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a b s t r a c t

In this paper, we present a framework to formally describe and study the interconnection of distributed
shared memory systems. Using it allows us to classify the consistency models in two groups, depending
on whether they are fast or not. In the case of non-fast consistency models, we show that they cannot
be interconnected in any way. In contrast, in the case of fast consistency models we provide protocols to
interconnect some of them.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Distributed sharedmemory (DSM) is a well-knownmechanism
for interprocess communication in distributed environments [21].
Roughly speaking, it consists in using read and write operations
for interprocess communication, thus hiding the particular com-
munication technique employed by the programmers to avoid the
need to be involved in themanagement ofmessages. However, this
can cause problems in systems where several processes indepen-
dently and simultaneously submit reads and writes, since they can
see each other’s operations out of order. This problem led to the
concept of consistency models. A consistency model is a specifica-
tion of the allowable behavior of memory, and it can be seen as a
contract between memory implementation and the program uti-
lizing memory: the memory implementation guarantees that for
any input it will produce some output from the set of allowable
outputs specified by the consistencymodel, and the programmust

I A preliminary version of this paper appeared in the Proceedings of Opodis’03
[E. Jiménez, A. Fernández, V. Cholvi, Decoupled interconnection of distributed
memorymodels, in: OPODIS, 2003, pp. 235–246]. Thisworkwas partially supported
by the Spanish Ministry of Science and Technology under Grants No. TSI2006-
07799, No. TSI2004-02940 and No. TIN2005-09198-C02-01, and by the Comunidad
de Madrid under Grant No. S-0505/TIC/0285.
∗ Corresponding address: Departamento de Lenguajes y Sistemas Informáticos,
Universitat Jaume I, Campus de Riu Sec, 12071 Castellón, Spain.
E-mail addresses: vcholvi@lsi.uji.es, vcholvi@uji.es (V. Cholvi).

be written to work correctly for any output allowed by the consis-
tency model. Depending on the semantics of the memory opera-
tions, a number of consistency models has been proposed in the
literature (see for instance [21,7,13,11,16]).
In this paper, we study the interconnection of distributed

shared memory systems. By this we mean the addition of
an interconnection system to several existing distributed shared
memory systems that implement a given consistency model in
order to obtain a single distributed shared memory system that
implements the same consistency model. There are two main
reasons for interconnecting DSM systems with new protocols
instead of using a single protocol for the whole system:
• First, in this way we can interconnect systems that are already
running without changing them. They can go on using their
protocols at their local level.
• Second, depending on the network topology, it could be more
efficient to implement several systems and interconnect them
than to have one single large system. An example of this would
be a DSM system that has to be implemented on two local
area networks connected with a low-speed point-to-point link.
If the protocol that is used broadcasts updates, in a single
system with many popular protocols there would be a large
number of messages crossing the point-to-point link for the
same variable update. In this case, it would seem appropriate
to implement one system in each of the local area networks,
and use an interconnecting protocol via the link to connect the
whole system. With the appropriate interconnecting protocol,
many fewer messages cross the link for each variable update.

0743-7315/$ – see front matter© 2008 Elsevier Inc. All rights reserved.
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It is interesting to compare our approach with the concept of
locality, defined by Herlihy and Wing [12]. Both approaches have
to do with the ability to compose DSM systems. However, locality
addresses composability of DSM systems with the same set of
processes but disjoint sets of memory objects, while our approach
studies the composability of DSM systems with the same set of
memory objects but disjoint sets of processes.
A first contribution of this work is the introduction of a

framework for the interconnection of memory systems and the
formalization of the interactions between the existing memory
systems and the interconnection system. Furthermore, we identify
the fastness of a memory model (a concept that will be defined
later in the paper) as the key property that will qualify it to be an
interconnectable memory model or not.
In the case of non-fast consistency models, we show that they

cannot be interconnected in any way, thus deriving that a number
of popular memory models can not be interconnected (e.g., the
atomic, safe, regular and sequential models [18], the PCG and PCD
consistency models [10,1], the eager release model [9], the lazy
releasemodel [17], the entrymodel [6], the scopemodel [14], etc.).
In contrast, we show that several fast consistency models can,

indeed, be interconnected (namely, the pRAM [20], causal [2],
and cache models [10]). However, whereas the cache model can
be interconnected without any restriction, we found that the
other two memory models can only be interconnected when the
subsystems fulfill certain restrictions. In this last situation, we
give sufficient conditions and the corresponding interconnecting
protocols to do so.
Regarding previous work that has been carried out on the

interconnection of distributed shared systems, as far as we know,
it has only been studied in [8].1 Here, we extend the results of that
paper in a number of ways. First, we consider consistency models
other than the causal one (which was the only one considered
in [8]). Second, we provide some impossibility results related with
interconnection of consistencymodels. Third,we usemuchweaker
assumptions on the systems to be interconnected.
The rest of the paper is organized as follows. In Section 2, we

introduce the framework for the interconnection of systems. In
Section 3, we show the impossibility of interconnection for non-
fast consistencymodels. In Section 4, we study the interconnection
of pRAM systems, in Section 5 the interconnection of causal
systems, and in Section 6 we show how to interconnect cache
systems. In Section 7, we briefly study the performance of the
proposed interconnecting protocols. Finally, in Section 8, we
present some concluding remarks.

2. Systemmodel

We consider distributed shared memory systems (or systems
for short) formed by a collection of application processes that
interact via a shared memory consisting of a set of variables. All the
interactions between the application processes and the memory
are performed through read and write operations (memory
operations) on variables of the memory.
Each memory operation is applied on a named variable and has

an associated value. A write operation of the value v in the variable
x, denotedw(x)v, stores v in the variable x. A read operation of the
value v from the variable x, denoted r(x)v, reports to the issuing
application process that the variable xholds the value v. To simplify
the analysis, we assume that a given value is written at most once
in any given variable and that the initial values of the variables are
set by using fictitious write operations.

1 In addition, of course, to the preliminary version of this paper, appeared in
OPODIS’03 [15].

Furthermore, we also consider explicit synchronization opera-
tions. Synchronizations can be used just to import information, as
with the acquiring of a lock, or just to export information, as with
the release of a lock.
In order to characterize the system model, we specify the

components that form it, the consistency model, the system
architecture and the interconnecting system.

2.1. The consistency model

Roughly speaking, a consistency model (also called memory
model) is a specification of the allowable behavior of the system’s
operations. To formally define a consistency model, first we
introduce what a system’s execution is. An execution α of a
system S consists of a set of read and write operations, as well
as synchronization operations (if any), issued by the application
processes that form system S. Such operationsmust preserve the so
called execution order. To define this, first we introduce the process
order.

Definition 1 (Process Order). Let p be a process of S and op, op′ ∈ α.
Then op precedes op′ in p’s process order, denoted op≺p op′, if op
and op′ are operations issued by p, and op is issued before op′.

Definition 2 (Execution Order). Let op, op′ ∈ α. Then op precedes
op′ in the execution order, denoted op ≺ op′, if any of the following
hold:
(1) op and op′ are operations from the same process p and
op≺p op′.

(2) op = w(x)v and op′ = r(x)v.
(3) There is an operation op′′ ∈ α such that op ≺ op′′ ≺ op′.

Now, we formally define a consistency model as follows:

Definition 3 (Consistency Model). A consistency model M is a set
formed by all executions of typeM .

Obviously, for this definition to make sense, it is necessary
to define what an execution of type M is in each case. The
specification of particular types of executions will be dealt with
later in the paper. For such a task, we need to define several related
concepts.

Definition 4 (View). Let ≺o be an order defined on the operations
of execution α, and let α′ ⊆ α. A view β of α′ preserving ≺o is
a sequence formed by all operations of α′ such that this sequence
preserves the order≺o.

Note that if ≺o does not define a total order on α′, then there
can be several views of α′. We use op

β
→ op′ to denote that op

precedes op′ in a view β . We will omit the view when it is clear
from the context. We will also use α → α′, where α and α′ are
sets of operations, to denote that all the operations in α precede all
the operations in α′.

Definition 5 (Legal View). Let ≺o be an order defined on the
operations of executionα, and letα′ ⊆ α. A viewβ ofα′ preserving
≺
o is legal if for each read operation r(x)v ∈ α′,
(a) there is awrite operationw(x)v ∈ α′ such thatw(x)v

β
→ r(x)v,

and
(b) there is no write operation w(x)u ∈ α′ such that w(x)v

β
→

w(x)u
β
→ r(x)v.

2.2. The system architecture

From a physical point of view, we consider distributed systems
as consisting of a set of nodes and a network that provides
communication among them. The essence of this model has
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Fig. 1. System architecture.

been taken from [4]. The application processes of the system
are actually executed in the nodes of the distributed system.
We assume that the shared memory abstraction is implemented
by a memory consistency system (MCS). The MCS is composed of
MCS-processes that use local memory at the various nodes and
cooperate following a distributed algorithm, or MCS-protocol, to
provide the application processes with the impression of having
a shared memory. The MCS-processes are executed at the nodes of
the distributed system and exchange information as specified by
theMCS-protocol. They use the communication network to interact
if they are in different nodes. Each MCS-process can serve several
application processes, but an application process is assigned to
only one local MCS-process. For each application process p we use
mcs(p) to denote its MCS-process. An application process and its
MCS-process have to be in the same node, as stated by the following
assumption.

Assumption 1. Let p be an application process. Process p and
mcs(p) are in the same node.

An application process sequentially issues read/write/
synchronization operations on the shared variables by sending
(read/write/synchronization) calls to its MCS-process. After send-
ing a call, the application process blocks until it receives the
corresponding response from its MCS-process, which ends the op-
eration.We assume an asynchronousmodel. Thismeans that there
is no bound on the amount of time instructions andmessage trans-
missions take. We do not assume synchronized clocks among pro-
cesses. We also assume that no system component (processes,
nodes, and networks) fails. Fig. 1 shows an example of the system
architecture described above.
Regarding the consistency model implemented by a system

(i.e., by itsMCS), we follow the same approach takenwhen defining
a consistency model:

Definition 6 (System). A system is of typeM if all its executions are
of typeM .

Furthermore, we consider systems in which at least the last
write operation on every variable must be eventually visible in
every process of the system. This is a very natural property which
is preserved by every system that we have found in the literature.
In our terminology, it means that their MCSs must satisfy the
following property:
Liveness property. Consider any execution α of system S. If there

is only one process writing on variable x and its last operation on
x was w(x)u, then eventually the response to any read call on x
issued by any application process will contain the value u.

2.3. The Interconnection system

Interconnecting several systems involves making them to
behave as though they were one single system. Using the
terminology defined above, this actually means interconnecting
severalMCSs.

In our model, the load of such an interconnection will fall on an
interconnection system (IS). An IS is a set of processes (IS-processes)
that execute some distributed algorithm or protocol (IS-protocol).
For simplicity in the IS design, we consider the existence of one
IS-process for eachMCS to be interconnected.
The IS-process of each system is an application process and,

hence, it has an MCS-process that by Assumption 1 is in its same
node. The IS-process uses theMCS-process to read and write on the
shared memory of the local system. In particular, the only way a
valuewritten by an application process in some system can be read
by an application process in another system is if the IS-process of
the latter system writes it. IS-processes exchange information with
each other (as specified by the IS-protocol) by using a reliable FIFO
communication network. Note that, after the interconnection, the
overall system has a global MCS formed by theMCSs of the original
systems plus the IS that interconnects them. Fig. 2 presents an
example of an IS interconnecting two systems.

Definition 7. We will say that a consistency model can be
interconnected if for any collection of systems implementing this
consistencymodel there is an IS-protocol that interconnects them.

In the rest of the paper we will use N to denote the number of
systems to be interconnected. The systems to be interconnected
will be denoted by S0, . . . , SN−1, and the resulting interconnected
system by ST . The IS-process for each system Sk (where k ∈
{0, . . . ,N − 1}) is denoted by ispk. It is worth remarking that
ispk is part of the system Sk. We consider that the set of
processes of ST includes all the processes in S0, . . . , SN−1 except
isp0, . . . , ispN−1 (since they are only used to interconnect the
systems S0, . . . , SN−1).
Regarding how the ISs operate, we note that it is necessary

to guarantee that any given IS-process be eventually aware of the
writes taking place at the MCS-processes that it manages, so that
it could exchange such information with other IS-processes. This
functionality can be implemented in a number of ways.

(1) Within the IS-process: for instance, it can be implemented
by making the IS-process check for any updated variable, by
periodically reading the whole memory. In this case, the IS-
process will behave as a regular application process and no
additional assumption is made on theMCS-processes.

(2) Within the MCS-processes: in this case the MCS-processes
have to communicate explicitly any update to the IS-process.
Whereas such an approach could be more efficient than the
previous one, it requires that the MCS-processes be able to
perform such a task.

(3) By using a combination of both.

In order to maintain it as general as possible, in this paper
we only assume that there is an interface (between the MCS
and the IS) that provides the above mentioned functionality,
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Fig. 2. Interconnection system.

without considering how it is implemented.2 However, in order
to ‘‘decouple’’ as much as possible the original systems and the
interconnecting protocol, this interface does not allow the IS to
contact the MCS (except to read or write variables). In particular,
the IS cannot block the MCS (as was done in [8]). More formally,
the interface guarantees the following assumption:

Assumption 2. When any MCS-process updates its local memory
(as a result of a write operation issued by an application process),
the IS-process will be asynchronously notified about these events
(i.e., about the updated variable, the written value and the
application process). Other than this, there is no MCS-initiated
interaction betweenMCS and IS processes.

3. Fast vs non-fast consistency models

In this section, we show that only systems implementing fast
consistency models can be interconnected. Formally, we define a
fast consistency model as follows:

Definition 8. We say that a consistency model is fast if there is
anMCS-protocol that implements it, such that memory operations
only require local computations before returning control, even in
systems with several nodes.

Since there are several examples of popular fast and non-fast
models, this implies that the property of being fast classifies the set
of memory models in a non-trivial way. The following observation
will be useful to prove some subsequent results.

Observation 1. Every IS-protocol that interconnects N > 2 systems
can be used to interconnect 2 systems. Furthermore, every IS-protocol
that interconnects 2 systems can be used to interconnect N > 2
systems.

Proof. For the first part, let us consider that there is an IS-protocol
that interconnectsN > 2 systems through a set ofN IS-processes. If
we only have two systems, one of the two IS-processes can simulate
N − 2 empty systems and their IS-processes. Then, we have an
interconnected system of two systems.
For the second part, we use induction on i to show that i

systems can be interconnected for any i ≥ 2. For i = 2 the
claim is trivially true. Now, assume that we can obtain a system
S ′ by interconnecting the systems S0, S1, . . . , S i−2. The result of the
interconnection is a single system. Then, the IS-protocol can be used
to properly interconnect S ′ and S i−1. �

2 In addition to the above mentioned approaches, a local copy of the shared
memory could be stored in a protected zone of the physical memory, so that any
modification generates an interruption that informs the IS-process without using
the MCS-processes However, here we do not consider this case, since it requires
some ‘‘help’’ from the operating system.

In what follows, we consider the interconnection of only two
systems, and use this observation to generalize our results to
several systems. Now, we prove that non-fast memory models
cannot, in general, be interconnected.

Theorem 1. There is no IS that guarantees the interconnection of
systems implementing non-fast memory models.

Proof. We show the result by contradiction. Assume that there
is a non-fast memory model M that can be interconnected. From
Observation1,we can consider the interconnection of two systems.
Therefore, let us assume there is an IS I that interconnects
two systems implementing M . Let us first take a distributed
system with two nodes. In each node we implement a system
with one MCS-process, at least one application process, and the
corresponding IS-process. By Assumption 1, the MCS-process and
the application processes (the IS-process included) are in the
same node. Then, in each of these two single-node systems each
memory operation only requires local computations. Now, we
use I to interconnect these two systems into a unique system
implementing M . By Assumption 2, I cannot block the MCS-
processes. Then, every memory operation in the resulting system
still requires only local computations, which contradicts the fact
thatM is not fast. �

As a consequence of this theorem, we derive that a number
of popular memory models cannot be interconnected. In [4] it is
shown that the sequential consistency model is not fast. Hence, it
cannot be interconnected, and the same happens with the atomic
consistency model and its derivations, i.e., the safe and regular
memory models [19]. Similarly, Attiya and Friedman [5] have
shown that the processor consistency models PCG and PCD [10,
1] are not fast, and consequently cannot be interconnected.
Finally et al. [5] also proved that any algorithm for the mutual
exclusion problem using fast operations must be cooperative. This
implies that any synchronization operation that guaranteesmutual
exclusion must be non-fast. Therefore, any synchronized memory
model that provides exclusive access cannot be interconnected. As
a result, we have thatmemorymodels such as the eager release [9],
the lazy release [17], the entry [6] or the scope [14] cannot be
interconnected.
On the other hand, there is a number of consistency models

that are fast and for which Theorem 1 does not apply. In the
following sections we show that some of the most popular fast
memory models (namely, the pRAM [20], the causal [2] and the
cache [10]) can indeed be interconnected, although, in some cases,
in a constrained fashion.
We will assume that these fast systems control the replicas by

propagating the newvalues to update the replicas. This assumption
does not significantly restrict the domain of application of our
results, since all current implementations of fast models we are
aware of have been obtained by using propagation.
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4. Interconnection of pRAM Systems

In this section, we study the interconnection of pRAM
systems [20]. In this model, every process performs all its
operations locally and transmits updated values to the other
processes along FIFO channels. These updates are later performed
asynchronously at the remote processes. Formally, we define a
pRAM system as follows:

Definition 9 (pRAM System). A system S is pRAM if for every
execution α and every process p there is a legal view βp of αp
preserving≺q for all q (where αp denotes the subset of operations
obtained by removing from execution α all read operations issued
by processes other than p).

Following, we show that, in general, the interconnection of
pRAM systems is not possible. That is, there is no IS that
interconnects every pair of pRAM systems. The proof is based
on the fact that some pRAM systems may not be FIFO ordered
(the formal definition of FIFO ordered system is provided below).
Indeed, as we pointed at the end of Section 2, it is necessary to
have a functionality that guarantees that any given IS-process be
eventually aware of the writes taking place at the MCS-processes
that it manages. If such a functionality is implemented within the
IS-process (i.e., bymaking the IS-processperiodically read thewhole
memory), it is easy to prove that pRAM systems, in general, cannot
be interconnected. Basically, the idea is that when the IS-process
finds two variables that have been modified since the last time
it read them, it cannot know in which order they were written,
and may propagate them to the other systems in an incorrect
order. Hence, such a functionalitymust be implementedwithin the
MCS-processes (i.e., by making them to communicate explicitly any
update to the IS-process, as described in Assumption 2). Depending
on how this update is done, it could happen that local replicas
are updated in a different order than the write operations were
issued.3 Then, the communication of the updates between the
MCS-processes and the IS-process (which is performed without
using read andwrite operations but using explicit messages) could
be out of order.
In what follows in the rest of the paper, we extend our notation

and use both subscripts and superscripts to respectively denote the
process that performs the operations and the systemwhere such a
process is located.

Theorem 2. There is no IS that guarantees pRAM interconnection for
every pair of pRAM systems.

Proof. The proof is based on the fact that when some process p in
Sk issues severalwrite operations, itmay update the corresponding
variables in its local memory in a different order from p’s process
order.
Let us assume, by way of contradiction, that there is a system

ST which is the result of interconnecting two pRAM systems S0 and
S1 through some interconnection system I . From Definition 9, we
know that for every execution αT there is a legal view βTp of α

T
p , for

all p, preserving≺q, for all q.
Assume that we have an execution α0 with the follow-

ing sequence of write operations issued by process p of S0:
w0p(x)s≺pw

0
p(y)l. We know, from the Liveness Property (see

Section 2.2), that there is a time t after which any read operation
on x and y issued by any process in S1 returns s and l, respectively.

3 An example of this behavior is the causal (and hence pRAM) algorithmof [16], in
which the update of several variables are batched into a singlemessage and applied
in arbitrary order, in mutual exclusion with all read operations.

Wenow assume that after this time t the process p issues thewrite
operationsw0p(x)u andw

0
p(y)v. We know, following the definition

of interface’s behavior, that when any MCS-process updates its lo-
cal memory, the interface informs isp0 about these events. Then, I
can take one of the following actions:

• Case 1: isp1 issues w1
isp1
(x)u and w1

isp1
(y)v, in this order, in S1.

In this case, if w0p(x)u and w
0
p(y)v were issued by process p in

the orderw0p(y)v≺pw
0
p(x)u and some process q of S

1 issues the
read operations r1q (x)u≺q r

1
q (y)l (which is possible if the pRAM

systems are not FIFO ordered), then it is impossible to form a
legal view βTq preserving≺p. Hence, we reach a contradiction.
• Case2: isp1 issues w1

isp1
(y)v and w1

isp1
(x)u, in this order, in S1.

In this case, if w0p(x)u and w
0
p(y)v were issued by process p in

the orderw0p(x)u≺pw
0
p(y)v and some process q of S

1 issues the
read operations r1q (y)v≺q r

1
q (x)s (which is possible if the pRAM

systems are not FIFO ordered), then it is impossible to form a
legal view βTq preserving≺p. Hence, we reach a contradiction.
• Case3: isp1 does not issue w1isp1(y)v or w

1
isp1(x)u in S

1. From the
Liveness Property, this case is not possible. �

Despite the previous result, we have found that for certain types
of pRAM systems, which we call FIFO ordered, it is still possible to
do this.

FIFO ordered systems. We say a system is FIFO ordered
if for each process p in Sk, if p issues two write operations
w(x)v≺pw(y)u, then the mcs(ispk) process updates its local
replica of x with the value v before updating its local replica of y
with the value u.
In Fig. 3, we present an IS-protocol that can be used to

interconnect pRAM systems that are FIFO ordered. It consists of
two concurrent tasks, Propagatekout and Propagate

k
in. The first task,

Propagatekout, deals with transferring write operations issued in S
k

to S l, l 6= k. It is activated upon notification from the interface to
ispk that the variable x has been updated to value v due to a write
operation issued by the application process p. Then, Propagatekout
sends the pair 〈x, v〉 to ispl, l 6= k. We avoid re-propagating
write operations received from other systems by checking that
the write operation was not issued in Sk by ispk. The second task,
Propagatekin, deals with applying within S

k the write operations
transferred from the systems S l, l 6= k. It is activated whenever
a pair 〈x, v〉 is received from process ispl, l 6= k. As a result, the
ispk process performs a write operation w(x)v, thus propagating
the value v to all the replicas of variable x within Sk. We note that
the FIFO ordered property do not undergo substantial constraints
with respect to systems that are not FIFO ordered. Theorem 3
states formally the guarantees provided by the above mentioned
interconnection protocol.

Theorem 3. The system ST obtained by connecting N FIFO ordered
pRAM systems S0, . . . , SN−1 using the pRAM IS-protocol in Fig. 3 is
pRAM.

Proof. See Appendix A.1. �

5. Interconnection of causal systems

In this section, we study the interconnection of causal
systems [2]. In the causal model, in addition to the conditions of
the pRAM executions, read operations are forced to return the
value written by the latest causally ordered operation (i.e., read
operations preserve the execution order in Definition 2). Formally,
we define a causal system as follows:
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Fig. 3. The pRAM IS-protocol for each ispk , k ∈ {0, 1}.

Definition 10 (Causal System). A system S is causal if for every
execution α and every process p there is a legal view βp of αp
preserving≺.

As in the case of pRAM systems, here we consider systems that
are implemented by using propagation. First of all, we have that
since the pRAMmodel is strictly weaker than the causal model [7,
2], the result of impossibility in Section 4 is also applicable to causal
systems.

Corollary 1 (From Theorem 2). There is no IS that guarantees causal
interconnection for every pair of causal systems.

In spite of this result, in the previous sectionwepresented an IS-
protocol for interconnecting pRAM systems that are FIFO ordered.
Thus, a question that naturally arises is whether it is possible to
interconnect causal systems that are also FIFO ordered. However,
herewe show that this result does not apply to causal systems. That
is, there is no IS that interconnects every pair of causal systems,
even if they are FIFO ordered.

Theorem 4. There is no IS that guarantees causal interconnection for
every pair of causal systems, even if they are FIFO ordered.

Proof. Let us assume, by way of contradiction, that there is a
system ST which is the result of interconnecting two FIFO-ordered
causal systems S0 and S1with the IS I . FromDefinition 10,we know
that for every execution αT there is a legal view βTp of α

T
p , for all p,

preserving≺.
Assume that we have an execution α0 with the following write

operations issued by process r of S0: w0r (x)s ≺ w0r (y)l. From the
Liveness Property, we know that there is a time t after which any
read operation on x and y issued by any process in S0 returns s and
l, respectively. We now assume that after this time t the processes
p and g issue the write operations w0p(x)u and w

0
g (y)v, causally

related to each other through read operations (detailed below in
each case). Following the definition of interface’s behavior, we
consider that when all MCS-processes update their local memory,
the interface communicates isp0 about these events. Then, I can
take one of the following actions:

• Case 1: isp1 issues w1
isp1
(x)u and w1

isp1
(y)v, in this order, in S1.

Now, some process q of S1 issues the following read operations
r1q (x)u≺q r

1
q (y)l. In this case, if r

0
g (y)l ≺ w0g (y)v ≺ r

0
p (y)v ≺

w0p(x)u, then it is impossible to form a legal view β
T
q preserving

≺. Hence, we reach a contradiction.
• Case 2: isp1 issues w1isp1(y)v and w

1
isp1(x)u, in this order, in S

1.
Now, some process q of S1 issues the following read operations
r1q (y)v≺q r

1
q (x)s. In this case, if r

0
p (x)s ≺ w0p(x)u ≺ r

0
g (x)u ≺

w0g (y)v, then it is impossible to form a legal view β
T
q preserving

≺. Hence, we reach a contradiction.
• Case 3: isp1 does not issuew1isp1(y)v orw

1
isp1(x)u in S

1. From the
Liveness Property, this case is not possible. �

Nevertheless and although in general the interconnection of
causal systems is not possible even if they are FIFO ordered, we
found that it is still possible to interconnect causal systems that
are globally ordered.

Globally Ordered Systems We say that a system is globally
ordered if for each two write operations w(x)v ≺ w(y)u issued by
(maybe different) processes in Sk, eachmcs(p)with p in Sk updates
its local replica of xwith the value v before updating its local replica
of ywith the value u.
In Fig. 4, we present an IS-protocol that can be used to

connect causal systems that are globally ordered. It consists of two
concurrent tasks, Propagatekout and Propagate

k
in, such as in the IS-

protocol in Fig. 3. In fact, the Propagatekin task is the same. The key
difference is found in task Propagateout, where a pair 〈x, v〉 is not
sent to the other systems until all the MCS replicas of x have been
updated.
Clearly, globally ordered systems provide stronger guarantees

than FIFO ordered systems. However and similar to this latter
type, they do not undergo substantial constraints with respect to
systems that are not globally ordered. Theorem 5 states formally
the guarantees provided by the above mentioned protocol.

Theorem 5. The system ST obtained by connecting N globally
ordered causal systems S0, . . . , SN−1 using the causal IS-protocol in
Fig. 4 is causal.

Proof. See Appendix A.2. �

6. Interconnection of cache systems

In this section, we study the interconnection of cache sys-
tems [10]. Roughly speaking, this memory model forces indepen-
dent variables considered in isolation to be sequential. That is, data
operations on any individual variable must ‘‘appear’’ to have been
executed atomically in an order that is consistent with the order
seen in individual processes. Formally, a cache system is defined
as follows:

Definition 11 (Cache System). A system S is cache if for every
execution α and every variable x there is a legal view βx of αx
preserving≺ (where αx denotes the subset of operations obtained
by removing from executionα all the operations on variables other
than x).

We show that, unlike the previous models, the interconnection
of cache systems is always possible, independently of how they
are implemented. In Fig. 5, we present an IS-protocol that can be
used to connect cache systems of any type. It consists of only
one task Propagatek. Note that each IS-processmaintains a copy of
the latest value propagated from the other system in last(x) for
each variable x. That copy must be initialized with a special value
(namely, NoData). Note also that initially one of the IS-processes
(for instance isp0) must send a message with 〈x,NoData〉 to the
other for each variable x to start the interconnection. Theorem 6
states formally the guarantees provided by the above mentioned
protocol.
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Fig. 4. The causal IS-protocol for each ispk , k ∈ {0, 1}.

Fig. 5. The cache IS-protocol for each ispk , k ∈ {0, 1}.

Theorem 6. The system ST obtained by connecting N cache systems
(regardless of whether they are FIFO/globally ordered or not)
S0, . . . , SN−1, using the cache IS-protocol in Fig. 5 is cache.

Proof. See Appendix A.3. �

Observe that the proposed interconnection algorithm is usually
highly inefficient in terms of the network traffic it causes, given
that, for each memory object, there is a continuous exchange
of messages between the IS-processes. Since the main target
of this work is to identify whether consistency models can
be interconnected, we are not very concerned about efficiency.
However, we note that the algorithm can be easily optimized to
decrease the network traffic. For instance, instead of handling each
variable independently, the algorithm could work at a larger scale,
dealingwith several (or even all the) variables simultaneously. This
optimization can be done by modifying task Propagatek() so that it
is executed only upon reception of a given set of 〈x, v〉 pairs (for
different variables), and executing the same code for each one of
them. Additionally, instead of continuously transferring messages
between the IS-processes, such a transfer could be performed only
when a given time interval has passed or when the variable x
is updated at the sending system, whichever happens first. This
optimizations can be done by adding some simple pieces of code
that implement this wait condition. Note, however, that in some
cases, these changes could increase the latency. The correctness
proofs of these alternative interconnecting protocols are in essence
the same as the one for the algorithm shown in Fig. 5.

7. Performance

In this paper, we have approached the interconnection problem
from a theoretical point of view, trying to decide whether it is
possible to interconnect given consistency models. We have not
been concerned above with the efficiency of the interconnection
algorithmswe have proposed and the performance of the resulting

interconnected system. However, we do here a brief and simple
performance evaluation of algorithms and systems. We compare
the performance of a system obtained using our IS-protocols with
the performance of a system that uses a MCS-protocol connecting
all the processes directly. We assume that the same MCS-protocol
is used in the global DSM system of reference and in each of the
systems interconnected with our IS-protocols.
First, observe that our IS-protocols should not affect the response

time a process observes when issuing a memory operation, since
its MCS-process is not affected (in particular, cannot be blocked)
by the interconnection. Since the three models that we study are
fast, the response time of the algorithms that implement them
(e.g., [20] for pRAM, [2,3] for causal, or [16] for cache) only depends
on local computation at a node. This does not change with the
interconnection.
Second, let us look at the latency of a DSM system, which is

the largest time until a value that is written becomes visible in
any other process. In a single DSM system this time depends on
the MCS-protocol used. For instance, if we discard the time for
local computations, for the pRAM and causal algorithms [20,2,3]
the latency depends on the time to complete a broadcast in the
system. Let us denote this time by TB(n) in a system with n MCS-
processes, which we safely assume is at most linear on n. The only
algorithm for cache consistency of which we are aware [16] has
instead latency Lcache(n) = Θ(nTB(n)).4
The three proposed IS-protocols propagate as soon as they can

any new value they are aware of by sending a message. In the case
of pRAM and causal consistencies this is done immediately, while
in the case of cache consistency the IS-process may need to wait
for a message from the other IS-process. Then, using the algorithms
referred above, the interconnection of two systems S0 and S1 with
n0 and n1 MCS-processes respectively (n = n0 + n1), has latency
TB(n0)+ TB(n1)+ d (IS-processes are assumed to use existingMCS-
processes) in the case of pRAM and causal, where d is the delay of
a point-to-point communication. In the case of cache this latency
is Lcache(n0) + Lcache(n1) + d. In the three cases, since TB(n) is at
most linear, the latency of the interconnected system is larger than
the latency in the original system. However, since the broadcast
delay cannot be smaller than d, the latency increases at most by a
constant factor of 3. If this is generalized to N systems the increase
factor depends on the topology. In the worst case, systems are
connected as a line, and the worst factor becomes 2N − 1. In the
best case systems are connected as a star, and the increase factor
is again bounded by a small constant 5.
Regarding the network traffic, the pRAM and causal proto-

cols [20,2,3] broadcast a message for each write operation. Let

4 The algorithm of [16] uses a token-passing scheme inwhich the nMCS-processes
broadcast messages in a cyclic fashion.
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Fig. 6. Possibilities of interconnection under the different types of systems in this
work.

MB(n) be the number of messages that a broadcast requires, which
again is at most linear on n. Since the interconnection of S0 and S1
implies sending one point-to-point message for each variable up-
date, the traffic in the interconnected system isMB(n0)+MB(n1)+1
messages per write operation. This again implies a small increase
of networks traffic, bounded by a factor of 3 if MB(n) is constant,
and bounded by an additive constant term if MB(n) is linear. Gen-
eralizing for N systems the worst case is a factor of 2N − 1, when
MB(n) is constant and systems are connected as a line, and the best
is an additive term of O(N), when MB(n) is linear and systems are
connected in a star.
The evaluation of network traffic for the cache consistency

model cannot be based on messages per write operation, since
both the basic MCS-protocol [16] and the IS-protocol of Fig. 5
send messages continuously, even if variables are not written. The
difference is that the IS-protocol sends one message per variable
in the memory. If both protocols transmit at similar intervals,
the single system sends MB(n) messages every interval, while the
system after the interconnection of S0 and S1 sends MB(n0) +
MB(n1)+ V messages, where V is the number of variables. Clearly,
this latter value can be very large if V is large. However, as
mentioned in Section 6, some optimizations can reduce the traffic.
For instance, if all the changes in the memory are sent by the
IS-process in one single message, the traffic becomes MB(n0) +
MB(n1)+ 1 messages. Then, the increase of traffic is similar to the
one observed for the pRAM and causal consistencies.

8. Conclusions

In this paper, the interconnection of distributed sharedmemory
systems has been studied. We have classified the consistency
models in two groups, depending on whether they are fast or not.
In the case of non-fast consistency models, we have shown that
they cannot be interconnected in anyway. In contrast, in the case of
fast consistencymodels we have provided protocols with which to
interconnect some of them.Whereas in some cases it is possible to
interconnect fast consistencymodelswithout any restriction, other
fast consistency models need some additional constraints. In this
last situation, we gave sufficient conditions and the corresponding
protocols to do so. Fig. 6 summarizes these results. At this point,
we note that whereas we have shown that cache systems can be
interconnected in a more general fashion than pRAM and causal
systems, the protocol that we have used for such a task is, in
general, less efficient than the protocols used for interconnecting
pRAM and causal systems.
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Appendix

A.1. Correctness proof of Theorem 3

Let p be some process in Sk, k ∈ {0, 1} and βkp be a legal view of
execution αkp preserving ≺q for all q in S

k, as in Definition 5. From
Definition 9, such a legal view must exist by the fact that Sk is a
pRAM system. We denote by orig(op) the original write operation
propagated as operation op in αkp by process isp

k. Similarly, given a
write operation op issued in S l, l 6= k, we denote by prop(op) the
write operation issued by ispk as a result of propagating op to Sk as
defined by the IS-protocol. We define βTp as the sequence obtained
by replacing in βkp every write operation op from isp

k by the write
operation orig(op).

Lemma 1. βTp is formed by all operations of α
T
p .

Proof. First of all, note that the difference between αkp and α
T
p is

that, for each operation op issued by ispk in αkp , α
T
p contains the

original operation orig(op). Since βkp is a sequence formed by all
operations of αkp , and β

T
p is obtained by replacing in β

k
p every write

operation op from ispk by thewrite operation orig(op), then the set
of operations in βTp is the same as that of α

T
p . �

The following Lemmas show that βTp preserves the order in
which the operations are issued in any process of ST .

Lemma 2. Let op = wkq(x)v and op
′
= wkq(y)u be two operations

of αT issued by the same process q of Sk. If op≺q op′ on αk, then
Propagatekout will send to S

l, l 6= k, 〈x, v〉 before 〈y, u〉.

Proof. Directly since, as the system Sk is FIFO ordered, ispk receives
the message in Sk with the value v of variable x from process q
before themessage with the value u of variable y also from process
q, and then Propagatekout sends the pair 〈x, v〉 to isp

l before it sends
〈y, u〉. �

Lemma 3. Let op and op′ be two write operations of αT issued by
the same process q of S l, where l 6= k. If op≺q op′ on αl, then
prop(op)→ prop(op′) in βkp , for all p.

Proof. We know that βkp is a legal view that preserves the q’s
process order ≺q on αk, for all q. Then, the result follows from
Lemma 2, from the fact that the channel connecting ispl to ispk is
reliable and FIFO, and from the implementation of task Propagatekin
(see Fig. 3). �

Lemma 4. βTp preserves≺q for all q.

Proof. By way of contradiction, let us assume that βTp does not
preserve the order among operations issued by a process q of ST .
Hence, theremust be at least two operations op and op′ ofαTp issued
by q such that op≺q op′ but op′ precedes op in βTp . Let us consider
two possible cases.
• Case 1: q is in Sk. Since op′ precedes op inβTp , op

′ also precedes op
in βkp , by definition of β

T
p . Then, β

k
p does not preserve q’s process

order ≺q. However, this is not possible since, by definition,
βkp is a legal view preserving ≺q, for all q. Hence, we reach a
contradiction.
• Case 2: q is in S l, l 6= k. Since both operations are in
βTp , which only contains read operations from process p of
system Sk, both must be write operations. Let op and op′ be
propagated as operations prop(op) and prop(op′), respectively,
issued by process ispk. FromLemma3,wehave that prop(op)→
prop(op′) in βkp . Observe now that, by definition, operation
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prop(op) in βkp is replaced by op and operation prop(op
′) is

replaced by op′ to obtain βTp . Then op precedes op
′ in βTp and

we reach a contradiction. �

Lemma 5. βTp is legal.

Proof. By definition, βkp is legal. Also by definition, β
T
p is obtained

by replacing in βkp every write operation op from isp
k by the write

operation orig(op). Therefore, βTp is legal. �

Theorem 7 (Corresponds to Theorem 3). The system ST obtained
by connecting N FIFO ordered pRAM systems S0, . . . , SN−1 using the
pRAM IS-protocol in Fig. 3 is pRAM.

Proof. Let N = 2. From Lemma 1, βTp is formed by all operations
of αTp . Also, from Lemma 4, β

T
p preserves ≺q for all q. Finally, from

Lemma 5, βTp is legal. Then, β
T
p is a legal view of α

T
p preserving ≺q

for all q. Hence, ST is a pRAM system. The extension to more than
2 systems follows from Observation 1. �

A.2. Correctness proof of Theorem 5

Let p be some process in system Sk, k ∈ {0, 1}, and let mcs(p)
be its MCS-process. Recall that αkp (resp. α

T
p ) is the set obtained by

removing from αk (resp. αT ) all read operations except those from
process p. We define βkp as a sequence with the same operations
as αkp that preserves the order in which all operations of α

k
p are

issued by process p, and the order in which every write operation
is applied inmcs(p). Formally,

Definition 12. Let βkp be a sequence of the operations in α
k
p . Let

op and op′ be in αkp . Then op → op′ in βkp , if any of the following
happen:
(1) op and op′ are operations from the same process p of Sk and
op≺p op′.

(2) op = wkq(x)u, op
′
= wks (y)v, and in mcs(p) the local copy of x

is updated with u before updating ywith v.
(3) op = wkq(x)u, op

′
= rkp(y)v, and inmcs(p) the local copy of x is

updated with u before p issues op′.

Note that, as in αkp , every write operation of process isp
k in βkp

is the propagation of a write operation issued by a process of S l,
l 6= k. We define βTp as the sequence obtained by replacing in β

k
p

every write operation op from ispk by the write operation orig(op).

Definition 13 (Non-Transitive Execution Order). Let op and op′ be
two operations in an execution α. Then op precedes op′ in the non-
transitive execution order (op≺nt op′) on α if any of the following
holds:
(1) op and op′ are operations from the sameprocess p and op≺p op′
on α.

(2) op = w(x)v and op′ = r(x)v.

Definition 14 (≺-Related Sequence). Let op and op′ be two
operations in an execution α such that op ≺ op′ on α. A
≺–related sequence between op and op′ is a sequence of operations
op1, op2, . . . , opm belonging to α such that op1 = op, opm = op′,
and opi≺nt opi+1 on α, for 1 ≤ i < m.

Note that at least one ≺-related sequence always exists between
op and op′ if op ≺ op′ on α.
When considering the composed system ST , a ≺-related

sequence Seq between operations op and op′ of execution αT
can be divided into n subsequences subSeq1, subSeq2, . . . , subSeqn,
such that all the operations in subsequence subSeqi belong to the
same system Sk and the operations in consecutive subsequences

belong to different systems. We use subSeqki to express that all the
operations of the ith subsequence belong to system Sk.
We use first(subSeqki ) and last(subSeq

k
i ) to denote the first and

last operation of the subsequence subSeqki , respectively. Note that,
in two consecutive subsequences subSeqki and subSeq

l
i+1 of a given

sequence, last(subSeqki ) = wkj (x)v and first(subSeq
l
i+1) = r

l
l (x)v,

i.e. the first operation of the later subsequence reads the value
written by the last operation of the former subsequence.

Lemma 6. Let op and op′ be two operations in αTp issued in system S
k

such that op ≺ op′ in αT . If there is a≺-related sequence between op
and op′ with one single subsequence subSeqk1, then op→ op′ in βkp .

Proof. Let us assume, by way of contradiction, that the claim does
not hold. Then, op ≺ op′ on αk, and op′ → op in βkp . This is only
possible if there are at least two ‘‘consecutive’’ operations opi and
opi+n in subSeqk1 and belonging to α

k
t such that op

i+n
→ opi in βkp .

We say opi+n and opi are two consecutive operations in subSeqk1 if
they are inαkt , t 6= p, and between them there is no other operation
belonging to αkp (i.e., every operation op

i+l, 1 ≤ l < n, is a read
operation issued by a process other than p). Note that if n > 1 then
these two consecutive operations opi and opi+n can only be write
operations. We have three cases:

• Case 1: opi = wk(x)v and opi+n = wk(y)u. From the definition
of the ≺-related sequence, opi ≺ opi+n on αk. As the system
Sk is Globally Ordered, if opi ≺ opi+n on αk, then opi must
be applied in all processes of Sk (and, of course, in p) before
opi+n. Therefore, from the second condition of Definition 12,
opi → opi+n in βkp , and we reach a contradiction.
• Case 2: opi = wk(x)v and opi+1 = rkp(x)v. From the definition
of the ≺-related sequence, opi≺nt opi+1 on αk. Obviously, the
write operation wk(x)v must be applied before issuing rkp(x)v,
since, otherwise, opi+1 could not obtain the value v in x.
Therefore, from the third condition of Definition 12, opi →
opi+1 in βkp , and we reach a contradiction.
• Case 3: opi and opi+1 are issued by the same process p. From the
definition of the ≺-related sequence, opi≺nt opi+1 on αk and,
from case 1 of≺nt , opi≺p opi+1. Then, from the first condition of
Definition 12, opi → opi+1 in βkp , and we reach a contradiction.

�

Lemma 7. Let op and op′ be two operations in αTp .

(1) If they are issued by system Sk and op ≺ op′ onαT , then op→ op′
in βkp .

(2) If they are issued by system Sk and op = wk(x)v and op′ =
wk(y)u and op ≺ op′ on αT , then Propagatekout will send the pairs
〈x, v〉 and 〈y, u〉 to S l in this order.

(3) If they are issued by system S l, l 6= k, and are write operations and
op ≺ op′ on αT , then prop(op)→ prop(op′) in βkp .

(4) If they are issued by systems S l and Sk respectively and op =
wl(x)v ≺ op′ on αT , then prop(op)→ op′ in βkp .

(5) If they are issued by systems Sk and S l respectively and op ≺
op′ = wl(x)v on αT , then op→ prop(op′) in βkp .

Proof. Proof of Part 1: Let Seq be a ≺-related sequence between
op and op′. We use induction on the number of
subsequences of Seq to show the result. Note that this
number has to be odd. In the base case, the sequence
Seq has only one subsequence subSeqk1. Hence, from
Lemma 6, op = first(subSeqk1) → op′ = last(subSeqk1)
in βkp . Assume the claim is true for sequences with i
subsequences. We show it also holds if Seq has i + 2
subsequences. By the induction hypothesis, we have that
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op = first(subSeqk1) → last(subSeqki ) in β
k
p . Note that

last(subSeqki ) = w
k
t (x)v is propagated to system S

l, l 6= k,
by process ispk after, in all processes of Sk, the local copy
of x is updated with the value v. Later on, ispl propagates
the pair (y, u) from last(subSeqli+1) = w

l
q(y)u asw

k
ispk(y)u

(see Fig. 4). Then,wkt (x)v is applied by all processes in S
k

(and, of course, by p) beforewkispk(y)u and therefore, from
the second condition of βkp in Definition 12, w

k
t (x)v →

wkispk(y)u in β
k
p . From the second condition of ≺-related

order, wkisp(y)u≺nt first(subSeq
k
i+2) = r

k
s (y)u on α

k, and
then, wkisp(y)u ≺ op′ = last(subSeqki+2) on α

k. Then,
from Lemma 6, wkispk(y)u → op′ = last(subSeqki+2) in
βkp . Hence, by transitivity, op = first(subSeq

k
1) → op′ =

last(subSeqki+2) in β
k
p .

Proof of Part 2: If there is a ≺-related sequence between op and
op′ with a single subsequence, then op ≺ op′ on αk, and
it follows (since the system is globally ordered) that op
is applied in all processes of Sk before op′. Otherwise,
the proof of Part 1 shows the same fact when the ≺-
related sequences between op and op′ have more than
one subsequence. Thus, since the task Propagatekout of our
IS–protocol (see Fig. 4) propagates operations in the order
they are locally applied, it will send the pair 〈x, v〉 of op
to S l before the pair 〈y, u〉 of op′.

Proof of Part 3: From Part 1, op → op′ in β lq, l 6= k. Then, the
result follows from Part 2, from the fact that the channel
connecting ispl to ispk is reliable and FIFO, and from
the implementation of task Propagatekin (see Fig. 4). The
process ispk issues prop(op) and prop(op′) in Sk and, thus,
from the first condition of execution order, prop(op) ≺
prop(op′) on αk. Hence, from Lemma 6, prop(op) →
prop(op′) in βkp .

Proof of Part 4: Let Seq be a ≺-related sequence with n subseque-
nces between op and op′. Let us assume last(subSeqln−1)
= wlq(y)u and first(subSeq

k
n) = rks (y)u. From Part 3,

prop(op) → prop(last(subSeqln−1)) = prop(w
l
q(y)u) =

wkispk(y)u in β
k
p . From the second condition of ≺-related

order, wkisp(y)u≺nt first(subSeq
k
n) = rks (y)u on α

k, and
then, wkisp(y)u ≺ op

′
= last(subSeqkn) on α

k. As we know,
because the system Sk is Globally Ordered and from
Definition 12 of βkp , w

k
ispk(y)u → op′ = last(subSeqkn)

in βkp . Hence, by transitivity, op = prop(op) → op′ =
last(subSeqkn) in β

k
p .

Proof of Part 5: Similar to the proof of Part 4. �

Lemma 8. βTp preserves≺.

Proof. In this proof we show that if there are two operations op
and op′ in αTp such that op ≺ op

′ on αT , then op→ op′ in βTp .
Let us make a case analysis:

• Case op and op′ are issued by processes in Sk: From Part 1 of
Lemma 7, if op ≺ op′ on αT , then op → op′ in βkp . Then, by
definition of βTp , we have that op→ op′ in βTp .
• Case op and op′ are issued by processes in S l, where l 6= k: Since
both operations are in αTp , which only contains read operations
from process p of system Sk, both operations must be write
operations. Then, let op and op′ be propagated as prop(op) and
prop(op′) operations.
From Part 3 of Lemma 7, we have that if op ≺ op′ on αT , then

prop(op) → prop(op′) in βkp . Hence, replacing prop(op) and

prop(op′) by op and op′, respectively, we have that, by definition
of βTp , op→ op′ in βTp .
• Case op is issued by some process in S l and op′ is issued by some
process in Sk, where l 6= k: op must be a write operation, since
αTp only contains read operations from process p of system S

k.
Such an operation will be propagated from S l to Sk as described
by the IS-protocol and it will appear in Sk as a (write) operation
prop(op) issued by process ispk.
From Part 4 of Lemma 7, if op ≺ op′ on αT , then prop(op)→

op′ in βkp . Hence, replacing prop(op) by op, we have that, by
definition of βTp , op→ op′ in βTp .
• Case op is issued by some process in Sk and op′ is issued by some
process in S l, where l 6= k: op′ must be a write operation, since
αTp only contains read operations from process p of system S

k.
Such an operation will be propagated from S l to Sk as described
by the IS-protocol and it will appear in Sk as a (write) operation
prop(op′) issued by process ispk.
From Part 5 of Lemma 7, if op ≺ op′ on αT , then op →

prop(op′) in βkp . Hence, replacing prop(op
′) by op′, we have that,

by definition of βTp , op→ op′ in βTp . �

Lemma 9. βTp is legal.

Proof. If process p issues some read operation op = rkp(x)u is
because, when this operation is invoked, it has the value u in its
local copy of x. Then, the latest write operation applied on x in p is
op′ = wk(x)u. Hence, from the third condition of Definition 12, op′
must be the previous nearest write operation on x in βkp . Therefore,
from Definition 5, βkp is legal. Note that, by definition of β

T
p , if

we replace in βkp every write operation op from isp
k by the write

operation orig(op), we obtain βTp . Then, β
T
p is legal. �

Theorem 8 (Corresponds to Theorem 5). The system ST obtained by
connecting N globally ordered causal systems S0, . . . , SN−1 using the
causal IS-protocol in Fig. 4 is causal.

Proof. Let N = 2. From Lemma 1, βTp is formed by all operations
of αTp . Also, from Lemma 8, β

T
p preserves≺. Finally, from Lemma 9,

βTp is legal. Then, β
T
p is a legal view of α

T
p preserving ≺. Hence, S

T

is a causal system. The extension to more than 2 systems follows
from Observation 1. �

A.3. Correctness proof of Theorem 6

Let βkx be a legal view of α(x)
k preserving ≺ on α(x)k, as

described in Definition 5. Such a legal view must exist by the fact
that Sk is a cache system. We define opi as the ith write operation
propagated by process isp from one system to the other (regardless
of the system in which it is issued). We use op(x)ki to indicate
that opi is issued by some process in Sk on variable x. We use
propl(op(x)ki ) to denote the write operation issued by the task
Propagateli as a result of the propagation of op(x)

k
i .

We define βkx,i as the subsequence of operations of β
k
x issued

by processes of Sk from op(x)ki (or prop
k(op(x)li)) until op(x)

k
i+1 (or

propk(op(x)li+1)) without including them.
We define βTx,i as the sequence formed by all operations issued

by processes of ST between the ith and ith + 1 propagation of
write operations on variable x so that operations belonging toα(x)k
follow the order they have in βkx , and operations belonging to α(x)

l

follow the order they have in β lx. Formally, β
T
x,i can be obtained as

follows: op(x)i ·head(x)ki ·head(x)
l
i · tail(x)

k
i · tail(x)

l
i, where head(x)

k
i

denotes the subsequence of βkx,i that includes all read operations
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from the beginning of βkx,i until the first write operation in β
k
x,i (not

included), and tail(x)ki is the subsequence of β
k
x,i that includes all

the operations in βkx,i that are not in head(x)
k
i .

Finally,we defineβTx as the sequence obtained by concatenating
the sequences of βTx,i such that β

T
x,i goes before β

T
x,i+1,∀i. In what

follows, we will prove that it is a legal view of α(x)T .

Lemma 10. βTx is a sequence formed by all operations of α(x)
T .

Proof. α(x)T is, by definition, the set of all operations in α(x)k and
α(x)l issued by all processes of Sk and S l other than ispk and ispl
(i.e., by all processes of ST ).
We know that βkx and β

l
x are sequences of all operations of

α(x)k and α(x)l, respectively, because they are legal views. Then,
since βTx is formed as the sequence of operations of S

T obtained
by concatenating the sequences of legal views βkx and β

l
x, it is a

sequence of all operations of α(x)T . �

Lemma 11. βTx preserves≺.
Proof. Weshow that if there are twooperations op and op′ inα(x)T
such that op ≺ op′ on α(x)T , then op → op′ in βTx . We have two
possible cases.
• Case1: op and op′ have been issued by processes of the same
system. Let us suppose that op and op′ are issued by processes
of Sk. Note that, by definition, Sk is a cache system. Then, from
Definition 11, there must be a legal view βkx preserving the
execution order ≺ on α(x)k and hence, from Definition 4, if
op ≺ op′ on α(x)k then op → op′ in βkx . It is easy to check
from the definition of βTx that operations of α

T and issued by
processes of Sk appear in βTx and in β

k
x in the same order. Hence,

op→ op′ in βTx .
• Case 2: op and op′ have been issued by processes of different
systems. Let us suppose that op is issued by some process of
Sk, and op′ is issued by some process of S l. We know, from
Case 1, that βTx preserves ≺ on α(x)

k, and also preserves ≺ on
α(x)l. Then, βTx will preserve ≺ on α(x)

T if it also preserves ≺
between any two operations from different systems. Then, by
definition of βTx , it is enough to show that the second condition
of the Execution Order is preserved between two operations
op and op′ from different systems such that op = wk(x)u and
op = r l(x)u inβTx,i.We can see, by definition, that opmust be the
ith write operation propagated from Sk to S l (that is, op(x)ki ), and
op′ is a read operation in head(x)li. Then, by definition, op→ op′

in βTx,i, and, hence, op→ op′ in βTx . �

Lemma 12. βTx is legal.
Proof. Let op = r(x)u be a read operation of βTx . FromDefinition 5,
βTx is legal if op

′
= w(x)u is the nearest previous write operation

to op in βTx . We know, by definition, that β
k
x is the same sequence

as βTx but replacing each write operation op from isp
k by prop(op).

We have two possible cases.
• Case 1: op = rk(x)u and op′ = wk(x)u are operations in α(x)T
issued by processes of Sk. By definition, as βkx is a legal view
of execution α(x)k preserving ≺ on α(x)k, op′ = wk(x)u is the
nearest previous write operation to op = rk(x)u in βkx . Then, by
definition of βTx , op

′ is also the nearest previous write operation
to op in βTx . Therefore, β

T
x is legal.

• Case2: op = rk(x)u and op′ = wl(x)u are operations in α(x)T
issued by systems Sk and S l respectively. Let op′ = wl(x)u be the
write operation op(x)li. Then, its corresponding write operation
in Sk is propk(op(x)li) = w

k
ispk(x)u. By definition, as β

k
x is a legal

view ofα(x)k preserving≺ onα(x)k, propk(op(x)li) is the nearest
previous write operation to op in βkx . Then, by definition of β

T
x ,

propk(op(x)li) is replaced by op
′
= op(x)li to obtain β

T
x , and

op′ = op(x)li is also the nearest previous write operation to op
in βTx . Therefore, β

T
x is legal. �

Theorem 9 (Corresponds to Theorem 6). The system ST obtained
by connecting N cache systems (regardless of whether they are
FIFO/globally ordered or not) S0, . . . , SN−1, using the cache IS-
protocol in Fig. 5 is cache.

Proof. Let N = 2. From Lemma 10, βTx is formed by all operations
of α(x)T . From Lemma 11, βTx preserves≺. Finally, from Lemma 12,
βTx is legal. Then, β

T
x is a legal view of α(x)

T preserving ≺. Hence,
ST is a cache system. The extension tomore than 2 systems follows
from Observation 1. �
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