Available online at www.sciencedirect.com

scuENCE@DIRECT@ Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 333 (2005) 433-454
www.elsevier.com/locate/tcs

The Do-All problem with Byzantine processor
failures

Antonio Fernandez!, Chryssis Georgidt?, Alexander Russétt3,

Alex A. Shvartsmand-4

8GSyC, Universidad Rey Juan Carlos, 28933 Mostoles, Spain
bDepartment of Computer Science, University of Cyprus, 75 Kallipoleos Str., P.O. Box 20537, CY-1678,
Nicosia, Cyprus
CDepartment of Computer Science and Engineering, University of Connecticut, 371 Fairfield Rd.,
Unit 2155, Storrs, CT 06269, USA
dComputer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

Received 6 October 2003; received in revised form 30 April 2004; accepted 26 June 2004

Abstract

Do-Allis the abstract problem of usimgprocessors to cooperatively perfomindependent tasks
in the presence of failures. This problem and its derivatives have been a centerpiece in the study
of trade-offs between efficiency and fault-tolerance in cooperative computing environments. Many
algorithms have been developed for Do-All in various models of computation, including message-
passing, partitionable networks, and shared-memory models under a variety of failure models.

This work initiates the study of thBo-All problem for synchronous message-passing processors
prone toByzantinefailures. In particular, upper and lower bounds are given on the complexity of

*Corresponding author.

E-mail addresses: anto@gsyc.escet.urjc.edA. Fernandez), chryssis@ucy.ac.cy (C. Georgiou),
acr@cse.uconn.edi. Russell),aas@cse.uconn.e@d.A. Shvartsman).

partially supported by the Spanish MCyT under grant TIC2001-1586-C03-01, the Comunidad de Madrid
under grant 07T/0022/2003, and the Universidad Rey Juan Carlos under grant PPR-2003-37. Work done while at
the University of Connecticut.

2Work done in part while at the University of Connecticut.

3The work of this author is supported in part by the NSFREER Award 0093065 and NSF grants 0220264,
0218443, 0121277, and 0311368.

4partially supported by the NSFAREER Award 9984778 and the NSF Grants 9988304, 0121277, and
0311368.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.06.034

http://www.elsevier.com/locate/tcs
mailto:anto@gsyc.escet.urjc.es
mailto:chryssis@ucy.ac.cy
mailto:acr@cse.uconn.edu
mailto:aas@cse.uconn.edu

434 A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454

Do-All for several cases: (a) the case where the maximum number of faulty processkinewn a

priori, (b) the case wherigs not known, (c) the case where a task execution can be verified (without
re-executing the task), and (d) the case where task executions cannot be verified. The efficiency of
algorithms is evaluated in terms of work and message complexities. The work complexity accounts for
all computational steps taken by the processors and the message complexity accounts for all messages
sent by the processors during the computation. The work and messages of a faulty processor are
counted only until the processor fails to follow the algorithm. It is shown that in some cases obtaining
work ®@(mn) is the best one can do. It is also shown that in certain cases communication cannot help
improve work efficiency.

© 2005 Elsevier B.V. All rights reserved.

Keywords:Distributed cooperation; Independent tasks; Byzantine failures; Work complexity

1. Introduction

The ability to effectively cooperate on common tasks in a decentralized setting is key to
solving many computation problems ranging from distributed search (e.qg., [38]) Ito
distributed simulation (e.g[7]) and multi-agent collaboration (e.§l,26]). Do-All, an ab-
straction of such cooperative activity, is the problem of usipgocessors to cooperatively
performm independent tasks in the presence of failures. The Do-All problem can be used
to study trade-offs between efficiency and fault-tolerance in cooperative computing, and is
considered to be fundamental in the research on the complexity of fault-tolerant distributed
computatioj10,17] Variations of this problem have been studied in shared-memory models
(Write-All) [18,19,24] in message-passing modf8s10,12] and in partitionable networks
(Omni-Do [9,15,22] Solutions for Do-All must perform all tasks efficiently in the pres-
ence of specific failure patterns. The efficiency is assessed in terms of work, time, and
communication complexity depending on the specific model of computation.

In this paper we initiate the study of the Do-All problem unBgrantine processor fail-
ures[21] that model arbitrary processor malfunction. We consider synchronous processors
that communicate by exchanging messages. We assume that the execution of a single task
takes bounded constant time, modeled as one computation step for any processor. The tasks
can be performed in any order and multiple executions of the same task do not affect the
outcome of the computation. We evaluate algorithms according to the number of computa-
tion steps taken by the processors during the computation, i.@v#ilable processor steps
orworkmeasure of Kanellakis and Shvartsnjan], and according to theaommunication
costthat counts the number of point-to-point messages sent by the processors during the
computation. The work and messages of a faulty processor are counted only until it fails to
follow the algorithm being executed.

The available processor steps measure is a direct generalizationppbtiassor x time
product, a standard complexity measure in parallel computing. Both complexity measures
account for all steps of participating processors, including any idling steps. This is especially
relevant in the context dast algorithmswhere the goal is to complete the required work
as efficiently as possible and as fast as possible (which is the natural concern in practical
applications such as factorization for public-key cryptanalysis). Hence, by “forcing” all
non-faulty processors to work at every step (and not allowing the processors to idle for

A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454 435

free until the computation is complete) we employ the full available parallelism. In the
study of the Do-All problem, this enable us to extract and identify the trade-offs between
efficiency and fault-tolerance in the most general case, where processors must work until
all tasks are performed, and despite the failures in the system components. In this paper our
goal is to obtain fast algorithms, and hence, using the available processor steps measure to
evaluate the efficiency of our solutions and lower bounds, is a natural choice. Evaluating
our solutions in terms of message complexity is also important, as being fast is not our only
goal and it is important to manage the communication efficiency as well.

Prior work. The Do-All problem, its shared-memory version, Wete-All problem, and

its partitionable networks version, the Omni-Do problem, have been studied under various
failure assumptions. However, this problem has not been studied under Byzantine processor
failures. Prior work on Do-All dealt with processor stop-failures (¢1y.,8,10,14,6), with
processor stop-failures and restarts (g18,4]), with networks prone to partition (e.g.,
[9,22,13), and with processor delays (e.[23,3,2,5,16}.

The model of Byzantine processor failures was introduced by Lamport[@tlain the
context of the consensus problem (a set of processors must agree on a common value).
Assuming that the number of faulty processbis fixed and known in advance, (among
other results) they gave a lower bound gf-3 1 for the number of synchronous processors
required for consensus. They also presented a synchronous consensus protocol that works
in f 4+ 1 rounds, withh > 3f + 1, but exponential communication (number of messages).

Contributions. This paper presents the first results for the Do-All problem for synchronous
message-passing processors prone to Byzantine failurem hetthe number of tasks to

be executed, andthe number of processors, of which ugf tan fail. Note that the Do-All
problem can be trivially solved wit® (mn) work by having each processor perform all the
tasks. Thus the goal is to seek solutions witik@) work, or to show that no such solutions
are possible.

We study this problem in several settings. We consider (a) the case where the maximum
number of faulty processofgs known a priori, (b) the case whefés not known, (c) the
case where a task execution can be verified (without re-executing the task), and (d) the
case where task executions cannot be verified. Feummarizes the results obtained in
this paper. For these results we assurg@n (this is the most interesting case, when the
number of processorsdoes not exceed the number of tasisin the figurep, 1< v <m,
is the number of tasks whose completion status can be verified by one processor in one step.
Here ¢ < f is the actual number of processors that fail in a computation of interest (
the upper bound on the number of processors that may fail; of course a smaller number of
processor may actually fail in a specific execution). For brevity, we defing as follows:
Ay ¢ =log(n/$) whenp <n/logn and4, , = loglogn whenn/logn < ¢ < n. Where
the upper bounds on the communication complexity are not given, the work bounds are
obtained without communication. Finally, we u@enotation to specify upper and lower
bounds in conjunction with work defined to be the minimum, over all algorithms, of the
maximum work caused by all adversaries.

436 A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454

No verificatior] Verification: v tasks can be verified in one step
[=0m) S =0(n)
Work
Q (m + mTf + %)
Known Work Work

f |emr+1)|e (m NNy ”A'O—%h") o(m + 2 4@+ L) mingg + 1, |ogn})
with communication

O(n(f +1) - min{¢ + 1, logn})

Unknown Work Work

f ®O(mn) ® (m + M 4 n/lﬁ%f)

Fig. 1. Summary of the results.

Among the different assumptions considered, the verifiability of tasks is possibly the
least common. The assumption is that in a system with verification processors can check
whether a task has been executed (up tasks can be verified in one step). Depending on
the kind of tasks we are considering, this capability could be provided by several means. For
instance, the tasks could be computational problems such that solving them is significantly
more costly than checking whether a given candidate solution is correct. (Examples of
these problems are sorting a list or factoring a large number.) In this case, a processor can
verify that the task has been done if it has a correct solution. The problem of distributing
these solutions to the processors can be solved, for instance, with a reliable stable storage
holding a database of solutions, which upon request delivers the solutions to given tasks
and which does not accept incorrect solutions (it verifies them before adding them to the
database). Another possibility would be having each processor reliably broadcasting the
obtained solution after each task execution. Note that in both cases it is simple to enforce
that in the same time step two correct processors either both find a task done or undone. In
the rest of the paper we do not consider the specific verification methods and we abstract the
cost of verification in terms of the parameteiFurthermore, we do not count the messages
(if any) involved in the verification, since this is dependent on the particular verification
methods and need not be a function of the number of verifications.

We remark that in the preliminary version of this w§ii], some results were incorrectly
stated. Specifically, for the cases of unkndiwmith verification and of knowrf = ©(n)
with verification, the upper bound on work was given &s:@/v), for the full ranges <m
andv <m. Here we show that the above upper bound holds precisely whe®(n) and
m/v = Q(logn/4,).

More interestingly, inf11] the lower bound on work for the same cases was given as
Q(mn/v). Here we show the stronger lower bound on workeh +mn /v+nlogn/A, 4).
Furthermore, if11], for the case of knowif = o(n) with verification, the lower bound on
work was shown to b&(m(f + 1)/v). Here we show the stronger lower bound on work
of Qm +mf/v+nlogn/A,).

Document structure. The paper is organized as follows. In Sectmne define the model

of computation, the Do-All problem, and the complexity measures. In Segtienpresent

our results when the task executions cannot be verified, first for the case when the maximum
number of faulty processofts known (Sectior3.1) and then for the case whéis unknown

A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454 437

(Section3.2). In Sectiond we present our results when the task executions can be verified,
first whenf is known (Sectiort.1) and then whefiis unknown (Sectiod.2). We conclude
in Sectionb.

2. Model of computation

We start by defining the system model, the abstract problem of performing a collection
of tasks in a distributed environment with Byzantine failures, and the complexity measures
of interest.

Distributed setting. We consider a distributed system consistinggfnchronous message-
passing processors; each processor has a unique identifjdrdm the sefn] = {1, 2, . . .,
n}. We assume thatis fixed and is known to all processors.

Tasks. We define aaskto be a computation that can be performed by any processor in
one step. An execution of any task does not depend on the executions of other tasks. The
tasks arédempotenti.e., executing a task many times or concurrently with other tasks has
the same effect as executing the task once by itself. Each task has a unique idermifier (
from the seflm] = {1, 2,...,m}. We assume that ath tasks are initially known to all
processors.

We consider the setting where a task execution cavebfiedwithout re-executing the
task and the setting where a task execution cannot be verified. When verification is possible,
we assume that up totasks, X v <m, can be verified by a processor in one step. Because
the setting is synchronous, we assume that if the same task is verified by several processors
in the same step (see below), then either all processors find the task done or all of them find
the task undone. As we mentioned previously, the verification could be done with different
techniques, and our model is a simple abstraction of any of these techniques.

Synchrony and time. We consider the synchronous model where the processors proceed

in lock-step, and assume that in each synchronous step a processor can: (1) execute a task or
verify up tov tasks (when verification can be done), (2) send messages to other processors
and receive the messages sent to it by other processors in the same step, and (3) perform a
constant-time local computation. We meadiimee complexityn terms of the synchronous
parallel steps.

Communication. Processors communicate by sending point-to-point messages. The un-
derlying communication network is assumed to be fully connected, that is, any processor
can send messages to any other processor. We assume that messages are neither lost nor
corrupted in transit, and that messages contaim&{m, n}) bits. Messages sent in one

step of the computation are received in the same step.

Model of failures. We consideByzantine processor failurg21]. We assume that a faulty
processor can behave arbitrarily (do nothing, do something not directed by its protocol,
send arbitrary messages, or behave normally). A faulty processor controls only its own mes-
sages and its own actions, and it cannot control other processors’ messages and actions. In

438 A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454

particular, a faulty processor cannot corrupt another processor’s state, modify/replace an-
other processor’'s messages, or impersonate other processors (i.e., create and send messages
that appear to have been sent by another processor). A faulty processor cannot “undo” a
task that was previously executed.

We let an omniscienadversaryimpose Byzantine failures on the system. We use the
notion of afailure patternto describe the occurence of Byzantine failures caused by the
adversary in a given computation. Syntactically, a failure pafteisna set of pairgp, 1),
wheretis the first time step of the computation where the adversary forces progesdgar
to behave differently from what is prescribed by the algorithm for procgsdte assume
that the adversary has full knowledge of the actions and decisions taken by the algorithm
before steft (i.e., the adversary has full knowledge of the history of the computation).

When a computation occurs in the presence of a failure patene say that processor
p € [n] survivesstepi if F does not contain a paip,) such thatr <i. We say that a
processop failsin F, if there exists a paitp, t) in F, for somet. For a failure patterk we
define itssizeto be¢ = |F|, i.e., it is the number of processors that faiFiri¢ can be 0).

A failure modelF is the set of all failure patterns that a given adversary can force. For the
purpose of this paper we consider failure modejswheref < n, that contain all possible
failure patterns of size at moktin this work we analyze the case where the paranfeser
known to the algorithms, and the case whigiseunknown.

The Do-All problem. We define the Do-All problem as follows:
Do-All: Given a set ofm tasks, perform all tasks usingprocessors, in the presence
of any failure patterrr in the given failure modef.
The Do-All problem is considered to be solved whemathsks are performed and at least
one non-faulty processor is aware of this.

Work and message complexityWe are interested in studying the complexity of the
Do-All problem measured asork (cf. [17,10,8). We assume that a single step of a pro-
cessor corresponds to a unit of work (recall that a single task can be performed in a single
step). When task verification is allowed, we assume that uptésks can be verified in a
single step. Thus performing a task or verifyimgasks corresponds to a unit of work. Our
definition ofwork complexitys based on thavailable processor stepseasurgl7]. For a
computation subject to a failure pattefine F ¢, denote byP; (F) the number of processors

that survive step of the computation.

Definition 2.1 (Work complexity Given a problem of sizenand am-processor algorithm
that solves the problem in the failure modg}, if the algorithm solves the problem for a
failure patternF’ e 7, by stept(F), then the work complexit$ of the algorithm is

©(F)
S=35, - = max Pi(F);.
m,n, f Fe}'f i§|_ 1()

We also evaluate the efficiency of message-passing algorithms in terms ohéssiage
complexity For a computation subject to a failure pattéfne Fr, denote byM;(F) the

A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454 439

number of point-to-point messages sent at stéfphe computation by th&; (F) processors
that survive that step.

Definition 2.2 (Message complexity Given a problem of sizenand am-processor algo-
rithm that solves the problem in the failure modg|, if the algorithm solves the problem for
a failure pattern¥’ € 7, by stept(F), then the message complexidof the algorithm is

T(F)
M =M, = max M;(F) ;.
m,n, f Fe]—"f i; l()

Note that when processors communicate using broadcasts or multicasts, each broad-
cast/multicastis counted as the number of point-to-point messages from senders to receivers.
As we mentioned in the previous section, we do not count as part of the message complexity
of the algorithm the messages used to verify tasks in the models with verifications.

Inthe rest of the paper we assume that, initially, the number of processaerg more than
the number of tasks, these are the scenarios motivated by typical applications. Analysis
for cases when > m follows mutatis mutandis

3. Doing-all when task execution is not verifiable

We first consider the setting where a processor cannot verify whether or not a task was
performed. Thus a faulty processor can “lie” about doing a task without any other processor
being able to detect it.

3.1. The maximum number of faulty processors is known

We assume here that the upper botiod the number of processors that can fail is known
a priori; of course the set of processors that may actually fail in any given execution is not
known. We first present lower bounds for this setting.

Theorem 3.1. Any fault-free execution of an algorithm that solves BreeAll problem in
the failure modelF » with f known takes at leasf @1 steps

Proof. By way of contradiction, assume that there is an algorithm A that solves the Do-All
problem for all failure patterns of size at mdésand that it has some failure-free execution
Rthat solves the problem in< [(m(f + 1)/n)] steps. Then, iRthere is a task that has
been performed by less than+ 1 processors, sindg | < | 2UADmI=Dn |y g

Now construct an executioR’ of A that behaves exactly like except that in the firss
steps each processor that is supposed to executeitaskact faulty and does not execute
Sincezis executed by less thgh+ 1 processorgis not executed. Since verification is not
available, no correct processor can distinguistR from R’, henceR’ stops aftes steps
and the problem is not solved (since at least one task was not performed), a contradiction.

O

440 A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454

Processorp, 1< p <n does:
1 fork, =1t do
2 execute task([2] + k,) modm) + 1

Fig. 2. AlgorithmCover. The code is for processpr

Corollary 3.2. Any fault-free execution of an algorithm that solvesEleAll problem in
the failure modelF » with f known has work at leasfm (f + 1) /n1n.

We now present algorithr@overthat solves Do-All in the case whefés known and
task execution cannot be verified. The algorithm is simple: each task is perfornyed by
processors. Since there can be at nfidstilty processors, this guarantees that each task is
performed at least once. This implies the correctness of the algorithm. The pseudocode of
the algorithm is given in Fig2. We now show that algorithr@overis optimal.

Theorem 3.3. Algorithm Cover solves thBo-All problem in the failure modeF ; with f
known in optimal number of stepgn(f + 1)/n] and work[m(f + 1)/nn, without any
communication

Proof. The proof follows from the fact that each task is executed by at |east different
processors. Since at mdgirocessors are faulty, at least one correct processor executes the
task.

For simplicity we will remove the modular algebra (see Figfor both processor and
task indices. We do this by assuming that any task number< 1, is in fact the task
numberz + m, any task number > m is in fact the task number— m, and any processor
p, with p < 1, is in fact processop + n.

Let us consider the tasks betwa’éﬁﬁ] +2 andf’"(”TH)} + 1. We show that these tasks
are executed by processgss— f to p. For that, it is enough to show that the last task
executed by processpr— f is at least task numbém (p + 1)/n1 + 1. This can be simply
observed, sincém(p — f)/n] + [m(f +1)/n] + 1>=[m(p + 1)/n] + 1, from the fact
that[x]+ [y1=>[x+y]. O

Itis worth observing that algorithi@overis work-optimal and time-optimal even though
no communication took place. This shows that in this setting communication does not help
obtaining better performance.

3.2. The maximum number of faulty processors is unknown

Now we consider the case where the upper bduadot known, i.e., all that is known
is that f <n. In this setting we observe that no algorithm can do better than having each
processor perform each task, as shown in the following theorem.

Theorem 3.4. Any fault-free execution of an algorithm that solvesEr@All problem in
the failure modelF,, _1 takes at least m steps and incurs at leastn work

A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454 441

This is an immediate corollary of the above discussion. In summary, it is not very inter-
esting to study fault-tolerant computation in this model:

Corollary 3.5. When f is unknown and the task execution cannot be vertfiedrivial
algorithm in which each processor executes all the tasks is optimal

4. Doing-all when task execution is verifiable

Given the pessimistic results in Secti@regarding our ability to solve Do-All efficiently,
we study the problem under a new assumption. We assume that there is a way for a processor
to verify whether a task has been done or not (without executing the task). The verification
mechanism reinforces the ability of correct processors to detect faulty processors: if a faulty
processor “lies” about having done a task, a correct processor can detect this by separately
verifying the execution of the task. Here we assume that in one step any processor can verify
up tov tasks, where £ v<m.

4.1. The maximum number of faulty processors is known

As before, we first consider the case where the upper bbondhe number of faulty
processors is known. We first show lower bounds on steps and work required by any Do-All
algorithm in this case (Sectioh1.]). Then we present an algorithm, callstinority, de-
signed to efficiently solve Do-All wheyi >n/2 (Sectiord.1.2). Next we present algorithm
Majority that is designed to efficiently solve Do-All whegih< n/2 (Sectio.1.3. Finally,
we combine algorithm#linority and Majority, yielding an algorithm, calle€Complete
that efficiently solves Do-All for the whole range b{Section4.1.4. The complexity of
algorithm Completedepends orf and comes close to matching the corresponding lower
bound.

4.1.1. Lower bounds

We now present lower bounds on time steps and work for any execution of an algorithm
that solves the Do-All problem with verification and knotwithe first result is a bound on
work that follows directly from the analogous result showiilid] for the fail-stop model
[25] (a processor may crash at any moment during the computation and once crashed it
does not restart). Recall that we defiig , as follows:A,, 4 = Iog(%) when¢ <n/logn,

and4,, 4 = loglogn whenn/logn < ¢ <n.

Lemma 4.1. Any execution of an algorithm that solves the Do-All problem in the failure
modelF ; with f knownin the presence af < f Byzantine failuresrequires workQ(m +

nlogn/A, 4).

Proof. Theorem 2 in14] gives a lower bound on the amount of work any algorithm that
solves the Do-All problem requires. The mentioned theorem assumes the fail-stop model,
and the existence of an oracle that gives information about termination and that balances the
undone tasks among the correct processors. Implicitly, the oracle can verify the execution of

442 A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454

up tomtasks in constant time. The theorem shows that, just in executing tasks, any execution
with ¢ failures of an algorithm that solves Do-All (far<m) in this model requires work

Q(m + nlogn/A, ¢). Since crashes are a special case of Byzantine failures, the lower
bound applies to our model as well]

We now present a lower bound on the steps of any algorithm that solves the Do-All
problem.

Lemma 4.2. Any fault-free execution of an algorithm that solves BeeAll problem in
the failure modeF ; with f known and with task verificatiptakes at leasfm (f + v)/nv]
steps

Proof. By way of contradiction, assume that there is an algorithm A that solves the Do-All
problem with verification for all failure patterns of length at mbahd it has some failure-

free executiorR that solves the problem in< [m(f + v)/nv] steps (sincsis an integer,

we can drop the ceiling: < m(f + v)/nv). The work in this execution is - n. Note that

in these steps each task has been executed at least once. Counting just one task execution,
m units of work have been spent on executing the tasks. The remaining work-isn,

and each work unit can be used to either perform a task or to wenfithem. Then there

is a taskzthat, in addition to having been executed once, has been “looked at” (executed or
verified) at mostf — 1 more times, since

{(sn—m)vJ - L(wn—m)vJ _ {<f+v _1) UJ _ 5
m m v

(by the pigeonhole principle). Thus tagkas been “looked at” at moktimes.

Now construct an executioR’ of A that behaves exactly lik& except that in the first
s steps each processor that is supposed to execute asik fact faulty and does not
execute it, and every processor that is supposed to \&isfalso faulty and behaves azif
was executed. Then, no correct processat’ican distinguistR from R’, henceR’ stops
after s steps and the problem is not solved (since at least one task was not performed), a
contradiction. [J

The above lemma leads to the following result.

Theorem 4.3. Any fault-free execution of an algorithm that solves the Do-All problemin the
failure modelF ; with f known and with task verificatiorequires workim (f + v)/nv1 - n.

Proof. Using Lemma4.2 and the fact that none of threprocessors fail, we compute the
work of any algorithm agm(f + v)/nv] -n. O

From the above we obtain the following lower bound result.
Theorem 4.4. Any algorithm that solves the Do-All problem in the failure ma#elwith

known in the presence ap < f Byzantine failuresand with task verificationncurs work
Q(m +mf/v+nlogn/A, 4).

A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454 443

Minority(p, P, T, {):
1 whileT # ¢ andy > 0do
2 execute one task allocatedpas a function ofp, P, andT
D0
C <« tasks allocated to the processorsPipas a list of[%] sets of at most tasks each
for I =1to [7mm“ﬁ|"T”1 do
verify the tasks in théh setC|/]
@ «— U {k:taskz € C[l] was allocated to processbiand was not dorje
end for
9 P« P\®
10 T < T\ {z:zwas allocated to somee P}
11 Vo< — ||
12 end while
13 execute up t6|7'|/| P|] tasks allocated tp as a function ofp, P, andT

0 ~NOO O~ W

Fig. 3. Algorithm for the cas¢ >n/2. The code is for processprThe call to the procedure is made with= [n],
T = [m],andy = f.

Proof. It follows directly from Lemma4.1and Theorend.3. [

4.1.2. Algorithm Minority

Now we present algorithrivlinority that is designed to solve Do-All in the case when at
most half of the processors are guaranteed not to fail,fi.e.z /2. Algorithm Minority is
detailed in Fig3. The code is given for a generic procesgog [n].

As can be seen in Fi@, the main body of the algorithm is formed by a while loop.
Within the loop the variableB, T, andy are updated so they always hold the current set of
the processors assumed to be correct, the tasks whose completion status is unknown, and
the number of processors that can still fail, respectively. The iterations of the while loop
are executed synchronously by every correct processor. An important correctness condition
of the algorithm is that every correct processor has the same value in these variables at
the beginning of each loop iteration (that is why we do not index the variables with the
processor’s id). The exit conditions of the loop are that there is no remaining work or no
remaining processor is faulty. If the latter condition holds, then the remaining tasks are
evenly distributed among the remaining processoR, iso that every tasks is assigned to
at least one processor, and the problem is solved.

Consider an execution of algorithMinority. Let k be the number of iterations of the
while loop in this execution. The iterations are numbered starting with 1. We dendte by
T;, andy; the values of the sef® andT, and the variable), respectively, at thend of
iterationi. We also use®y, Tp, andyq to denote the initial values &, T, andy/, respectively.

To abbreviate, we use = |P;| andm; = |T;|.

For an iterationi of the loop, each processor first chooses one of the tasis_in
deterministically with an allocating function @f P;_1, and7;_1. The allocating function
is known to every processor and must ensure that; ify >n;_1, different processors in
P;_1 choose different tasks ifi;_;. It must also ensure that ifi;_1 < n;_1, each task
is assigned to at leash;_1/m;_1]| and at mostin;_1/m;_1] processors. One possible
allocating function is one that (once the processor®;iy are indexed from 1 ta;_1

444 A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454

Oracle(p):

1 while there are undone tasks do
2 allocate an undone tasko p
3 execute task

4 end while

Fig. 4. Oracle-based Do-All algorithm under the fail-stop model. The code is for progessor

and the tasks iff;_; are indexed from 1 te:; _1) assigns to thegth processor inP;_1 the

(((g —) modm;_1) + 1)st task inT;_1. After executing this task, the processor verifies

the execution of all the tasks allocated to processo# in to identify faulty processors.

The identities of the newly discovered faulty processors are stored in tlde ¥déth this
information it updates the sef_1 and P,_1 and the value/;,_, and obtains;, P; and

y;, respectively. The list of seS is the same for each processor. Then, according to the
description of the algorithm all processors verify the tasks allocated to a subset of correct
processors simultaneously, either finding each of them done or undone. This guarantees that
the setsp are the same in all correct processors.

The correctness of algorithidinority can be shown by induction on the number of
iterations of the while loop. The induction claims that at the beginning of iteratisr0
all correct processors have the same value of the varidbles 7;_1, andy; _;, and that
|T;—1]<m — i + 1. Observe that initially all processors have the sa&imelp andy, and
that|Tp| = m, which covers the base case. The induction then has to show that if the correct
processors begin an iteratiomwith the sameP;_1, 7;_1 andy,_,, then at the end of this
iteration all correct processors have the saPnel;, andy;, and at least one new task has
been done in the iteration. The first part follows from the fact that all correct processes end
up with the same seb of failed processes. The second follows from the fact that at least
one processor is correct. Then, termination is guaranteed (with all tasks being completed)
by the fact that at least one processor is corrgck(n), by the fact that after at most
iterations all correct processors will exit the while loop, by the exit conditions of the while
loop, and by “line 13" of the code of the algorithm. We leave the details of the termination
to the reader.

We now assess the efficiency of algoritiimority. We denote byp; the value of seth
at theendof iterationi of the loop, and we us¢; = |®;|. Recall thatp denotes the number
of failed processors in a given execution.

Towards the analysis, we first present the algoritracle, shown in Fig4, which uses
an oracle to solve the synchronous Do-All problem under the fail-stop processor model.

In algorithmOracle, the oracle is queried in each iteration to determine whether there
are still undone tasks. The oracle can detect the processors that crashed during an iteration
and whether a task has been performed or not by the end of the iteration (if all processors
assigned to a task have crashed, then the task has not been performed). If there is at least one
undone task by the end of the iteration, then the oracle is queried to allocate undone tasks to
the uncrashed processors. The allocation satisfies that the undone tasks are evenly distributed
among the uncrashed processors. In fact, we assume here that the function that allocates
in each iteration an undone task to procegs(ior each process@) in line 2 is the same

A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454 445

used in algorithnMinority. Hence, the difference between algorit@racleand algorithm
Minority is that in algorithmMinority the task execution verification is performed by the
processors to detect faulty processors and undone tasks, as opposed to algoaitten
where the task execution verification is performed by the oracle. Algori@hacle is a
rewriting of the oracle-based algorithm presented by Georgiou gt 4jl. Assuming that

the queries to the oracle can be done in constant time, they showed that in an execution with
no more thanp crashes the algorith@raclerequires at most work t()n +nlog n//ln,¢>)-

We will use this result to show Lemnaa5 for algorithmMinority.

Lemma 4.5. Given an execution of algorithm Minority withfailures and where the while
loop consists of k iteratior,lsl;henZf:1 ni =0 (m + nlog n/A,,,qs).

Proof. Consider an execution of the algoritivtinority with ¢ failures, and lek be the
number of iterations of the while loop. We want to bound the §uf, »;. For that, let
us consider the execution of algorith@racle in which after the allocation at line 2 and
before the task execution at line 3 in each iteratioa {1, ..., k} the processors i®p;,
and only those, crash. Then, since the same allocation function is used in the executions of
Minority andOracle it follows by induction ori that in the execution of algorith@racle,

at the beginning of iterationthe set of correct processorsi#s_1 and the set of undone
tasks isT;_1, and at the end of the iteration the set of correct processdtsasd the set
of undone tasks i§;. Observe that for algorithr@racle, when the oracle queries can be
done in constant time, we have that the work of iteratjaenoted;, is a constant multiple
of the number of correct processars Hence, if we denote by, the work of thek first
iterations ofOracle, we have that

k k
Sk=Y.s5i=Y n. 1)
i=1 i=1
Now, since the number of failures in the executiorMinority is ¢, if we assume that no
processor crashes after iteratioin the execution oDraclewe have that the number of
failures in this execution iile ¢; <¢. Hence, from the result of Georgiou et f4]
mentioned above, we have that

Sk=0(m+n|ogn//1n,¢). (2)
The thesis of the lemma follows from Eq4) @nd @). O

We now state and prove the work complexity of algorithtimority.

Lemma 4.6. Any execution of algorithm Minority has wosk= O(m + mn/v + nlogn/
An’qg).

Proof. We begin by computing the work incurred in the while loop. We break the analysis
into two parts. In the first part we consider only the iteration$ the while loop where
initially the number of remaining tasks is at least as large as the number of remaining
processors, i.em;_1>n;_1, and we compute the work incurred in these iterations. In the

446 A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454

second part we consider only the iteratiomgherem; 1 < n;_1 and we compute the work
incurred in such iterations.

(1) lterations i withm;_1>n;_1. In these iterations no task is done twice by correct
processors. Hence, at mostasks are done in these iterations. For each task done, no more
than[n/v] < n/v + 1 verification steps are taken. Hence, the total work incurred in these
iterations isS1 = O(m + mn/v).

(2) lterations i withm; _1 < n;_1. Let us assume there arsuch iterations out of a total
of k iterations ¢ <k), with indices¢® to ¢¢), and 1<¢D < ¢@ < ... < ¢ <Lk, In
iteratione®, there are initiallyz) _, processors anat ,,_; tasks, withm) _1 < nyi_1.
Inthis iteration each (correct) processor performs a task and verifi¢s ming, m,i_1} =
mya)_4 tasks. Hence, the total work incurred in elterations is

r moi r 1 r
eh_1
S2 =) n <1+ ’V——|> <2 no+ =D ngomun_q.
-1 v i=1 Vi=1

The first sum is bounded by using Lem#&, since

r

k
Y n< Y. ni=0(m+nlogn/4, 4).
1 i=1

i=

‘To bound the second sum, we bound first the value @f using the fact that, in iteration
¢@, each task is assigned to at m@sfq _;/m i _,] Processors,

Ny NpyMyi)_1

Mpi) KMyy_q — ———————— < Myi)_q — ———————————.
(Mo _1/myi) 1] My _q + Nyir_q
Then, sincen,i_, < n,i_1, We have
ReiyMyi_q < 2 n((i)_l(mg(i)_]_ - mg(i))~ 3)

Then, the second sum can be bounded as follows:

r r
Z RoiyMyi)_q < Z an(i)_l(me(i)_l - mzm)
i=1 i=1
r r—1
< 2<n£(1)_1m£(1)_1 + Z Rpty_1Mpir_1 — D nz(i)_lmé(i)>

i= i=
r—1

< 2(”[(1}_1””[(1)_1 + > m (I’le(i+1)_1 - ng(f)_l))
i=1

< 2y _qgmy_g
< 2mn.

The first inequality follows from Eq.3), the third inequality follows from the fact that
M i _q <myi-v, and the fourth inequality follows from the facts th&t™) —1 > ¢@ —1
and that; <n; wheni > j.

Then, we have that the work incurred in these iteration$sis= O(m + mn/v +
nlogn/A, 4)-

We now compute the work incurred after the exit conditions are satisfied, say at the end
of iterationk. If T, = ¢ then each processor takes at most one step before halting for the

A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454 447

Majority(p, P, T, }):
1 while|T| > m/n andy > 0do

2 Do _Work and Verify(p, P, T, s, @)

3 Checkpointp, P, s, @)

4 P« P\®

5 T < T\ {z : zwas allocated to somee P}

6 Y~y -9

7 end while

8 if y =0then

9 executd|T|/| P|] tasks allocated tp as a function ofp, P, andT
10 else

11 execute all the tasks ih

12 endif

Fig. 5. Algorithm for the cas¢ < n/2. The code is for processpr The call parameters a = [n], T = [m],

andy = f.

total of O(n) work. Otherwise, at most[m/n| < m + n<2m work is done. Hence this
work is S3 = O(m).
Therefore, the total work i§ = S1 + S2 + S3 = O (m +mn/v +nlogn/A, 4). O

Note that the work complexity of the algorithm is asymptotically optimal as long as
f = Q(n). It is worth observing that algorithrivinority is asymptotically optimal even
though it does not use communication. This shows that for relatively large number of failures
communication cannot improve work complexity (asymptotically).

Remark 4.1. In the conference version of this pagér], the bound on the work for
Minority was imprecisely given as@n /v), for anyn <m andv <m.As it can be observed
from Lemmad4.6, this bound is valid only as long as= O(n) andm /v = Q(logn/ A,).

4.1.3. Algorithm Majority

We now present algorithriviajority that is designed to efficiently solve Do-All in the
case where the majority of the processors does not fail, f.e n/2. At a high level
algorithmMajority proceeds as follows. Each nonfaulty processor is given a set of tasks
to be done and a set of processors whose tasks it has to verify. The processor executes
its tasks and verifies the tasks of its set of processors, detecting faulty processors. Then a
check-pointing algorithm is executed in which all nonfaulty processors agree on a set of
processors identified as faulty in this stage, and update their information of completed tasks
and non-faulty processors accordingly. Algoritivtajority is detailed in Fig5. The code
is given for a processgr € [n].

As in algorithmMinority, the parameters of algorithmMajority are the identifiep of the
invoking processor, the set of processBriiat have not been identified as faulty, the set
of tasksT that may still need to be completed, and the maximum nunibafrprocessors
in setP that can be faulty. We adopt the parameter notations we used for an iteration of the
while loop of algorithmMinority to the parameters of algorithmajority. Specifically, for
an iteration, we let P;, 7; andy; denote the values &, T, andy, respectively, at thend
of iterationi. Then,n; = | P;| andm; = |T;|. Finally,ng = n andmg = m.

448 A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454

The iterations of the while loop dflajority in all the correct processors work syn-
chronously, i.e., théh iteration starts at exactly the same step in each correct processor.
An important correctness condition of the algorithm, which can be checked by induction,
is that the values of;, T;, andy; must be the same for each iteratidn differentcorrect
processors.

Before starting a new iteratian a processor first checks whether all the processors in
P;_1 are correct or whether the total number of remaining tasks is no morestpanif
either condition holds, it exits the loop. Then, if all the processorB;in are correct, it
computes a balanced distribution of the remaining set of tasks so that, overall, all the tasks
are done by the processors ;. Otherwise the total number of remaining tasks is no
more thanm/n, and in that case the processor does all the remaining tasks itself. Overall,
in either case, this implies @) work.

If none of the above conditions hold, a new iteratiatarts. The processor first calls the
subroutineDo_Work and Verify. In this subroutine each processorAn 1 gets allocated
some subset of the tasksih_j that it must execute, and a subset of the processars in
that it mustsupervisethat is, whose tasks it wilterify. More formally,

Definition 4.1. For an iterationi of an execution of algorithnMajority, we say that a
processop € P;_1 supervises a processpre P;_1, if pis assigned to verify all the tasks
from T;_1 thatq was assigned to perform in iteratian

If a processor detects in this subroutine that some supervised processor in that subsetis not
doing the tasksitwas assigned, itincludes itin a set of faulty processors, returned. a&/set
denote byd; , the processors that procesp@uspects to be faulty at tie@dof subroutine
Do _Work and Verify of iterationi. Then the processor calls the subroutiPieeckpoint
which uses a check-pointing algorithm to combine the sets of suspected processors from all
the processors iR’ into acommon consistent s&t; this denotes the consistent set of faulty
processors at thendof iterationi. Finally, knowing which processors have been identified
as faulty in this iteration, it updates the valuesRpf 1, 7;_1, andys;,_, and obtains?;, T;,
andy;, respectively. Note that singlg, = f < n/2 initially, at any point it is satisfied that
v < |Pil/2.

We now detail more the subroutinPe®_Work and VerifyandCheckpointWe begin the
first one. The code of subroutim®m Work and Verifyis shown in Fig6.

In the subroutine\is an ordered list of tasks. We denote Wy the value ol after the
endof routineAllocate Tasksof iterationi. Hence W; is an ordered list of tasks, all of them
in 7;_1. This is needed to ensure that it is known the order in which a given processor is
supposed to perform the tasks in its igt. That also allows us to ensure that all processors
supervising a processoiverify the zth task allocated to at the same time (and hence all
find it either done or undone). Note also that to ensure that all correct processors finish the
calltoDo_Work and Verify at the same time, they all must be allocated the same number
of tasks to perform.

Similarly, Sis a sequence of sef§l], ..., S[f%} + 2], each with at most processors.

We denote bys; the value ofSafter theendof the routineAllocate Processor®f iteration
i. These sets must also satisfy (in order for the same task to be verified at the same time by
all the processors that do so) that the same processan the same sef;[k] in all the

A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454 449

Do_Work_and Verify(p, P, T, {r, ®):

1 W <« Allocate Tasksp, P, T)

2§ « Allocate Processorép, P, T,)

3 <«

4 forz=1to|W|do

5 perform thezth task inW

6 fork=1to[2]+2do

7 verify thezth task of each processor in s#k]
8 @ «— @ U{r:listhezth task allocated te € S[k] and was not donrje
9 end for

10 end for

Fig. 6. Subroutindo_Work_and_Verify. Code for processqn.

processors that superviseThen, all the tasks afwill be verified at the same time in the
kth iteration of the inner “for” loop.

Letus now look at the allocation of tasks. For iteratiomne impose thafm; —1/n; 1] dif-
ferent tasks fronT;_1 are allocated to each processoPin; by subroutinillocate Tasks
and that the number of processors allocated to execute two different tagks idiffers
in at most one. Other than these, there are no other restrictions. For instance, if we num-
ber the tasks iff;_1 from 1 tom;_1 and the processors iR _1 from 1 ton;_1, theqth
processor could be allocated the tasks with numb@érs_1 + ¢ — 1) modm;_1) + 1, for
k=0,...,[mj—1/nj—1]1 — 1.

We look now at the allocation of processors done in subrouilitecate Processors
for iterationi. We require that at least/2_; + 1 processors supervise any other processor
(to be able to use Lemn¥a7, stated later). A processor implicitly supervises itself. Then,
any deterministic function that assigns at leagt_3 other processors to each processor
in P;_1 so that each processor is supervised by at least other; 2rocessors is valid.
We also need to choose the séis; appropriately, as described above. All these could
be done as follows. First, define a cyclic orderAn 1 and allocate to each processor the
2y, _, processors that follow it in that order. Then, group the processors in sets of size
using the cyclic order and starting from some distinguished processor (e.g., the one with
smallestPiD). Number these sets from 1 f@;_1/v]. Each processor then gets assigned
the sets that contain processors it has to supervise. To enforce that the same set is verified
simultaneously, set numbkis verified in the(k mod ([2y;_4/v] + 2)) + 1st iteration of
the inner loop. Sincey;_; adjacent processors can span at nidgt_/v] + 2 sets (out
of which at least2y/;_1/v] + 1 havev processors each), there is a way to schedule the
verification of all the sets.

We now consider subroutin€heckpoint Its code is detailed in Figi. We denote by
C; the value ofC at theendof the assignment at line 1 of the code, of iteratioithe
subroutine uses two communication rounds. At iteraiiofirst each processqr sends
its set®; , (computed in the subroutineo_Work and_Verify) to the processors in set
C;. SetC; contains the first @;_, + 1 processors irP;_1 with the smallespip. An ele-
mentary, but important, invariant of the algorithm is thatSets the same in all correct
processors.

450 A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454

Checkpointp, P, s,):

1 C <« thefirst2) + 1 processors i with smallest PID
2 send set to every processor i@

3 if p e Cthen

4 attempt to receive s, from each processaor € P

5 & « {b: processob is in at least) + 1 received sets }
6 send® to every processor iR

7 else

8 idle for the rest of the step

9 attempt to receive s@. from each processere C

10 ® <« {b : processob is in at least) + 1 received setd.}
11 end if

Fig. 7. Subroutin€Checkpoint Code for processap.

The processors i@; attempt to receive all set; , from the processors iR, _;. Note
that a faulty processdr may not send its corresponding s&t” or send an erroneous set
®; ;,. That is allowed and no note is taken of it by the correct processors. Also, messages
received from processors not By_1 are disregarded by the correct processors. Only those
processors that are in at legst ; + 1 received sets from processorsfn 1 are considered
faulty by the processors in s€t. Then, the processocsn C; send their updated sefs
to the processors iR;_;. Each processquin P;_; updates its seb; , by considering as
faulty only the processors that are in at le@ist; + 1 received sets from processorsin
and obtainsp;. SinceP;_1 contains at leasty2,_; + 1 processors, we have the following
claim.

Lemma 4.7. For an iteration i of an execution of algorithm Majoritif each processor in
Pi_1 is supervised by at lea&t); _, + 1 different processors i®;_1, then after subroutine
Checkpoint has been executétke set®; is the same for every correct processorAn 1,
it only contains faulty processarand all the tasks allocated to processorsih\ @; have
been performed

Proof. Assuming the correct processors do the supervision properly, if some correct proces-
sorp detects a faulty processarand includes) in @; , in the subroutinddo_Work and_
Verify, then all correct processors that supengsaso do so. Then, each correct proces-
sor inC; receives at leasf; _, + 1 sets®; , containingg, since in any set of2;, _; + 1
processors (including the set of processors that superg)sadeast); _; + 1 processors
are correct. This also implies that the processoi® in will receive at least); _; + 1 sets
@, . containingg (even if the faulty processotsin C; send erroneous set ;). Hence
processor will be in the final setd; of each correct processor. Note that if procespisr
not faulty and the faulty processdisend erroneous seds ;, that includeg, g will not be
included in a set; of a correct processor since there will not be more than sets®; ;
containingg. Since this is true for each procesgos P;_1, after the subroutin€heckpoint
has been executed the &tis the same for every correct processojn1, and it only
contains faulty processors. This implies that the processors_in\ @; performed the

A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454 451

tasks allocated to them correctly (otherwise they would not li’g.in \ @; but in @;). This
completes the proof of the lemmal]

The following lemma shows that algorithviajority solves the Do-All problem efficiently
when f < n/2. Here¢ < f is the exact number of faulty processors in the execution of
interest of the algorithm. This value can be much smaller, for a particular execution, than
the upper bound

Lemma 4.8. Algorithm Majority, can be used to solve tH2o-All problem in the failure
modelF ; with known f ¢ < f actual Byzantine failuresand v task verifications per pro-
cessor per stepvith work S = O(m +mf/v+n(d+ f/v)-min{f¢p+1, Iogn}) and message
complexityM = O(n(f + 1) - min{¢ + 1, logn}).

Proof. It can be shown by induction that after each iteratiaf the while loop of the
algorithm, each correct processor has the same valugs &, andy; < f and that the

tasks not in7; have been executed. Specifically, based on Leriaf the correct pro-
cessors begin an iteratiomvith common values of;_1, T;—1 andy; _4, it follows that the
(remaining) correct processors conclude this iteration with common valugs @f and

;. Of course, initially all processors have the saBaeTp andy,. If there is at least one
correct processor, then each iteration has &;setsmaller size. This implies that the algo-
rithm terminates with all tasks performed and at least one correct processor being aware of
this.

The proof of the work bound uses several ideas i@ To start, we adapt their
Theorem 4 as follows. This theorem says that, under the crash failure model, if in ev-
ery stage of a synchronous algorithnthe work to be performed is evenly divided among
the processors, then the total number of stages executed in algaritarbounded by
Odogn). The proof uses the fact that the work previously assigned to a correct processor
is not redone. We can adapt this proof to our algorithm, since we fully divide the work in
each iteration and only redo tasks of failed processors. Hence, at rdogt:Qiterations
are required.

We are going to study separately those iteratiaishe while loop in whichn; _1 >n;_1
from those in whichn;_1 < n;_1. Since we assume< m, initially mq > ng. Furthermore,
it is easy to show that once (if even)_1 < n;_1, this holds until the end of the execution
as follows. Since less than half the processorsg;iny can fail, ifm;_1 < n;_1/2, clearly
at the end of the iteratioivn; < n;. Otherwise, ifn;_1 > m;_1>n;_1/2, then any task is
assigned to at most two processors, and at the end of the itergtibas been reduced to
less than half.

Then, we can consider both kind of iterations separately. Let us first consider iterations
i of the while loop wheren;_1 >n;_1. Note that there is no such iteration in which more
than[m/n] tasks are allocated to any processor. This is so because injially] tasks
are allocated, and the number of failures required to have more[tham] tasks in any
other iteration is more tham/2. Hence, a faulty processor can force at nijestn] tasks
to be redone. Thus, we have that at mast ¢[m/n] < 2m + ¢ = O(m) work spent
executing tasks in these iterations. Similarly, in the iteratiaviserem; _1 < n;_1, one task
is allocated to each processor. We have from above that the number of iteratiglogis O

452 A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454

and it can be trivially observed that there can be at most 1 iterations. Hence, at most
O - min{¢ + 1, logn}) work is spent executing tasks in this case. Hence, in both kinds
of iterations the work incurred in executing tasks ig#0+ n - min{¢ + 1, logn}). Since
for each task executed there is one call to the checkpoint subroutine (each such call takes
constant time) and at m0$%1 + 2 verifications, the work bound follows. Note that the
work incurred after the exit conditions of the while loop are satisfiedig)dsee discussion
on the exit conditions in the description of the algorithm).

For the message bound, we use a similar argument. There (@am{@ + 1, logn})
iterations, with one call to the checkpoint subroutine in each, and at m@f 2- 1) mes-
sages required in each checkpoint call. The message complexity bound follows. Note that no
communication takes place after the exit conditions of the while loop are
satisfied. [

It is worth observing that in this case, communication helps improve work complexity.

4.1.4. Algorithm Complete

By combining the two cases considered by algoritiviirsority andMajority for different
ranges of, we obtain an algorithm that efficiently solves Do-All for the entire range of
We refer to this algorithm as algorith@omplete

The correctness and the efficiency of algorit@empletefollows directly from the cor-
rectness and efficiency of algorithrivBnority andMajority.

Theorem 4.9. Algorithm Complete solves ti¥o-All problem in the failure modef ; with

f known ¢ < f actual Byzantine failuresand v verifications per processor per stepith
work § = O(m + mn/v + nlogn/4, 4) and no communication whefi = Q(n), and
with work S = O(m + mf/v +n(1+ f/v) - min{¢ + 1, logn}) and message complexity
M =O®m(f +1) -min{¢ + 1, logn}) otherwise

4.2. The maximum number of faulty processors is unknown

In this section we assume that all we know about the number of faulty processors is that
f < n.Using Lemmat.2and Theorem.3of Sectiond.1.1 we obtain the following lower
bound.

Lemma 4.10. Any fault-free execution of an algorithm that solves EreeAll problem in
the failure modelF ; with f unknown and with task verificatiprequiresQ(m/n 4+ m/v)
steps andX(m + mn/v) work.

Proof. Since all that is known about the number of failures is that n, any algorithm
that works under these assumptions has to workffee n — 1. Then, the result follows
from Lemma4.2and Theorend.3. [

Note that the lower bound of Lemmdal does not depend on the knowledgepadr f and
is hence applicable to this case as well. Then, we have the following theorem.

A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454 453

Theorem 4.11. Any algorithm that solves tHgo-All problem in the failure modef ; with
funknownin the presence ap < f Byzantine failuresand with task verificatiorhas work
Q(m +mn/v+nlogn/A, ¢).

Sincefis unknown, a given algorithm must solve Do-All efficiently even for the gase
n — 1. Hence, if we use algorithidinority assuming thaf = n — 1, then Lemmd.6gives
us an asymptotically matching upper bound on work for the settind thahknown. Taken
together with the above lower bound result (Theoekf), we conclude the following.

Corollary 4.12. The work complexity of algorithm Minority in the failure modgé} with
f unknown ¢ < f actual Byzantine failuresand with task verificationis @ (m + mn /v +
nlogn/A, 4).

Remark 4.2. In the conference version of this papérl], the bound on the work for
Minority for this setting was imprecisely given &mn/v), for anyn <m andv <m. As
it can be observed from Corollad:12 this bound is valid only as long as= O(n) and
m/v = Q(logn/A,).

5. Conclusions

In this paper we initiated the study of the Do-All problem under Byzantine processor
failures. In particular we showed upper and lower bound results for synchronous message-
passing processors prone to Byzantine failures for several cases. We considered the case
where the maximum number of faulty procesddssknown a priori, the case whefées not
known, the case where tasks executions can be verified, and the case where task executions
cannot be verified. We observed that in some cases @drkn) (m number of tasksn
number of processors) is unavoidable. We also observed that in some cases communication
does not help obtaining better work efficiency. In most cases we showed asymptotically
matching upper and lower bound results. For the case whefe(n) and known, and task
execution is verifiable, the upper bound, produced by the analysis of algdvithamity is
not tight. Obtaining tight bounds for this case is an interesting open question.

References

[1] C. Aguirre, J. Martinez-Munoz, F. Corbacho, R. Huerta, Small-world topology for multi-agent collaboration,
in: Proc. 11th Internat. Workshop on Database and Expert Systems Appl., 2000, pp. 231-235.

[2] R.J. Anderson, H. Woll, Algorithms for the certified Write-All problem, SIAM J. Comput. 26 (5) (1997)
1277-1283.

[3] J. Buss, P.C. Kanellakis, P. Ragde, A.A. Shvartsman, Parallel algorithms with processor failures and delays,
J. Algorithms 20 (1) (1996) 45-86.

[4] B. Chlebus, R. De Prisco, A.A. Shvartsman, Performing tasks on restartable message-passing processors,
Distributed Computing 14 (1) (2001) 49—-64.

[5] B. Chlebus, S. Dobrev, D. Kowalski, G. Malewicz, A.A. Shvartsman, I. Vrto, Towards practical deterministic
Write-All algorithms, in: Proc. 13th ACM Symp. on Parallel Algorithms and Architectures (SPAA 2001),
2001, pp. 271-280.

454 A. Fernandez et al. / Theoretical Computer Science 333 (2005) 433—-454

[6] B.S. Chlebus, L. Gasieniec, D.R. Kowalski, A.A. Shvartsman, Bounding work and communication in
robust cooperative computation, in: Proc. 16th Internat. Symp. Distributed Computing (DISC 2002), 2002,
pp. 295-310.

[7] P. Dasgupta, Z. Kedem, M. Rabin, Parallel processing on networks of workstation: a fault-tolerant high
performance approach, in: Proc. 15th IEEE Internat. Conf. Distributed Computer Systems (ICDCS 1995),
1995, pp. 467-474.

[8] R. De Prisco, A. Mayer, M. Yung, Time-optimal message-efficient work performance in the presence of faults,
in: Proc. 13th ACM Symp. Principles of Distributed Computing (PODC 1994), 1994, pp. 161-172.

[9] S. Dolev, R. Segala, A.A. Shvartsman, Dynamic load balancing with group communication, Theoretical
Computer Science, to appear. A preliminary version appears in the Proc. Sixth Internat. Colloquium on
Structural Information and Communication Complexity (SIROCCO 1999), 1999, pp. 111-125.

[10] C. Dwork, J. Halpern, O. Waarts, Performing work efficiently in the presence of faults, SIAM J. Computing
27(5) (1998) 1457-1491. A preliminary version appearsinthe Proc. 11th ACM Symp. Principles of Distributed
Computing (PODC 1992), 1992, pp. 91-102.

[11] A. Fernandez, Ch. Georgiou, The Do-All problem with Byzantine processor failures, in: Proc. 10th
Internat. Colloquium on Structural Information and Communication Complexity (SIROCCO 2003), 2003,
pp. 117-132.

[12] z. Galil, A. Mayer, M. Yung, Resolving message complexity of byzantine agreement and beyond, in: Proc.
36th IEEE Symp. Foundations of Computer Science (FOCS 1995), 1995, pp. 724-733.

[13] Ch. Georgiou, A. Russell, A.A. Shvartsman, Work-competitive scheduling for cooperative computing with
dynamic groups, in: Proc. 35th ACM Symp. Theory of Computing (STOC 2003), 2003, pp. 251-258.

[14] Ch. Georgiou, A. Russell, A.A. Shvartsman, The complexity of synchronous iterative Do-All with crashes,
Distributed Computing 17 (1) (2004) 47-63.

[15] Ch. Georgiou, A.A. Shvartsman, Cooperative computing with fragmentable and mergeable groups, J. Discrete
Algorithms 1 (2) (2003) 211-235.

[16] J.F. Groote, W.H. Hesselink, S. Mauw, R. Vermeulen, An algorithm for the asynchronous Write-All problem
based on process collision, Distributed Computing 14 (2) (2001) 75-81.

[17] P.C. Kanellakis, A.A. Shvartsman, Efficient parallel algorithms can be made robust, Distributed Computing
5(4) (1992) 201-217. A preliminary version appears in the Proc. Eighth ACM Symp. on Principles of
Distributed Computing (PODC 1989), 1989, pp. 211-222.

[18] P.C. Kanellakis, A.A. Shvartsman, Fault-Tolerant Parallel Computation, Kluwer Academic Publishers, 1997.

[19] Z.M. Kedem, K.V. Palem, A. Raghunathan, P. Spirakis, Combining tentative and definite executions for
dependable parallel computing, in: Proc. 23rd ACM Symp. on Theory of Computing (STOC 1991), 1991,
pp. 381-390.

[20] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M. Lebofsky, SETI@home: Massively distributed computing
for SETI, Comput. Sci. Engng. 3 (1) (2001) 78—-83.

[21] L. Lamport, R. Shostak, M. Pease, The Byzantine generals problem, ACM Trans. Programming Languages
and Systems 4 (3) (1982) 382-401.

[22] G. Malewicz, A. Russell, A.A. Shvartsman, Distributed cooperation during the absence of communication,
in: Proc. 14th Internat. Symp. Distributed Computing (DISC 2000), 2000, pp. 119-133.

[23] C. Martel, A. Park, R. Subramonian, Work-optimal asynchronous algorithms for shared memory parallel
computers, SIAM J. Comput. 21 (6) (1992) 1070-1099.

[24] C. Martel, R. Subramonian, On the complexity of certified Write-All algorithms, J. Algorithms 16 (3) (1994)
361-387.

[25] R.D. Schilichting, F.B. Schneider, Fail-stop processors: an approach to designing fault-tolerant computing
systems, ACM Trans. Comput. Systems 1 (3) (1983) 222-238.

[26] M. Tambe, J. Adibi, Y. Alonaizon, A. Erdem, G.A. Kaminka, S. Marsella, |I. Muslea, Building agent teams
using an explicit teamwork model and learning, Artificial Intelligence 110 (2) (1999) 215-239.

	The Do-All problem with Byzantine processor failures
	Introduction
	Model of computation
	Doing-all when task execution is not verifiable
	The maximum number of faulty processors is known
	The maximum number of faulty processors is unknown

	Doing-all when task execution is verifiable
	The maximum number of faulty processors is known
	Lower bounds
	==0.3emAlgorithm Minority
	==0.3emAlgorithm Majority
	==0.3emAlgorithm Complete

	The maximum number of faulty processors is unknown

	Conclusions
	References

