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Abstract. In this paper we present a novel approach to the graph iso-
morphism problem. We combine a direct approach, that tries to find
a mapping between the two input graphs using backtracking, with a
(possibly partial) automorphism precomputing that allows to prune the
search tree. We propose an algorithm, conauto, that has a space com-
plexity of O(n®logn) bits. It runs in time O(n®) with high probabil-
ity if either one of the input graphs is a G(n,p) random graph, for
p € [w(n®*n/ninlnn),1 — w(In?n/nlnlnn)]. We compare the practical
performance of conauto with other popular algorithms, with an extensive
collection of problem instances. Our algorithm behaves consistently for
directed, undirected, positive, and negative cases. Additionally, when it
is slower than any of the other algorithms, it is only by a small factor.

1 Introduction

The Graph Isomorphism problem (GI) tests whether there is a one-to-one map-
ping between the vertices of two graphs, preserving the arcs. This is of both the-
oretical and practical interest. In practice, it has applications in many fields, like
pattern recognition, computer vision, information retrieval, data mining, VLSI
layout validation, and chemistry. Its main theoretical interest comes from the
fact that, while GI is clearly in NP, it is not known if it is in P or NP-complete.

Previous work. As could be expected, GI has been extensively studied]. On
the theoretical side, there is much work trying to place GI into a complexity
class. There is strong evidence that GI is not NP-complete since, otherwise, the
polynomial time hierarchy would collapse to its second level (X% = ITY = AM)
[4I16] and because it would be the only NP-complete problem to be polynomial-
time equivalent in its decision and counting versions [10]. Recently, Arvind and
Kurur [I] have shown that GI is in SPP (“Stoic PP”). GI is known to be solvable
in polynomial time for some restricted classes of graphs, like trees or planar
graphs [9]. However there are graph families that are specially hard, like certain
families of strongly regular graphs (SRG) and projective planes. As far as we
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know, the best bound for general graphs up to now is due to Babai and Luks [3],
whose canonical labeling (see below) algorithm runs in exp(n'/2t°()) time. GI
has also been studied on random graphs G(n,p). For p = 1/2, Babai et al. [2]
proposed a canonical labeling algorithm that labels all graphs in expected linear
time. Recently, Czajka and Padurangan [6] have given a linear time algorithm
that canonically labels a G(n,p) random graph with high probability@, for p €
[wn*n/nnlnn),1 — w(n*n/nlnlnn)].

GI algorithms use mainly two approaches. The direct approach tries to find an
isomorphism between the two input graphs directly with a classical backtracking
algorithm, possibly using heuristics to prune the search tree. Examples of direct
algorithms are Ullman’s [I8] or vf2 [5]. The major drawback of these algorithms
is that they are slow when the graphs being tested have many automorphisms,
since they usually do not detect them. The canonical labeling approach applies
some function C() to each graph, which returns a certificate (canonical labeling)
of the graph, such that C(G) = C(H) if and only if graphs G and H are isomor-
phic. Nauty [ITI12] is a canonical labeling algorithm that is currenly considered
the fastest GI algorithm. The main problem of nauty, and any other complete
canonical labeling algorithm, is that it needs to compute the whole automor-
phism group (which is hard). Not surprisingly, Miyazaki [13] has found a family
of graphs with exponential lower time bounds for nauty.

Contributions. We propose an algorithm for GI that combines the best of the
two approaches. Our algorithm, which we call conauto, is a direct algorithm
since it tries to find a mapping between the two input graphs using backtrack-
ing. However, to drastically prune the search tree, it looks for automorphisms
in the graphs, as canonical labeling algorithms do, but without necessarily com-
puting the whole automorphism group. We show that our algorithm has a space
complexity of O(n?logn) bits when run with n-node graphs. Additionally, us-
ing results of Czajka and Padurangan [6], we show that conauto runs in time
O(n?) w.h.p. if either one of the input graphs is a G(n,p) random graph, for
p € wn*n/ninlnn),1 —w(n*n/nlnlnn)|.

We claim that conauto is very practical. To back this claim we compare it
with other algorithms, namely nauty [12] and v{2 [5]. The former is included
because it is considered to be the fastest practical GI algorithm, while the lat-
ter is included as a modern example of a direct algorithm. The comparison is
done by running programs implementing the algorithms on an extensive bench-
mark that we have built [I4], with positive and negative isomorphism cases,
and directed and undirected graphs from several families. The benchmark used
combines simple graph families, like random graphs, with other families that are
known to be hard to handle by most GI algorithms, like some SRG families or
the point-line graphs of Desarguesian projective planes. The comparison con-
cludes that, when conauto is not able to handle a family of graphs (it cannot
finish in 10,000 seconds), none of the other two can, while there are families that
are handled easily by conauto and not by the others. Additionally, when it is
slower than any of the other algorithms, it is only by a small factor. In general,

2 W.h.p., probability at least 1 — O(n™°), for some ¢ > 0 and large enough n.
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conauto behaves more consistently in all cases (directed versus undirected, and
positive versus negative). It is worth mentioning that an early version of conauto
was recoded by Johannes Singler and included in the LEDA C++ class library
of algorithms [I7]. As noted in [I7], both implementations (LEDA’s and ours)
of that early version of conauto have a very uniform behavior, but the LEDA
implementation was found to be slower than ours. The version of conauto we
present in this paper has a more complete search for automorphisms and uses
them more exhaustively than the one included in LEDA.

Paper structure. In Section 2] we give basic definitions and notation. In Section
we describe the theoretic concepts on which the algorithm is based, while the
algorithm is presented in Section[dl In Section [l the asymptotic complexity of the
algorithm is evaluated, and in Section [0l its practical performance is compared
with nauty and vf2.

2 Definitions and Notation

A directed graph G = (V, R) consists of a finite non-empty set V' of vertices and
a binary relation R C V x V. An arc (u,v) € R is considered to be directed
from u to v. R can be represented by an adjacency matriz Adj(G) = A with size
[V| x |V] in the following way.

0if (u,v) ¢ RA (v,u) ¢ R
A 1if (u,v) ¢ RA (v,u) € R
) 2if (u,v) € RA (v,u) € R

3if (u,v) € RA(v,u) € R

Let Vi C V, the available degree of v in Vi under G, denoted by ADg(v, V1, G),
is the 3-tuple (D3, Do, D) where D; = |[{u € V; : A, = i}| for i € {1,2,3}.
Extending the notation, we use ADg(Vy,V2,G) = d to denote that Vu,v €
Vi,ADg(u,V2,G) = ADg(v,Va,G) = d, for V1,V C V. Let ADg(V1,Va,G) =
(D3, Do, D1), then we define Neigh(Vy, V2, G) = D3 + Do + D; (i.e. the number
of neighbors each vertex of V1 has in V3), and the predicate Lnkd(Vy, V2, G) =
(Neigh(V1, Vo, G) > 0). We say that (D3, Do, D1) < (F3, Ea, E1) when the first
3-tuple precedes the second one in lexicographic order. This notation will be
used to order the available degrees of both vertices and sets.

Definition 1. Let G = (Vg,Rg) and H = (Vig, Ry). An isomorphism of G
and H is a one-to-one mapping m : Vg — Vg such that for all u,v € Vg
(v,u) € Rg < (m(v),m(u)) € Ry.

Graphs G and H are isomorphic, written G ~ H, if there is at least one isomor-
phism of them. An automorphism of G is an isomorphism of G and itself.

Like other GI algorithms, conauto relies on vertex classification. This is per-
formed using the available degree of the vertices, and refining the successive par-
titions in an iterative process. A partition of a set S is a sequence S = (51, ..., S;)
of disjoint nonempty subsets of S such that S = (J;_; S;. The sets S; are called
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the cells of partition S. The empty partition is denoted . If S = (54, ..., .S;)
and 7 = (T1,...,Ts) are partitions of two disjoint sets S and T', the concatena-
tion of S and 7, denoted S o 7, is the partition (Si, ..., Sy, T4, ..., Ts). Clearly,
foS=8=800.

Partitions may be refined by two means: vertex and set refinements. A vertex
refinement classifies the vertices in each cell using the adjacency type they have
with a pivot verter. This way, each cell may be split into up to four subcells. A
set refinement classifies the vertices in each cell using their available degree with
respect to a pivot set (cell). Let Vi, Vo C V, SetPart(Vh, Va, G) is the set partition
of V1 by V4, which is a partition (S, ..., S;-) of V1 such that Vi, j € {1,...,r},i < j
implies ADg(S;, V2, G) = ADg(S;,Va,G). If Vo = {v} € Vi we have the vertex
partition of V4 by v, denoted VizPart(Vi,v,G). Let Vi1 CV, S = (54,...,.5;) be
a partition of V3, and P = S, for some z € {1,...,7} be a pivot set, then

1. The wvertex refinement of S by the pivot vertex v € P, denoted VtzRef
(8,v,G), is the partition 7 = 77 o ... o 7, such that Vi € {1,...,r}, T; = 0 if
—Lnkd(S;,V1,G), and T; = VizPart(S; \ {v},v, G) otherwise.

2. The set refinement of S by P, denoted SetRef (S, P, G) is the partition 7 =
71 0...07, such that Vi € {1,....,7}, T; = 0 if =Lnkd(S;,V1,G), and T; =
SetPart(S;, P,G) otherwise.

Let G = (Vg,Rg) and H = (Vi, Ry) be two graphs. Let S = (54, ...,.5;) and
T = (Th,...,Ts) be partitions of V; C Vi and Vo C Vp respectively, S and
T are compatible under G and H, denoted Comp(S,7,G,H), if r = s, and
Vi € {1, ...,T}, |Si| = |Tz| and ADg(Sl,Vl,G) = ADg(T’u‘/Q,H)

A sequence of partitions starts with an initial partition (e.g., the degree par-
tition) and each subsequent partition is obtained by applying some refinement
to the previous one. A set refinement is labeled SET, and a vertex refinement
is labeled VIX (from wvertex) when the pivot set has only one vertex, and
BTK (from backtrack) when it has more than one. More formally, a sequence
of partitions for a graph G = (V, R) is a tuple (S, R, P), where S = (89, ..., S%),
are the partitions, R = (R?, ..., R®~!) indicate the type of each refinement ap-
plied, and P = (P, ..., P!~1) are the pivot sets used. For all i € {0, ...,t}, let
St =(5,..,8.), Vi= Uit S?. Then the following statements must hold:

1. Vi € {0,....t — 1}, R* € {VTX, SET, BTK}, and P* € {1,...,|S[}.
2. Vi€ {0,...t — 1}, Ri = SET = 8! = SetRef(S", Sir,, G).
3. Vie{0,...,t =1}, R" # SET = S'"*! = VizRef(S',v,G) for some v € S%,.

4. Vz € {1,...,m}, ~Lnkd(SL, V!, G) Vv |SL] = 1.

For convenience, for any [ € {1, ...,t—1}, we refer to the tuple (S, R', P!) as level
I. Level t is identified by S?, since R! and P? are not defined. Note that, at each
refinement step, from the definitions of vertex and set refinements, the relative
order of the vertices is preserved, and the vertices with no links are discarded.
It is hence possible to define a (partial) order of the vertices of a graph, induced
by a sequence of partitions, in the following way. Let Q = (S, R, P) be a sequence
of partitions for graph G = (V,R). Vi € {0,...,t}, let §* = (51,...,5.), and
V=L, 8. Q induces a (partial) order <q in V as follows.
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1. Vi € {0,...,t}, Vo,y € {1,...,1}, 2 <y =Vu € Si, Vv € S;, u <Q V.
2. Vi € {0,...,.t—1}, Vo € {1,...,r;}, Yu € (SE\VITH), Vo € (SENVITH), u <q v.

An Order <q induced by a sequence of partitions Q is any total order that
extends the order <q. The i*" vertex with respect to <q is denoted wq(i).

Let G = (Vg, Re) and H = (V, Ry) be two graphs. Let Qg = (S¢, Rg, Pa),
and Qg = (Su,Rp,Px) be two sequences of partitions for graphs G and H
respectively. Qg and Qg are said to be compatible if |Sg| = |Su| = t,|Rg| =
IRu| =t —1,|Pg| = |Pu| =t — 1, and they satisfy all the following. Let Rg =
(RY, ... RGN, Ry = (RY, ..., Ry 1Y), P = (P2, ..., P5Y), Py = (PY,...., Py 1Y),
Sg = (8Y,...,8, and Sy = (7°,...,7%). Then

1. Vi€ {0, ...t — 1}, Riy = Ry, and Pl = Pi,.

2. Vi €{0,...,t}, Comp(S', T, G, H).

3. Let 8" = (S},....8%), T" = (11, ..., T}), then Vx,y € {1,...,r}, ADg(SL, S},
G) = ADg(T!, T!, H).

As will be seen, finding compatible sequences of partitions for two graphs gives
an isomorphism between them, by just mapping the vertices in any of the orders
induced by the sequences.

3 Theoretical Foundations

The algorithm conauto solves GI by trying to find compatible sequences of par-
titions for the input graphs. The following theorem shows that this in fact solves
GI. All the proofs can be found in [14].

Theorem 1. Two graphs G and H are isomorphic if and only if there are two
compatible sequences of partitions Qg and Qg for graphs G and H respectively.

Basically, conauto first constructs a sequence of partitions for one of the graphs,
and then tries to find a compatible one for the other. Reproducing in the second
sequence a refinement labeled SET or VTX is direct, since there is only one
possible pivot set or vertex. However, a refinement labeled BTK implies several
potential pivot vertices, what may lead to backtracking. The rest of this section
explores how a limited automorphism search in the first graph can avoid some
of this backtracking, transforming BTK into VTX for some refinements.

Two vertices u,v € V of a graph G = (V| R) are equivalent, denoted u = v, if
there is an automorphism 7 of G such that 7(u) = v. A vertex w € V' is fized by
7 if m(w) = w. When two vertices are equivalent, they belong to the same orbit.
The set of all the orbits of a graph is called the orbit partition. Our algorithm
performs a partial computation of the orbit partition incrementally, starting
from the singleton partition. Since only a limited search for automorphisms is
done, it is possible to stop before the orbit partition is really found. Then, only
a semiorbit partition is obtained. A semiorbit partition of G is any partition
0 ={0y,...,0} of V, such that all vertices in O; are equivalent, for all i.
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Lemma 1. At any level | of a sequence of partitions Qg, all the vertices in a
cell with no remaining links are mutually equivalent.

Using this lemma, some equivalences are detected using only one sequence of
partitions. However, conauto generates two sequences of partitions to detect most
equivalences. From Theorem[land the definition of automorphism, it follows that
two compatible sequences of partitions for a graph G define an automorphism of
G. Let [ be a backtracking level of a sequence of partitions Qg (i.e., R' = BTK),
let Sﬁgl be the pivot cell and p € Ségl the pivot vertex used for the vertex
refinement at level [. Consider any p’ € SL,,p # p'. Let Qi be a sequence of
partitions compatible with Q¢, generated using p’ as pivot instead of p at level
l. Note that Qg and Q; are equal up to level I. Let <q, be an order induced by
Q¢ on the vertices of V', and let <q, be an order induced by ¢ on the same
set of vertices V. Then,

Lemma 2. The mapping 7 induced by <q., and <q,, defined as m(wq. (i) =
wqy, (1), Vi € {1, ..., |V}, is an automorphism of G.

Let k& be such that p = wq(k), then 7(p) = p' = wq, (k); Vi € {k,...[V]},
wqg (1) = wqy, (7); and 7 fixes vertices wqg (1), ..., wqq (k—1). Two vertices u, v €
V of a graph G = (V, R) are equivalent at level [, denoted u =; v, if there is an
automorphism of G that permutes them, and fixes all the vertices in V' \ V! (i.e.,
those discarded in previous levels). Note that p and p’ are equivalent at level I.

Lemma 3. If u = v, then u=; v, Vi € {0,...,1 — 1}.

Let u =; v, if u =; p, then v =; p, and if u #; p, then v #; p. This implies that
when u =; v, their semiorbits can be merged at level [. Let us now extend the
sequence of partitions to include a semiorbit partition.

Definition 2. An extended sequence of partitions E for a graph G = (V, R) is
a tuple (Q,0), where Q is a sequence of partitions, denoted as SeqPart(E), and
O is a semiorbit partition of G, denoted as Orbits(E).

We observe now that when all the vertices in a pivot set used at a backtracking
level | (R! = BTK) are proved to be equivalent, R’ can be set to VTX, eliminat-
ing the backtracking point. This follows from the fact that automorphisms are
preserved under isomorphisms, as stated in the following lemma.

Lemma 4. If the vertices of a pivot set in a sequence of partitions Qg for graph
G are equivalent, then in a compatible sequence of partitions Qg for graph H,
the vertices in the corresponding pivot set must also be equivalent.

The only information conauto stores about automorphisms is the semiorbit par-
tition. Hence, with an extended sequence of partitions, it knows that two vertices
are equivalent (but it does not know all the vertices that are fixed by an auto-
morphism that permutes them). Nevertheless, for each two vertices u and v that
belong to the same semiorbit in a semiorbit partition, there is at least one au-
tomorphism that fixes all the vertices that belong to singleton semiorbits, and
permutes u and v.
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Algorithm 1. Test whether G and H are isomorphic (conauto)

Iso(G, H) : boolean

1 if degree partitions do not match then return FALSE
Q¢ «— GenSeqOfPart(G) ; Qu «— GenSeqOfPart(H)
Ec «— FindAuto(G,Qc) ; Ex «— FindAuto(H,Qm)
if BtkAmount(SeqPart(Eq)) < BtkAmount(SeqPart(Ex))
then return Match(0, G, H, SeqPart(Eg), Orbits(Ex))
else return Match(0, H,G, SeqPart(Ex), Orbits(Ec))

S U W N

Algorithm 2. Generate a sequence of partitions for a graph G

GenSeqOfPart(G) : sequence of partitions

1 Start with the degree partition

2 while there are non-singleton cells with links do

3 if there is a singleton cell {v} with links then label VTX; Refine by vertex v
4 else label SET; Refine by set exhaustively

5 if no set refinement succeeded then relabel BTK; Refine by vertex

6 label FIN

7 return the computed sequence of partitions

4 Algorithm conauto

In this section we present the algorithm conauto (Algorithm [I) which applies
the previous theoretical discussion. If both graphs have the same vertex de-
grees, first it generates a sequence of partitions for each graph, and then tries to
eliminate potential backtracking points looking for vertex equivalences at these
backtracking points. Then, it chooses the graph with less backtracking levels
(BtkAmount(), i.e., number of levels | with R' = BTK) in its sequence of par-
titions as the target, and tries to find a compatible sequence of partitions for
the other graph. If one such sequence of partitions is found, it returns TRUE.
Otherwise it returns FALSE.

Algorithm B GenSeqOfPart, starts from the degree partition of the vertex
set, and generates a sequence of partitions iteratively as follows.

1. If there are singleton cells in the partition, one of them is chosen as the pivot
set, and a vertex refinement is performed to obtain the next partition in the
sequence (Line 3).

2. Otherwise, the algorithm performs set refinements using different cells in
the partition as pivot sets, until one of them is able to split at least one cell
(maybe itself), or all of them have been tried unsuccessfully (Line 5).

3. If no cell meeting the conditions of Cases[Il and 2l has been found, then some
cell is chosen as the pivot set, and a vertex in that cell is used as the pivot
vertex to generate the new partition performing a vertex refinement (Line 6).

The search for automorphisms is performed by Algorithm [8l First it uses al-
gorithm ProcCellsWithNoLinks to apply Lemmalll Then traverses the sequence



228 J.L. Lépez-Presa and A. Ferndndez Anta

Algorithm 3. Look for automorphisms

FindAuto(G, Q) : extended sequence of partitions
1 O « the singleton partition of V'
2 ProcCellsWithNoLinks(O)
3 for each level [ labeled BTK, in decreasing order of [ do
4 for each non-pivot vertex v in the pivot cell do
5 Generate an alternative sequence of partitions using v
6 if the sequences of partitions are compatible then
7 ProcCompSeqsOfPart(O)
8 if all the vertices in the pivot cell are equivalent then
9 relabel original partition VTX

10 return (Q,0)

Algorithm 4. Find a sequence of partitions compatible with the target

Match(l,G, H,Qg,On) : boolean
1 if partition labeled VTX then
2 success «— Ref. by vertex are compat. and Match(l+1,G, H,Qc,Om)
3 else if partition labeled SET then
4 success «— Ref. by set are compat. and Match(l + 1,G, H,Qgz,Om)
5 else if partition labeled BTK then
6 for each vertex v in the pivot cell, while not success do
7
8
9
10

if v may not be discarded according to Oy then
success «—— Ref. by vertex are compat. and Match(l+ 1,G, H,Qg,Omn)
else (i.e. partition labeled FIN)
success «— adjacencies in both partitions match
11 return success

of partitions upwards looking for vertex equivalences among the vertices in the
pivot sets at the levels labeled BTK, applying Lemma[2 This way, Lemma Bl will
be applicable, so the automorphisms already found may be used when processing
previous partitions in the sequence. The generation of an alternative sequence
of partitions is performed in a straightforward way, avoiding bactracking. If this
alternative sequence of partitions is compatible with the original one, then new
vertex equivalences have been found, and they are used to iteratively compute
the semiorbit partitions of the graphs using algorithm ProcCompSeqsOfPart.

When, at a backtracking point, all the vertices in the pivot cell are found
to be equivalent, that level is relabeld from BTK to VTX. Recall that, from
Lemma [4] this equivalence must hold for the other graph, so only one vertex
in the corresponding pivot cell will need to be tested during the search for an
equivalent sequence of partitions.

Algorithm [l (Match) is a recursive algorithm that receives a level [ to process
in the sequence of partitions, the graphs G and H to test, the sequence of
partitions Qg for graph G, and the semiorbit partition Oy previously obtained
for graph H. It returns TRUE if it is able to find a sequence of partitions for
graph H that is compatible with Q¢, and FALSE otherwise. Algorithm [ starts
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with a partition that is compatible with the original (e.g., both start with the
degree partition). Then, if the current level is labeled VTX, it applies a vertex
refinement to the current partition. If the new partition generated is compatible
with the original, it recursively calls itself to process the next partition in the
sequence. Levels labeled SET are processed in a similar way, but applying a set
refinement. If the current level is labeled BTK, it applies Lemma [2] to prune the
search space. More sophisticated automorphism management may help here,
but we have discarded for now that possibility in favor of simplicity. Hence,
vertex equivalence will only be applied when all the previously fixed vertices
belong to singleton semiorbits. At the last level (labeled FIN), Condition 3 from
the definition of compatibility between sequences of partitions is tested.

The algorithm conauto directly applies the theoretical results from the previ-
ous section. Hence, the following theorem.

Theorem 2. Two graphs G and H are isomorphic iff Iso(G, H) returns TRUE.

5 Complexity Analysis

Algorithm conauto requires to store the adjacency matrices and the sequences
of partitions for each of the graphs. The matrices need O(n?) words for graphs
of n vertices. (We assume words of O(logn) bits, since they need to store vertex
identifiers.) Each partition may be represented using O(n) words. It is not hard
to see that a sequence of partitions has at most 2n partitions. Then, a sequence
of partitions requires O(n?) words. Since at most three sequences have to be
stored at any time (those of the graphs and a temporary sequence to find au-
tomorphisms), the sequences of partitions take O(n?) words. This yields a total
amount of space required by conauto of O(n?) words, or O(n? logn) bits.

Regarding time, a careful analysis of each type of refinement gives that gener-
ating a new partition in a sequence takes at most time O(n?). Then, a sequence
of partitions is built in time O(n3). In order to find automorphisms at most
O(n2) sequences are created. Hence, creating a target sequence of partitions
requires time O(n%). Now, the time to find a sequence of partitions compat-
ible with the target directly depends on the number of backtracking points in
the target sequence. If there are no backtracking points it is just the time to gen-
erate a sequence, O(n?) time. In general, let @ be the number of backtracking
points; then the time complexity is O(n™max(a+3.5)),

Finally, let us consider a random graph G(n, p) for p € [w(In* n/nInlnn), 1 —
w(In*n/nlnlnn)]. Sort the degrees of the neighbors of a vertex into its degree
vector. Czajka and Pandurangan [6] have shown that, with high probability, no
two vertices have the same degree vector, and that a canonical labeling for the
graph is obtained from the lexicographic ordering of the degree vectors. If no
two vertices have the same degree vector, conauto will generate a sequence of
partitions without backtracking points, first obtaining the degree partition and
then by repeatedly applying set refinements. Then, our algorithm will finish in
time O(n®) with high probability if any of the graphs is a random graph G(n, p).
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6 Performance Evaluation

In this section we compare the performance of an implementation of conauto
with the two other programs of reference: nauty and vf2. The tests have been
carried out in a Pentium IIT at 1.0 GHz with 256 MB of main memory, under
Linux RedHat 9.0. All the programs have been compiled with the same compiler,
GNU’s gee, and using the same optimization flags. The execution time considered
is the real time (not CPU time) consumed by the programs, excluding loading
time (the time needed by the programs to load from disk the graphs being
tested). The CPU time limit for each program run was set to 10,000 seconds. If
a program was unable to finish within this CPU time limit for a pair of graphs
of some size, all its tests for that and bigger sizes were discarded. Some of the
curves obtained have been omitted due to space restrictions. They can be found,
with a detailed description of the benchmark used in the evaluation, at [14].
The first graphs considered are random graphs G(n,0.1) (only isomorphic
cases). As expected, all algorithms run very fast with these graphs, finishing in
less than a second even for graphs of 1,000 nodes. However, v{2 is one order of
magnitude worse than the other programs, nauty being the fastest. The second
family of graphs are 2D-meshes. In this case, for undirected graphs all algorithms
behave similarly, finishing in, at most, a few seconds (for 1,000 nodes). A differ-
ence in behavior is observed for directed graphs. While conauto behaves as with
undirected 2D-meshes, the time of nauty increases and the time of vf2 decreases,
both in about one order of magnitude. The next family of graphs considered are
Paley graphs, a subclass of SRGs. In this case all programs run in reasonable
time (at most tens of seconds). It may be worth to note that v{2 is more than 2
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Fig. 1. Performance of conauto with Miyazaki’s graphs
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Fig. 3. Performance of conauto with unions of strongly regular graphs

orders of magnitude slower than conauto and nauty. For triangular graphs and
lattice graphs, also subclasses of SRGs, we observe a symmetric phenomenon:
all programs run fast (at most a few seconds) and vf2 is about one order of
magnitude faster.

The first family of graphs in which a substantial difference in behavior can be
observed are Miyazaki’s graphs (see Figure[ll). These are known to be very hard
graphs for nauty [13] (e.g., with the directed version, it is not able to label graphs
of 40 vertices in 10,000 s.). As can be seen in the figure, this family of graphs is
only handled fast by conauto, which always finishes in a few seconds. The other
algorithms cannot go beyond 400-node graphs (200 nodes if directed). A second
interesting family are Latin square graphs, which are SRGs. For this family v{2 is
not able to finish beyond graphs of 200 nodes (see Figure 2]). Additionally, while
nauty has the same low running time for positive and negative cases, conauto
shows good (similar to nauty) running times for positive cases but about 2 orders
of magnitude more for negative cases. The third interesting family of graphs are
those obtained as unions of SRGs with the same parameters (29, 14, 6, 7) (see the
results in Figure[3]). These graphs are already known to make nauty exponential
in time (cf. [I3]). For v{2, they are so hard, that it can only finish within time
with graphs of one component. On the other hand, conauto runs reasonably fast
for positive cases, and faster than the others for the negative cases. However, it
can not find an answer for graphs above 600 vertices for non-isomorphic pairs of
graphs. The hardest family we have in our benchmark are point-line graphs of
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Desarguesian projective planes. For this family none of the programs is able to
deal with graphs of more than 200 vertices.
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