trees

and reconnect them along dimensions k and k + 1. The

graph so obtained contains the nodes of MCTy, ,(7) of the
form x = x; , X X1 ... X%, wherex; =1for0<i<k-1,
and is isomorphic to MCT,(7).

Each node in the above graph is the root of an em-
bedded complete binary tree. Then, considering again
the whole graph, we have obtained an embedding of

(3% — 532 + 5) into MCT,5(7), where the MCT,(7) sub-

graph and the first two levels of the trees are embed-
ded with dilation one and congestion one. Since the
embedding method of Lemma 2 only changes this part
of the TT graph, it can be applied here to obtain an em-

bedding of the (3k — X2 +5)=(3(k+2)- &*r2-1)_
g 5 -

level complete binary tree into MCTy,»(7) with dilation
three and congestion three.

From Lemma 2, the root of the embedded tree is
the root of the MCT,(7) subgraph, that is of the form x
= Xk 1+ XXy - X1Xo, Where x;=1for 0<i<k + 1, and
the edges incident to this root have dilation one and
congestion one. O

Lemma 4 T(3r ~| 5 ) can be embedded into MCT,(7) with dila-

tion three and congestion three. In this embedding the root of
the embedded tree is the root of MCTA7).

PROOF. If 7 is odd the above lemma can be trivially applied

and the claim follows. The case of even r requires a
little more elaboration.
By removing all the dimension-(r — l) edges we

obtain 7 disjoint copies of MCT,_(7). Since r is even r
- 1 is odd and the above lemma can be applied to

each copy. Then T(S(r -1)- r_—zz_) can be embedded

into each copy with its root in the node x = x,_; ... x;xo,

withx;=1for0<i<r-2.
We can now connect the roots of the embedded trees
with a dimension-(r — 1) tree. This tree has three levels

and each of its leaves is the root of a (3(r -1)=1 > 2)-

level tree, and hence we have found an embedding of
T(Sr - %) into MCT (7). Since the dimension-(r — 1) tree

connects the roots of the seven copies and the root of
the complete binary tree embedded is the root of this

tree, the root of the embedded tree is the node x = x,.; ...
x1%g, with x; = 1 for 0<i<r -1, root of MCT,(7). O
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THEOREM 7. T(rh - |4 |)can be embedded into MCTAN), where
N> 3, with dilation three and congestion three.

PROOF. If we remove the two lowest levels from every tree
along each dimenSion in MCT{N) we obtain a graph
isomorphic to MCT (Zh_2 -1x Slmﬂarly, if we remove
the /1 - 3 top levels from every tree along each dimen-

sion we obtain a dlsconnected graph formed by 2/

disjoint copies of MCTr(7). In the rest of this proof we

will pay special attention to the two subgraphs of

MCTLN) so identified. In particular, we first show
how to embed a (r(h — 3) + 1)-level tree into. the first

w2 D.
Then, we show how to embed a (3r——) -level tree

subgraph whose leaves are the leaves of MCT,(2

into each copy of MCT(7) so that the root of the tree
is the root of the copy. The combination of both em-

beddings into MCT,(N) yields the desired embedding.

We first recall that Theorem 6 shows that MCT,(N)
has a subgraph isomorphic to T(r(z — 1) + 1), By con-
struction, the leaves of this tree are also leaves of
MCT, (N) The direct application of Theorem 6. to
MCT,2"? - 1) allows to obtain a subgraph of this
graph isomorphic to T(r(h 3) + 1 and whose leaves
are the leaves of MCT,(2"” - 1).

Lemma 4 shows how to embed T(3r - I_ J) with con—

gestion three and dilation three into each copy of MCT,(7)
so that the root of the tree is the root of the copy. Com-
bining this result with the previous one we have obtained

an embedding of the (31’ - I_L_I +1h-3 ) = (rh - LLJ)_

level complete binary tree into MCT(N) with congestion
three and dilation three. . 0

4.4 Embedding the MCT into the Hypercubé-

We close this section by showing how to embed the MCT(N)
graph into the (ir)-dimensional hypercube, where & = log(N
+ 1). Since the MCT architecture is topologically much sim-
pler than the hypercube, the embedding method presented
here may be used as a suitable abstraction for developing
parallel algorithms for the hypercube architecture.

THEOREM 8. MCT (N) can be embedded into the (hr)-dimensional
hypercube with dilation cost two and congestion cost one,
where h =1log(N + 1).

PROOF. In [10] it is proven that the (N + l)-node dou-
ble-rooted complete binary tree is a subgraph of the
(N + 1)-node h-dimensional hypercube. This mapping
implies an embedding of T(h) into the (N +:1)-node
hypercube with dilation two and congestion one.

From [5] we know that if G can be embedded into H
with dilation 4 and congestion ¢, then. the , r-
dimensional product of G can be embedded into the -
dimensional product of Hwith dilation 4 and conges-
tion c. Since the rh-dimensional hypercubhe can be con-
sidered as the r-dimensional product of 2"-node hyper—
cubes, the claim follows. , .
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5 ROUTING ALGORITHMS AND PARALLEL PATHS

Here we consider shortest-path routing from a single node to
a single node, and broadcasting from a single node to all the
nodes in MCT. For permutation routing, algorithms devel-
oped in [1] may be easily adapted for the MCT architecture.

5.1 Shortest Path Roming

We recall the labeling of the vertices of T(h) as defined in
Section 2. The root of T(h) is labeled 1. For any internal
node labeled u; its left child is labeled 2u and its right child
is labeled 2u + 1. Based on these labels, a simple algorithm
to find the first edge of the shortest path from a vertex u to
a vertex v, u # v , can be derived [16]. Let 1, and v, be the
binary representations of the labels assigned to u and v,
respectively, where leading zeroes have been removed. If u,
is not a prefix of v, the first edge of the path from u to v
connects ¥ with its parent vertex. If uy, is a prefix of v;, then
remove these bits from v, and consider the leftmost re-
maining bit. If this bit is 0 the first edge of the path connects
#and its left child. If the bit is 1 the first edge connects u
and its right child. By applying this process in a greedy
fashion the path between any pair of vertices in T(h) can be
found. For instance, Fig. 6 shows the path between the ver-
tices 1= 100 and v, = 1101 in T(4).

The algorithm to find the shortest path in MCT,(N) is a

simple extension of the shortest path routing algorithm for .

T(h). The shortest path from any node x to any node y in
MCT,(N) is obtained by simply applying the shortest path
routing algorithm described for the tree T(h) along each di-
mension where the labels of x and y differ. By an argument
similar to that used in the proof of Theorem 1, the reader can
easily show that the path generated is a shortest path. In fact,
several shortest paths may be found if we apply the above
algorithm to the dimensions in different orders.

1

O

1000 1001 - 1010 1011 1100 © 1101 1110 71111

Fig. 6. Path in 7(4) between 100 and 1101. Leading zeros have been

removed from the [abels for clarity.

5.2 Broadcasting

The broadcasting of a message is the process of sending a
message from a given node to every node in the network.
Initially, the source node sends a copy of the message to the
root node in its dimension-0 tree. The root then broadcasts
the message in its dimension-0 tree. After at most 2(h — 1)
steps each of the N nodes in the tree has a copy of the mes-
sage. The same process is then repeated for dimension one
trees. This second process takes 2(h — 1) steps.and at the end
of it N* nodes have a copy of the message. The process
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continues dimension by dimension and, after using all the
dimensions, every node in the network has a copy of the
message. The process takes at most 2r(k — 1) steps and the
algorithm can be implemented centralized or distributed. If
the “root” of the MCT (i:e., the node with label 1... 1) is the
source of the broadcast operation, then the algorithm can
be completed in half the time.

5.3 Paraliel Paths

The number of disjoint paths between any two nodes is an
indicator of fault-tolerance capabilities of a-network. We
show that there are m disjoint paths between any two nodes
in the MCT,(N), where m is the lesser of the degrees of the
two nodes. This result improves the result obtained by the
direct application of Lemma 4 in [5] or Theorem 2 in [9].

THEOREM 9. Every pair u, v of vertices in MCTN), where ¥ > 1,
is connected by exactly m vertex-disjoint paths, where m is
the lesser of the degrees of the vertices u,v.

PROOF: (Sketch) In the interest of brevity, we give a sketch
of the basic idea of proof. A detailed proof that identi-
fies these paths is available in [6]. We proceed by in-
duction on the number of dimensions r. For r = 2, the
claim can be verified by inspecting Fig. 1b. Suppose
that the claim is true for » —1 dimensions. The case for
r dimensions follows by showing that each additional
dimension increases the vertex degrees by at least one
and at most three. More specifically, there is a new
vertex-disjoint path for each increment of the vertex
degree of the node with the lesser degree. O

Several facts follow immediately from this result.

1) Every pair of vertices in MCT(N) is connected by at
least r and at most 3r vertex-disjoint paths.

2) If MCT(N) contains less than r faulty vertices, it is
possible to find a path between any two fault-free
vertices. (This result could have been obtained by di-
rect application of Theorem 2 in [9]. The adaptive
routing algorithm presented there may be used for
the MCT graph with simple changes.)

3) Bvery pair of vertices in MCT(N) is connected by at
least ¥ and at most 3r edge-disjoint paths.

4) MCT/N) is (r — 1)-fault tolerant to faults in edges.

6  VLSI LAvouT AREA

We show in this section that the VLSI layout area required
for the MCT network is asymptotically same as the optimal
area given for the MOT in [19], [13]. The layout of the MCT
also meets the area required for grids when r > 2. As in the
earlier papers, our analyses assume that the MCT network
has a bounded vertex degree (i.e;, ris fixed). This assump-
tion is reasonable since a concrete implementation has a
fixed number of dimensions, and this does not limit the
modular growth of the network.

THEOREM 10. MCT,(N) can be laid out in an area of O o 1)) for
r>2and G)(N2 log N) forr =

PROOF. We start by proving the upper bound. It is enough

r=1
to show that MCT,(N) is strongly O[x ’ j—separable /
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and then apply Theorem 3.5 in [19] to obtain the re-
sults. This theorem states that an N-node strongly

O(x*)-separable graph can be laid out in a square of
side O(n”) for 0> 1/2 and O(nl/2 log n) fora=1/2.

An N-node graph is said to be strongly f(x)-separable
either if it has only one node or if by removing at most
fn) edges it is divided into two graphs with the same
number. of nodes (within one), both strongly f(x)-
separable. MCT,(N) can be separated into two graphs
as above by removing the edges incident to any dimen-
sion-0 root. This isolates the roots of dimension-0, which
are distributed evenly between the two subgraphs. The
number of edges removed is N7+ - DIN- DN =

O(N"™). Given that the number of nodes is N/, strong
separability is satisfied in this step.

We can apply the same procedure to divide each
subgraph in halves. Any edge incident to a dimension-1
root is removed and these roots are distributed be-
tween the two subgraphs. Again ON o) edges are re-
moved from each of the NQL = @(N r)—node graph. This

process can be repeated for each dimension. For di-

mension 7 — 1, ON™) edges are removed from
EI‘,L%- = G)(N ')-node graphs, while continuing to satisty

conditions of strong separability. After applying this
process to the dimension  — 1, we obtain 2" subgraphs,

each composed by an MCT( ) graph and several

isolated nodes. Then, the same process can be recur-
sively applied until all the nodes are isolated. There-

fore, MCT/N) is shown to be strongly O(x'”:‘l)-

separable and the upper bound of the claim follows.
We now prove the lower bound. For r = 2 it is
shown in [19] that the £ -leaf MOT requires an area

of Q(N *log’ N ) Since such an MOT is a subgraph of

MCT,(N) (recall Theorem 5), the later also requires an
area of Q(N 2 log2 N ) The lower bound for r > 2 can

be obtained by simply applying Theorem 5-1 in [13],
first obtained in [18], which says that the area required
by a network with bisection width B is Q(BZ). a

If we denote the number of nodes of MCT,(N) as n, the
above bounds can be rewritten as ®(n ) for r > 2, and
o log2 n), for r = 2. These bounds are the same as those
obtained for the MOT with bounded number of dimensions
[19], [13] and for the grid with more than two dimensions
[15]. These facts show that there is no additional asymptoti-
cal complexity cost mcurred for the increased power of the

MCT.

7 AN EXTENSION OF THE BASIC NETWORK

Consider connecting the leaves of the complete binary tree
as shown in Fig. 7. We denote the resulting graph as XT(#),
where again h denotes the height of the tree. Justification
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for this extension is quite easy: In a modular implementa-
tion, all the nodes could be designed with the same number
of I/O channels, and the unused channels at the leaves could
be used to connect the leaves in this fashion. The next result
shows that if we build the MCT graph with these trees as the
factor graph, the resulting extended MCT network, denoted
MCXT, contains the torus as a subgraph. This is a much bet-
ter result than the embedding obtained in Section 4.1.

Fig. 7. Extending the complete binary tree by connecting the leaves.

THEOREM 11. MCXT,(N) contains the N'-node r-dimensional
torus as a subgraph.

PROOF. We show in the next lemma that XT(h) contains a
Hamiltonian cycle. The claim then follows from this
result and Theorem 3 in [5]. O

LEMMA 5. XT(h) contains a Hamiltonian cycle.

PROOF. We first show that XT(h) contains the following

Hamiltonian paths:

e Type-LL: Starts at one of the leftmost or the
rightmost leaf and ends at the other.

» Type-LR: Starts at the leftmost leaf or the right-
most leaf and ends at the root.

¢ Type-RL: Starts at the root and ends at the left-
most leaf or the rightmost leaf.

If there is a Type-RL path that exits at the leftmost
leaf, it can be converted into one which exits at the
rightmost leaf. Once we show that these paths exist,
we construct the claimed Hamiltonian cycle by recur-
sively combining them together.

We proceed by induction on the height of the tree.
For I = 2, XT(2) is just a triangle and all three types of
paths above are contained in it. Therefore assume that
these paths exist in XT(h — 1), where h > 1. To study the
case for XT(h), note that the root of XT(h) connects two
such XT(h — 1) graphs. The Type-LL path for XT(h) is
obtained as: the Type-LR path in the left subtree of the
root (entering from the left), followed by the root; fol-
lowed by the Type-RL path (exiting from the right) in
the right subtree. The Type-LR path is obtained as: the
Type-LL path in the left subtree of the root, followed
by the Type-LR path in the right subtree, followed by
the root. The Type-RL path is obtained by reverse list-
ing the Type-LR path.

This completes the proof that all three types of Ham-
iltonian paths exist in XT() for any k. The Hamiltonian
cycle for XT(h) is obtained as: Type-LR path in the left
subtree of the root (entering from the right), followed by
the root, followed by the Type-RL path in the right sub-
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tree (exiting from the left), and finally connecting this
exit node to the entry nodein the left subtree. - O

8 PARALLEL ALGORITHMS FOR THE MCT NETWORK
Although the MCT network is conceptually simple, it is

able to execute a variety of algorithms very efficiently. First

of all, there is a large number of algorithms developed for
grids, and the ability of MCT to emulate grids with dilation
cost three and congestion cost two implies that it can exe-
cute . these grid -algorithms ~with constant slowdown.
Moreover, we know from Theorem 11 that when the ex-
tended tree structure of Fig. 7 is used as the factor graph,
the corresponding product graph will contain the same-size
grid as a subgraph. In this case, no slowdown is needed
and all the grid algorithms in the literature can be directly
executed on the proposed architecture. Since efficient algo-
rithms that utilize the grid architecture are too numerous,
we will not attempt to cite them here.

Besides grid algorithms, the class of computatlons that
benefit from the proposed architecture are those that use
frequent broadcasting capability from one node to the rest
of the nodes in a dimension. Typical computations with
this ‘structure are graph algorithms such as minimum
weight spanning trees, shortest paths, connected compo-
nents, etc. On the N'-node r-dimensional grid architecture,
these computations require at least Q(rN) running time due
to the O(rN). diameter of the grid. The MOT is:.more effi-

cient for these computations since it reduces the running .

time to O(r log N), matching the running time of hyper-
cubes for similar computations (see [14] for a survey of
these results). For the MCT architecture, one of the co-
authors of this paper has investigated several algorithms in
detail {7]. Due to space limitations, we summarize the re-
sults of [7] only briefly here.

Fig. 8 summarizes the running time for some of the algo-
rithms considered in [7]. The result shown for graph algo-
rithms applies for the computation of minimum-weight
spanning trees, connected components, transitive closure,
and all-pairs-shortest paths. In-all the cases in Fig. 8, the
number of data points is equal to the number of processors,
which is N

A|gor|thm Complexity
‘Summation of Numbers .O(rlog N);
Matrix Multiplication O(rlog Ny:
Sortlng O(er) o
Graph Algonthms O(rlog N)

Fig:'8. Running times of various algorithms for the MCT:network.

Summation of numbers is representative of a large class
of computations . requiring binary associative. operators,
such as AND, XOR, Min, Max, etc. Without increasing the
asymptotic running time, the algorithm can be converted to
. prefix computations which has several other apphcatlons
[12]. The given running time of O(r log I\D is optimal since,
due to the well known fan-in theorem, N numbers cannot
be summed in less time than this.

Matrix-matrix multiplication algorithm has running time
O(r log N), which is optimal and the same as the time re-
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quired by other networks such as the MOT and. the hyper-
cube: It is also much more processor efficient than the MOT
which requires (r + 1) N' =7 N' processors as opposed to
N processors required by the MCT.

The MCT network is surprisingly efficient for sorting
although it does not appear to have a structure suitable
for. sortmg in the first instance. If # is fixed and N varies,
the given running time reduces to O(N) to sort N’ keys
which is optlmal for the MCT because the bisection width
is O(N'™), and in the worst case O(N') values may need to
cross the bisection of the network. This running time
matches that of the best known algorithms given for N~
node r-dimensional grids when 7 is fixed. If N is fixed and
r varies (e.g., in the hypercube N =2 fixed but 7 varies),
then the running time reduces to O(") ‘which matches the
asymptotic complexity of well.known deterministic algo-
rithms running on the hypercube. A more detailed dis-
cussion of sorting in the MCT as well as-other product
networks is given in our recent paper [8]. -

Graph algorithms cited above represent another impor-

_tant class of computations. It 1s shown in [7] that these

problems can be solved in o log N) time in MCTN),
with the adjacency matrix (or the weight matrix as the case
may be) stored one entry per processor, The given running
time matches those of the best known algorithms for the
grid if 7 is fixed, and for the hypercube if N is fixed.

9 - CONCLUSIONS

We have shown that the mesh-conniected trees network is
capable of performing algorithms developed. for the torus,
the grid, and the mesh of trees. This has considerable value
because of the large number of algorithms that have been
developed for these networks [14]. This capability also favors
the mesh-connected trees in comparisonto many of the other
well known networks like the shuffle-exchange, de Bruijn,
butterfly, cube-connected cycles, and the Benes networks
which cannot host the grid with constant dilation [2], [14].

Although it is not more powerful than the hypercube,
for all the SIMD. algorithms we considered, the running
time on the MCT matches the running time of well known
hypercube algorithms. Iis easier implementation and sig-
nificant computational power make it more desirable when
the full bandwidth of the hypercube is not required. For
several computations, only a small number of hypercube
links are used at a time. In such cases, the proposed MCT
architecture matches the power of the hypercube, and the
lower implementation cost makes it more desirable. ,

Finally, these advantages are obtained without any in-
crease in the asymptotical complexity of the layout area
over the grid (with at least three dimensions).or the MOT
(with any number of dimensions), and with significantly
less area complexity than the shuffle-exchange and de
Bruijn graphs.
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