Minimal System Conditions to Implement Unreliable Failure Detectors *

Antonio Fernandez' Ernesto Jiménez' Sergio Arévalo'

Abstract

In this paper we explore the minimal system require-
ments to implement unreliable failure detectors. We first
consider systems formed by lossy asynchronous and eventu-
ally timely links. On these systems we define two properties,
the Weak Property and the Strong Property, depending on
whether all correct processes can be reached with links that
are not lossy asynchronous from one or from all correct pro-
cesses, respectively. We present necessary conditions based
on these properties. We show that there is no algorithm that
implements OS, Q, nor S (resp. P nor P) if we allow
one single failure in a system that, when all processes are
correct, does not satisfy the Weak (resp. Strong) Property.
Then, we propose an algorithm that implements <P if the
Strong Property is satisfied, and S (and Q) with an ad-
ditional assumption) if only the Weak Property is satisfied.
For systems formed by synchronous and lossy asynchronous
links only, we propose another algorithm that implements
detector class Py if the Strong Property is satisfied, and im-
plements a new detector class S’ (and Q with an additional
assumption) if only the Weak Property is satisfied.

1. Introduction

Unreliable failure detectors were proposed by Chandra
and Toueg [6] as devices that can be used to solve consen-
sus in asynchronous systems with crash failures. These de-
vices allow to circumvent the seminal result from Fischer
et al [13] that shows the impossibility of solving consensus
in these systems even with one single failure. Beyond con-
sensus, it is also known that unreliable failure detectors are
useful to solve other fundamental problems in distributed
computing. For these reasons there is a growing interest in
deriving practical efficient algorithms to implement failure
detectors [4,3,2,1,7, 18,17, 19].

*A preliminary version of this paper was presented as brief announce-
ment at PODC 2005. Partially supported by the Spanish MEC under grants
TIN2005-09198-C02-01, TIN2004-07474-C02-02, and TIN2004-07474-
C02-01, and the Comunidad de Madrid under grant S-0505/TIC/0285.

TLADyR, GSyC, Universidad Rey Juan Carlos, 28933 Mdstoles, Spain

iEUI, Universidad Politécnica de Madrid, 28031 Madrid, Spain

In a tutorial at PODC 2002, Keidar and Rajsbaum [15]
asked, among other questions, for the weakest requirements
on systems that allow to implement the different classes of
failure detectors. In their recent works Aguilera et al. [2, 3]
have partially answered this question for the class of fail-
ure detectors {2 [5]. As usual, Aguilera et al. consider that
all the processes are connected by directed links. They con-
sider several classes of links. A timely link is a reliable link
with a known upper bound on the message delivery time.
An eventually timely link is a link that behaves timely (but
the bound may not be known) after some unknown stabi-
lization time. Before this time messages can be lost. A fair
lossy link is one in which if infinite messages are sent, in-
finite messages are received (but infinite messages can also
be lost). Finally, a lossy asynchronous link is one in which
messages can be lost and there is no bound on the message
delivery time. In [1] they present an algorithm that imple-
ments {2 in a system with all links lossy asynchronous ex-
cept the (input and output) links of an (unknown) correct
process. Later in [2] they show that a failure detector of
class € can be implemented in a system with lossy asyn-
chronous links as long as there is one (unknown) correct
process whose output links are eventually timely. However,
they prove that in this case any algorithm will have runs
in which Q(n?) links are permanently carrying messages.
They also show that if, additionally, some (unknown) cor-
rect process has all its (input and output) links fair lossy, {2
can be implemented efficiently, i.e. eventually only one pro-
cess (the leader) sends messages. In [14], it is shown that 2
can be implemented as long as all correct processes can be
reached from a (unknown) correct process with eventually
timely paths (paths of eventually timely links and correct
processes), even if initially processes only know their own
identity. It is also shown there that none of the classes orig-
inally proposed in [6] can be implemented if the identity of
(at least) one process is unknown to the rest of processes.

In [3], it is shown that {2 can be implemented in a system
with fair lossy links, in which at most ¢ processes can crash
and ¢ is known, if some correct process has ¢ eventually
timely output links. If additionally n > 2¢, then consen-
sus can be solved. If the links are reliable, they also have
an algorithm in which eventually only ¢ links carry mes-
sages. They also show that even if all processes have ¢ — 1

timely output links and all links are reliable neither {2 can
be implemented nor consensus can be solved. In [12] it is
shown that if initially processes only know their own iden-
tity and ¢, {2 can be implemented if all correct processes are
connected via fair lossy paths (paths of fair lossy links and
correct processes) and there is one process that can reach
t — f (f is the actual number of failures in the run) other
correct processes via eventually timely paths. Additionally,
if all correct processes are fully connected with fair lossy
links and one process has all output links eventually timely,
Q2 can be implemented efficiently.

Regarding other classes of failure detectors, Larrea et
al. [18] consider the implementation of the eight original
classes proposed by Chandra and Toueg (namely, the per-
petual classes P, S, Q, and W, and the eventual classes
OP, O8, ©Q, and &W) in systems with all links eventu-
ally timely. They show that no perpetual detector can be
implemented in these systems even if only one process can
fail. Then, they show that all eventual detectors can be im-
plemented in these systems. Implicitly, all it is required for
this possibility result is that all the links in a ring formed by
the correct processes are eventually timely. Only these links
carry messages forever. Another related work is [17], in
which an algorithm that implements ¢S and €2 in a system
with all links eventually timely is proposed. With this algo-
rithm, eventually only the output links of one process (the
correct process with smallest identifier) carry messages. In
fact, the synchrony requirement they impose could be re-
laxed so that only these links are required to be eventually
timely.

A different approach to limit the system requirements to
implement failure detectors has been proposed by Moste-
faoui et al. [20, 21]. In these works the condition on the
system has to do with its behavior. They show that their al-
gorithms implement a S detector if messages are received
by the processes in the appropriate order. They do a prob-
abilistic analysis and show that these requirements are met
with high probability for one single failure.

Contributions. In this paper we continue the exploration
of the system limits to implement unreliable failure detec-
tors. We study five of the traditional classes of failure de-
tectors: €2, P, S, OP, and &S, and two additional (per-
petual) classes, P4 and S’, which are weak versions (they
have weaker accuracy) of P and S, respectively. As far as
we know, the class S’ has never been previously proposed
and seems an interesting class to study further. The class Py
was first proposed in [16].

We consider systems formed either by lossy asyn-
chronous and timely links (class W), or lossy asynchronous
and eventually timely links (class £). In the complete di-
rected graph formed by the processes and the links, we call
a path that does not contain lossy asynchronous links nor

faulty processes a good path. We are interested on the set
R of correct processes that can reach all correct processes
via good paths. We explore the implementability of failure
detectors depending on whether the set I has at least one
correct process (Weak Property) or R contains all correct
processes (Strong Property). Additionally, we say that we
have the Min Property if R contains the correct processor
with smallest identifier. Observe that the Strong Property
implies the Min Property, and the latter implies the Weak
Property.

First, we show that there is no algorithm that implements
OP (and hence P and P,) with single failures in a sys-
tem that, when all processes are correct, does not satisfy the
Strong Property. Similarly, we show that &S (and hence €2,
S, and 8’) cannot be implemented if we allow one single
failure in a system that, when all processes are correct, does
not satisfy the Weak Property.

Then, we present algorithms that work on minimal sys-
tem conditions. First, we propose an algorithm for the sys-
tems in W that implements Py if the Strong Property is sat-
isfied and implements S’ if only the Weak Property is sat-
isfied. We propose a second algorithm for the systems in £
that implements &P if the Strong Property is satisfied and
OS if only the Weak Property is satisfied. If the Min Prop-
erty is satisfied, both algorithms implement §2.

For the systems in &£, the Weak Property is the minimal
requirement imposed above to implement 2 (with f un-
known) [14]. The Min Property is also strictly weaker than
the requirements in [17]. However it cannot be compared
with those in [2], since they have no requirement regarding
the correct process with smallest identifier. Note as well
that the Strong Property is weaker than the property for &P
in [18], which requires all links connecting the correct pro-
cesses in a ring to be eventually timely.

The rest of the paper is structured as follows. In Sec-
tion 2 we present the model and notations we use in the
rest of the paper. In Section 3 we show necessary condi-
tions to implement the classes of failure detectors we con-
sider here. Section 4 presents an algorithm that implements
perpetual failure detectors in systems with weak synchrony.
Similarly, Section 5 presents an algorithm that implements
eventual failure detectors in systems with weak synchrony.
Finally, Section 7 contains some concluding remarks.

2. The model

We consider systems formed by a finite set Il of n > 1
processes. Processes have unique and totally ordered identi-
fiers, known to all the processes. We assume that processes
can communicate with each other only by sending and re-
ceiving messages, and that every pair of processes is con-
nected by a pair of directed links (with opposite directions).
Let A = {(p,q) : p,q € I;p # q} denote the set of di-

rected links of a system. Clearly, if we see the system as a
graph G = (I, A), G is a complete directed graph.

Failure-prone processes. A process can fail by perma-
nently crashing. We say that a process is correct if it does
not fail. We denote by correct the set of correct processes.
The complementary set IT — correct is denoted by crashed.
We assume that the algorithms have no a priori knowledge
of the number of failures that can occur.

To add generality, for the impossibility results (neces-
sary conditions) of Section 3 we assume that the execu-
tion of processes is synchronous, and that their clocks are
synchronized. However, we do not need such strong as-
sumptions in our algorithms. In them, we only assume that
each line of the algorithm takes no more than o time to
be executed (o can be a very loose bound). For the per-
petual detectors algorithm (Section 4) we additionally as-
sume that o is known to the algorithm. In the algorithms
we also assume the availability of timers at each process.
We use 7,(T") to denote the time it takes a timer of process
p started with a value T to expire. We first require that, for
all p, 7,,(T) is finite if T is finite. Then, for the perpetual
detectors algorithm we also require that for all p and all
T, 7,(T) > T, while for the eventual detectors algorithm
(Section 5) we only require that 7,(7) is non-decreasing
with T" and limp_,o, 7,(T") = oo. Note that processes do
not use global clocks.

Unreliable failure detector classes. Chandra and Toueg
defined several classes of unreliable failure detectors by
specifying their corresponding completeness and accuracy.
These properties are defined on the lists of suspected pro-
cesses maintained by (the failure detector modules of) the
processes. The completeness property requires that every
process that actually crashes is eventually suspected, while
the accuracy property restricts the mistakes (i.e., the false
suspicions) that a failure detector can make. Chandra and
Toueg defined two completeness and four accuracy proper-
ties in [6]. We only consider here one completeness prop-
erty:

o Strong Completeness: Eventually every process that
crashes is permanently suspected by every correct pro-
cess.

Regarding accuracy, we consider the four properties pro-
posed by Chandra and Toueg:

o (Perpetual) Strong Accuracy: No process is suspected
before it crashes.

o (Perpetual) Weak Accuracy: Some correct process is
never suspected.

e FEventual Strong Accuracy: There is a time after which
no correct process is ever suspected by any correct pro-
cess.

e FEventual Weak Accuracy: There is a time after which
some correct process is never suspected by any correct
process.

We are going to consider here two more accuracy proper-
ties, which are slightly weaker than Strong Accuracy and
Weak Accuracy, respectively, as defined above. The first
property has been stated in [9, 16]. The second has never
been stated as far as we know.

o (Perpetual) Quasi-Strong Accuracy. No correct pro-
cess is ever suspected by any correct process.

o (Perpetual) Quasi-Weak Accuracy. Some correct pro-
cess is never suspected by any correct process.

Failure detectors with eventual accuracy may suspect every
process at one time or another, while failure detectors with
perpetual accuracy require that at least one correct process
is never suspected. Combining the completeness property
with one of the accuracy properties we obtain one class of
failure detectors. We consider here six different classes,
which are presented in Figure 1. Quasi-Strong Accuracy
combined with Strong Completeness yields a weak version
of the class P, which has been denoted in [16] by Py.
Quasi-Weak Accuracy combined with Strong Completeness
yields a weak version of the class S, which we are going to
denote here by S'.

Finally, we define the € failure detector. In an 2 failure
detector, each process chooses some process in the system
as leader. The detector must guarantee that all correct pro-
cesses eventually agree on a single correct process as leader.
More formally, 2 failure detectors must satisfy the follow-

ing property.

Property 1 There is a time after which every process p €
correct permanently has the same process | € correct as
leader.

We will consider in this paper that an €2 failure detector also
implements <S8, because the set IT \ {leader} guarantees
the properties of ¢S.

Types of links. We consider the following three types of
links'.

(i) Lossy asynchronous (LA): A message sent across a
lossy asynchronous link can be lost or arbitrarily de-
layed; however, a message that is not lost will eventu-
ally be delivered. (Note that all messages sent using a
lossy asynchronous link may be lost.)

!Observe that the type of a link depends on its observed behavior. This
behavior can be satisfied in all or in a specific set of runs of the system.

Accuracy

Completeness

Strong [Weak | Quasi-Strong | Quasi-Weak [Eventual Strong | Eventual Weak

[Strong [P T 8] P4

S’ [oP [oS]

Figure 1. Classes of failure detectors we consider, defined in terms of completeness and accuracy.

(i) Timely (T'): The link is reliable and there is a known
bound A on the maximum message delay. (Hence, a
message that is sent at time ¢ is received by time t+A.)

(iii) Eventually timely (ET): There is a possibly unknown
global stabilization time G.ST" such that until GST the
link behaves like lossy asynchronous; after GST the
link is reliable and there is a possibly unknown bound
A on the maximum message delay. (Hence, a message
that is sent at time ¢ > G ST is received by time £+ A.)

We assume that links do not modify the messages they carry
nor they generate spontaneous messages. In order to make
the negative results stronger, we assume for the impossi-
bility results that links do not replicate messages and that
they deliver them in order. However, in our algorithms we
allow messages to be replicated and received out of order.
In fact, our algorithms explicitly resend messages, creat-
ing replicated messages. We finally assume that messages
are unique, in the sense that an algorithm can determine
whether a message received is a duplicate (either generated
by the link or resent by some other process) of a previously
received message. This can be easily implemented using
a message identifier formed by the unique identifier of the
sending process and a sequence number, unique for that pro-
cess.

Classes of systems. In this paper we consider two large
classes of systems. A system belongs to the class VU if each
of its links? is either lossy asynchronous or timely. A sys-
tem belongs to the class & if each of its links is either lossy
asynchronous or eventually timely. Since timely links are
special cases of eventually timely links (with GST = 0 and
known A), we have that ¥ C £. From now on, when we
assume a system in £ we also include those in .

Then, we consider a system S € &£ characterized by the
pair (Lg, correctg), where Lg : A — {LA,T, ET?}, and
correctg C II°. We denote this by S = (Lg, corrects).
Lg is a function that determines for each link in S its type.
Of course L must be consistent with the class to which S
belongs. Then if S € ¥, Lg can take the values LA and
T only. The set corrects is the set of correct processes in
S. When convenient we will use the complementary set

21.e., the behavior of its links in each run.
3ntuitively, a system as defined is the set of all runs in which all pro-
cesses in correctg are correct and the links behave as implied by Lg.

crashed g, and when clear from the context we will remove
the subindex.

For any system S € £ we are going to define an asso-
ciated graph G(S) which is derived from the attributes of
S. We mentioned above that S can be seen as the complete
directed graph (IT, A). Then, G(S) is the directed subgraph
induced in this graph by the set correctg, from which all the
lossy asynchronous links (links with Lg(p, q) = LA) have
been removed. Then, G(S) only contains correct processes
as vertices and directed timely links (if S € W) or directed
eventually timely links (if S' € &).

Given two correct processes p and ¢ in S, we say that ¢
can be reached from p if either p = ¢ or there is a directed
path from p to ¢ in G(S). The set of processes that can be
reached from a process p is denoted by reach(p). It can be
trivially observed that

Observation1 If ¢ €
reach(p).

reach(p), then reach(q) C
We define now the following properties that can be sat-
isfied by a system .S € £.

Property 2 (Weak) There is some process p € correct
such that reach(p) = correct in G(S).

Property 3 (Min) reach(min(correct)) = correct in
G(S).

Property 4 (Strong) For all process p €
reach(p) = correct in G(S).

correct,

Observe that the Strong Property implies the Min Property,
and the Min Property implies the Weak Property.

Finally, we will use the following notation. Given a sys-
tem S = (Lg, correctg) € &, we denote by S(p), for p €
correctg, the system obtained from S by removing p from
the set correctg. That is, S(p) = (Lg, corrects \ {p}).
Then, we denote by ®(.5) the set that contains S and all
systems S(p), p € correctg, i.e. ®(S) = {S}U{S(p) :
p € correctg}.

Algorithms. We study here algorithms that implement
unreliable failure detectors of the above classes. These al-
gorithms are implemented as one local module for each pro-
cess of the system. A module exists as long as its local pro-
cess has not crashed. Modules exchange messages among

each other to provide the required completeness and accu-
racy properties. They also, upon request by their local pro-
cess, provide it with the current list of suspected processes
or the current leader.

An algorithm A implements a failure detector of a given
class C for a set of systems 3. If it is claimed that .4 im-
plements the detector for a system set 3, and S € 3, then
every run of A in S must guarantee that the implemented
detector belongs to C, independently of when the processes
in crashedg fail and the behavior of the links (as long as
they are consistent with their type). The sets of systems we
consider here are subsets of the class £. We will make clear
the subset of systems for which an algorithm implements
the detector in each case.

3. Necessary conditions to implement failure
detectors

In this section we obtain minimal conditions that systems
in £ must satisfy to be able to implement a failure detector
of the classes of interest.

3.1. Conditions for detectors with weak accuracy

We consider first the detector classes ¢S, 2, S/, and S.
We show that it is not possible to implement a &S detec-
tor (and hence 2, S, and S’ detectors) for a set of systems
that contains one system S that does not satisfy the Weak
Property and those obtained from it with one more failure
(denoted S(p)). Recall that we denote this set by ®(.5). The
following theorem shows this.

Theorem 1 Let S € & be a system that does not satisfy
the Weak Property, S(p) be the system obtained from S by
removing process p € correctg from the set of correct pro-
cesses, and ®(S) = {STU{S(p) : p € corrects}. There is
no algorithm that implements a <S8 failure detector for the
set of systems ®(S).

Proof: For the sake of contradiction, let us assume there is
such an algorithm A. Let us consider a run R of A in §
in which all the messages sent across lossy asynchronous
links are lost. By Eventual Weak Accuracy, there will be
a process p € correctg and a time t such that p is never
suspected by any correct process after ¢. Now, note that
the set of processes () = correctgs \ reach(p) is not empty,
since the Weak Property does not hold. Furthermore, from
Observation 1, no message from the processes in reach(p)
ever reaches any process in ().

Let us consider now system S(p). By assumption, A
should also implement a ¢S detector in S(p). Let us
consider a run R’ of A in S(p) in which all the messages
sent across lossy asynchronous links are lost and all

processes behave as closely as possible to their behavior
in R. Note that the processes in () do not have any way of
distinguishing R’ from R, since like before they receive
no message from reach(p), which are the processes that
noticed the failure of p. Hence, they can in fact behave
exactly like in R, and they will never suspect p after time ¢.
This violates the Strong Completeness property, and hence
A cannot exist. [|

Clearly, if there is no algorithm for a given set, there is
no algorithm for any of its supersets. Also, since all detec-
tors in 2, S, and S’ are also in &S, we have the following
corollary.

Corollary 1 Let S € & be a system that does not satisfy the
Weak Property, and ¥ O ®(S) be a set of systems. There
is no algorithm that implements a ¢S, Q, 8', or S failure
detector for the set of systems X..

Note that this holds even if S has no failures.

Corollary 2 Let S € & be a system without failures that
does not satisfy the Weak Property, and X be a set of systems
that include S and the systems obtained from S with one
single failure (i.e., X O ®(S)). There is no algorithm that
implements a S,), S, or S failure detector for the set of
systems ..

3.2. Conditions for detectors with strong accuracy

Let us now look at detectors with some form of strong
accuracy. Like before, we will show first that there is no al-
gorithm to implement a detector in OGP for a set of systems
that contains a system that does not satisfy the Strong Prop-
erty and those obtained from it with one additional failure.
The following theorem shows this.

Theorem 2 Let S € & be a system that does not satisfy
the Strong Property, S(p) be the system obtained from S
by removing process p € correctg from the set of correct
processes, and ®(S) = {S} U {S(p) : p € corrects}.
There is no algorithm that implements a <P failure detector
for the set of systems ®(S).

Proof: For the sake of contradiction, let us assume there is
such an algorithm A. Let us consider a run R of A in S
in which all the messages sent across lossy asynchronous
links are lost. By Eventual Strong Accuracy, there will
be a time ¢ such that no correct process is ever suspected
by any correct process after ¢t. Since S does not satisfy
the Strong Property, there is some process p € correctg
such that reach(p) # correctg. Then, the set of processes
Q = correctg \ reach(p) is not empty (note that reach(p)

only contains correct processes). Furthermore, from Obser-
vation 1, no message from the processes in reach(p) ever
reaches any process in Q.

Let us consider now system S(p). By assumption, A
should also implement a OP detector in S(p). Let us
consider a run R’ of A in S(p) in which all the messages
sent across lossy asynchronous links are lost and all
processes behave as closely as possible to their behavior
in R. Note that the processes in) do not have any way of
distinguishing R’ from R, since like before they receive
no message from reach(p), which are the processes that
noticed the failure of p. Hence, they can in fact behave
exactly like in R, and they will never suspect p after time ¢.
This violates the Strong Completeness property, and hence
A cannot exist. [|

Again, if there is no algorithm for a given set, there is
no algorithm for any of its supersets. Also, since the de-
tectors in P and P, are also in &GP, we have the following
corollary.

Corollary 3 Let S € & be a system that does not satisfy the
Strong Property, and ¥ D ®(S) be a set of systems. There
is no algorithm that implements a OP, Py, or P failure
detector for the set of systems 2.

Corollary 4 Let S € & be a system without failures that
does not satisfy the Strong Property, and X be a set of sys-
tems that include S and the systems obtained from S with
one single failure (i.e., X 2 ®(S5)). There is no algorithm
that implements a OP, Py, or P failure detector for the set
of systems X..

4. Algorithm for perpetual failure detectors

In this section we present an algorithm that implements
a failure detector for systems in the class W. For all the
systems in U that satisfy the Weak Property the algorithm
implements a detector of class S’. If additionally they sat-
isfy the Min Property the algorithm implements a detector
of class €. For all the systems that satisfy the Strong Prop-
erty the algorithm implements a detector of class P,. Fig-
ure 2 presents the algorithm in detail. For all p € II, the
sets suspected, provide the required completeness and ac-
curacy properties for S’ and P4, while the values leader,
satisfy Property 1 for .

The proof of the following theorem has been removed
due to space limitations. It can be found at [11].

Theorem 3 Let S € U be a system in which the Algorithm
Perpetual (Figure 2) is executed. Then,
(i) if S satisfies the Weak Property, Algorithm Perpetual im-
plements a failure detector of class S’,
(ii) if, additionally, S satisfies the Min Property, Algorithm

Algorithm Perpetual

init:

(1) suspected, — 0

(2) leaderp < min(II)

3) Timeouty, — n+ (n—1)(A + 40)

(4) reset timerp(q) to Timeout,, for each process ¢ # p
(5) start tasks 1 and 2

Task 1:

(6) loop forever

@ send (ALIV E, p) to every process except p every 7 time
Task 2:

(8) upon reception of message (ALIV E, q) do

©) if [message (ALIV E, q) was not previously received] then
(10) reset timery(q) to Timeouty

11) resend message (ALIV E, q) to every process except p
(12) upon expiration of timer,(q) do

(13) suspected, «— suspected, U {q}

(14) leader, «— min(II \ suspected))

Figure 2. Algorithm to implement perpetual
failure detectors in systems of class V. The
code is for process p.

Perpetual implements a failure detector of class €, and
(ii) if, additionally, S satisfies the Strong Property, Algo-
rithm Perpetual implements a failure detector of class Py.

5. Algorithm for eventual failure detectors

In this section we present an algorithm that implements
failure detectors for systems in class £. We show that, for
all systems in £ that satisfy the Weak Property the algo-
rithm implements <8, if they satisfy the Min Property it
implements €2, and if they satisfy the Strong Property it im-
plements &P. Figure 3 presents the algorithm in detail.

We have removed the proof of the following theorem due
to space limitation. It can be found at [11].

Theorem 4 Let S € £ be a system in which the Algorithm
Eventual (Figure 3) is executed. Then,

(i) if S satisfies the Weak Property, Algorithm Eventual im-
plements a failure detector of class CS,

(ii) if, additionally, S satisfies the Min Property, Algorithm
Eventual implements a failure detector of class 2, and

(ii) if, additionally, S satisfies the Strong Property, Algo-
rithm Eventual implements a failure detector of class OP.

6. The Failure Detector Class S’

In this section we explore the new class S’ of unreliable
failure detectors proposed in this paper. We first show that
this class is strictly weaker than the class S. To do so, we
show that while any detector in S can be used to solve uni-
form consensus, the same is not so for any detector in S’.

Algorithm Eventual

init:

(1) suspected, — 0

(2) leaderp < min(II)

(3) Timeouty(q) < n + 1, for each process ¢ # p

(4) reset timery(q) to Timeouty(q), for each process g # p

(5) start tasks 1 and 2

Task 1:

(6) loop forever

@ send (ALIV E, p) to every process except p every 7 time
Task 2:

(8) upon reception of message (ALIV E, q) do

©) if [message (ALIV E, q) was not previously received] then
(10) suspected, «— suspectedy \ {q}

(11) leader, «— min(II \ suspectedp)

(12) reset timery (q) to Timeouty(q)

(13) resend message (ALIV E, q) to every process except p
(14) upon expiration of timer,(q) do

(15) Timeouty(q) — Timeouty(q) + 1

(16) suspected, — suspected, U {q}

(17) leaderp «— min(IT \ suspectedp)

Figure 3. Algorithm to implement eventual
failure detectors in systems of class £. The
code is for process p.

Then, we show that any detector in S’ can be used to solve
non-uniform consensus in an asynchronous system with any
number of failures. We show this by showing how to trans-
form a failure detector in S’ into a failure detector of class
(€2, 3%), which can be used to solve nonuniform consensus
[10].

Theorem 5 It is not enough to have a failure detector of
class 8’ to solve uniform consensus in a crash-prone asyn-
chronous system with single crashes.

Proof: (Sketch) By way of contradiction, let A be an
algorithm that solves uniform consensus with any detector
in §’. Consider a system with two processes p and ¢ and a
detector D € §’. Let Ry be a run of A in which both pro-
cesses propose 0 and p fails before sending any message.
D always returns {p} to g as the set of suspected processes.
Then, ¢ must decide 0 at some time #y. Similarly, let run
R; be a run of A in which both processes propose 1 and ¢
fails before sending any message; D always returns {q} to
p as the list of suspected processes; and p decides 1 at time
t;. Finally, consider a run R of A in which all messages
sent are delayed until a time ¢ > max(%o, t1), and p fails at
this time. D always returns {p} to ¢ and {q} to p as their
respective lists of suspected processes. Until time ¢ process
p behaves exactly like in Rq, and hence decides 1 at time
t1. Similarly, process ¢ behaves exactly like in Ry until
time ¢, and hence decides 0 at time ty. Since they decide
different values, A does not solve uniform consensus. [|

Now we show that any failure detector D € S’ can be
transformed into a failure detector of class (2, ¥X¥). A fail-
ure detector of class {2 can be obtained from D by using,
for instance, the algorithm proposed by Chu [8] for OGW*.
A detector of class X¥ is trivially obtained from D by re-
turning as quorum at each process the complement of the
list of suspected processes returned by D. Clearly, all the
quorums returned at the correct processes contain at least
the correct process that is never suspected by them. Even-
tually these quorums only contain correct processes by the
strong completeness of S’.

7. Conclusions

In this paper we explore the minimal system synchrony
to implement unreliable failure detectors. We present algo-
rithms that implement detectors in systems with weak syn-
chrony requirements and show that these requirements are
in fact needed.

There are still a number of open problems related with
this work. For instance, we present algorithms that imple-
ment detectors of classes P4 and S/, which are weaker than
P and S, in systems with limited synchrony. It would be
nice to have algorithms that implement PP and S in systems
with the same synchrony.

Finally, observe that our algorithms have a quadratic
number of links carrying messages forever in the worse
case. We believe this is the best we can hope for ¢S (since
there are similar bounds for €2 in a system with one cor-
rect process whose output links are eventually timely [2]).
However, we would like to have a proof of that.

References

[1] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Stable leader election. In Proceedings of the
15th International Symposium on DlIstributed Computing
(DISC’2001), pages 108-122, Lisbon, Portugal, October
2001. LNCS 2180, Springer-Verlag.

[2] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. On implementing with weak reliability and
synchrony assumptions. In Proceedings of the 22nd An-
nual Symposium on Principles of Distributed Computing
(PODC’2003), Boston, Massachusetts, July 2003.

[3] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Communication-efficient leader election and con-
sensus with limited link synchrony. In Proceedings of the
23rd Annual Symposium on Principles of Distributed Com-
puting (PODC’2004), 2004.

[4] M. Bertier, O. Marin, and P. Sens. Implementation and per-
formance evaluation of an adaptable failure detector. In Pro-
ceedings of the 2002 International Conference on Depend-
able Systems and Networks, June 2002.

4Any detector in S’ is trivially in OW.

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus. Journal of the ACM,
43(4):685-722, July 1996.

T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225—
267, March 1996.

W. Chen, S. Toueg, and M. K. Aguilera. On the quality of
service of failure detectors. IEEE Transactions on Comput-
ers, 51(1):13-32, January 2002.

F. Chu. Reducing {2 to OW. Information Processing Let-
ters, 67:289-293, 1998.

X. Défago, A. Schiper, and P. Urban. Total order broad-
cast and multicast algorithms: Taxonomy and survey. ACM
Comput. Surv., 36(4):372-421, 2004.

J. Eisler, V. Hadzilacos, and S. Toueg. The weakest fail-
ure detector to solve nonuniform consensus. In Proceedings
of the 24rd Annual Symposium on Principles of Distributed
Computing (PODC’2005), pages 189-196, Las Vegas, NV,
July 2005.

A. Ferndndez, E. Jiménez, and S. Arévalo. Minimal system
conditions to implement unreliable failure detectors. Techni-
cal report, Reports on Systems and Communications, Grupo
de Sistemas y Comunicaciones, 2005.

A. Fernandez, E. Jiménez, and M. Raynal. Eventual leader
election with weak assumptions on initial knowledge, com-
munication reliability, and synchrony. In Proceedings of the
International Conference on Dependable Systems and Net-
works (DSN-2006), Philadelphia, PA, USA, June 2006.

M. Fischer, N. Lynch, and M. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of
the ACM, 32(2):374-382, April 1985.

E. Jiménez, S. Arévalo, and A. Ferndndez. Implementing
unreliable failure detectors with unknown membership. In-
formation Processing Letters, 100(2):60-63, 2006.

I. Keidar and S. Rajsbaum. On the cost of fault-tolerant
consensus when there are no faults. In Tutorial on the 21st
Annual Symposium on Principles of Distributed Computing
(PODC’2002), Monterey, California, July 2002.

M. Larrea. Brief announcement: Understanding perfect
failure detectors. In Proceedings of the 21st Annual ACM
Symposium on Principles of Distributed Computing, PODC
2002, page 257, 2002.

M. Larrea, A. Fernandez, and S. Arévalo. Optimal imple-
mentation of the weakest failure detector for solving consen-
sus. In Proceedings of the 19th IEEE Symposium on Reliable
Distributed Systems (SRDS’2000), pages 5259, Nurenberg,
Germany, October 2000.

M. Larrea, A. Ferndndez, and S. Arévalo. On the implemen-
tation of unreliable failure detectors in partially synchronous
systems. IEEE Transactions on Computers, 53(7):815-828,
July 2004.

M. Larrea, A. Ferndndez, and S. Arévalo. Eventually con-
sistent failure detectors. Journal of Parallel and Distributed
Computing, 65(3):361-373, March 2005.

A. Mostéfaoui, E. Mourgaya, and M. Raynal. Asynchronous
implementation of failure detectors. In 2003 International
Conference on Dependable Systems and Networks (DSN
2003), pages 351-360, 2003.

[21] A. Mostéfaoui, D. Powell, and M. Raynal. A hybrid ap-

proach for building eventually accurate failure detectors. In
10th IEEE Pacific Rim International Symposium on Depend-
able Computing (PRDC 2004), pages 57-65, 2004.

