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Abstract. The topic of this paper is the study ofInformation Disseminationin
Mobile Ad-hoc Networks by means of deterministic protocols. We characterize
the connectivity resulting from the movement, from failures and from the fact that
nodes may join the computation at different times with two values,α andβ, so
that, withinα time slots, some node that has the information must be connected
to some node without it for at leastβ time slots. The protocols studied are clas-
sified into three classes:oblivious(the transmission schedule of a node is only a
function of its ID),quasi-oblivious(the transmission schedule may also depend
on a global time), andadaptive.
The main contribution of this work concerns negative results. Contrasting the
lower and upper bounds derived, interesting complexity gaps among protocol-
classes are observed. More precisely, in order to guaranteeany progress towards
solving the problem, it is shown thatβ must be at leastn − 1 in general, but
that β ∈ Ω(n2/ log n) if an oblivious protocol is used. Since quasi-oblivious
protocols can guarantee progress withβ ∈ O(n), this represents a significant gap,
almost linear inβ, between oblivious and quasi-oblivious protocols. Regarding
the time to complete the dissemination, a lower bound ofΩ(nα + n3/ log n)
is proved for oblivious protocols, which is tight up to a polylogarithmic factor
because a constructiveO(nα + n3 log n) upper bound exists for the same class.
It is also proved that adaptive protocols requireΩ(nα + n2), which is optimal
given that a matching upper bound can be proved for quasi-oblivious protocols.
These results show that the gap in time complexity between oblivious and quasi-
oblivious, and hence adaptive, protocols is almost linear.This gap is what we call
the profit of global synchrony,since it represents the gain the network obtains
from global synchrony with respect to not having it.
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1 Introduction

A Mobile Ad-hoc Network (aka MANET) is a set of mobile nodes which communi-
cate over a multihop radio network, without relying on a stable infrastructure. In these
networks, nodes are usually battery-operated devices thatcan communicate via radio
with other devices that are in range. Due to unreliable powersupply and mobility,
nodes may have a continuously changing set of neighbors in that range. This dy-
namic nature makes it challenging to solve even the simplestcommunication problems
in general. Hence, proposed protocols often have strong synchronization and stability
requirements, like having a stable connected network for long enough time.

Current trends in networking-architecture developments,like delay and disruption
tolerant networks,andopportunistic networking[8, 22], aim to deal with the discon-
nections that naturally and frequently arise in wireless environments. Their objective is
to allow communication in dynamic networks, like a MANET, even if a route between
sender and receiver never exists in the network. The result is that multi-hop commu-
nication is provided throughopportunistic communication,in which theonline route
of a message is followed one link at a time, as links in the route become available.
While the next link is not available, the message is held in a node. With opportunistic
communication, strong connectivity requirements are no longer needed. Furthermore,
in some cases mobility is the key to allow communication (e.g., consider two discon-
nected static nodes, where communication between them is provided by a device that,
due to mobility, sometimes is in range of one and sometimes ofthe other).

In this paper, we formally define a particular class of MANET which is suited for
opportunistic communication, and which we callpotentially epidemic. A MANET is
potentially epidemic if the changes in the communication topology are such that an
online route exists among any two nodes that wish to communicate.

The network ispotentiallyepidemic because the actual propagation of the infor-
mation on the online routes, and then the possibility for a node to affect another node,
depends on the stability of each communication links of the online route.

In this context, we define and study the deterministic solvability of a problem that
we call Dissemination.In this problem, at a given time a source node holds an infor-
mation that must be disseminated to a given set of nodes belonging to the MANET.
The nodes elected to eventually receive the information arethe ones that satisfy a given
predicate. Depending on this predicate, the Disseminationproblem can instantiate most
of the common communication problems in distributed systems, such as Broadcast,
Multicast, Geocast, Routing, etc.

In particular, we determine assumptions on link stability and speed of nodes under
which a distributed deterministic protocol exists that solves Dissemination in potentially
epidemic networks. Moreover, we relate the time complexityof the solution to the speed
of movement and to the information that protocols may use.

1.1 The Dissemination Problem

We study the problem of disseminating a piece of information, initially held by a dis-
tinguished source node, to all nodes of a given set in the network. Formally,



Definition 1. Given a MANET formed by a setV of n nodes, letP be a predicate on
V ands ∈ V a node that holds a piece of informationI at timet1 (s is the source of
dissemination). TheDisseminationproblem consists of distributingI to the set of nodes
VP = {x ∈ V :: P(x)}. A node that has receivedI is termedcovered, and otherwise
it is uncovered. The Dissemination problem is solved at time slott2 ≥ t1 if, for every
nodev ∈ VP , v is covered by time slott2.

The Dissemination problem abstracts several common problems in distributed sys-
tems. E.g. Broadcast, Multicast, Geocast, Routing etc., are all instances of this problem
for a particular predicateP . In order to prove lower bounds, we will use one of these
instances: the Geocast problem. The predicateP for Geocast isP(x) = true if and
only if, at timet1, x is up and running, and it is located within a parametric distance
d > 0 (calledeccentricity) from the position of the source node at that time.

1.2 Model

We consider a MANET formed by a setV of n mobile nodes deployed inR2, where
no pair of nodes can occupy the same point in the plane simultaneously. It is assumed
that each node has data-processing and radio-communication capabilities, and a unique
identificator number (ID) in[n] , {1, . . . , n}.

Time. Each node is equipped with a clock that ticks at the same uniform rateρ but,
given the asynchronous activation, the clocks of differentnodes may start at different
times. A time interval of duration1/ρ is long enough to transmit (resp. receive) a mes-
sage. Computations in each node are assumed to take no time. Starting from a time
instant used as reference, the global time is slotted as a sequence of time intervals or
time slots1, 2, . . . , where sloti > 0 corresponds to the time interval[(i − 1)/ρ, i/ρ).
Without loss of generality [24] all node’s ticks are assumedto be in phase with this
global tick.

Node Activation. We say that a node isactiveif it is powered up, andinactiveoth-
erwise. It is assumed that, due to lack of power supply or other unwanted events that we
call failures, active nodes may become inactive. Likewise, due also to arbitrary events
such as replenishing their batteries, nodes may be re-activated. We call the temporal
sequence of activation and failures of a node theactivation schedule. The activation
schedule for each node is assumed to be chosen by an adversary, in order to obtain
worst-case bounds. Most of the lower-bound arguments included in this paper hold,
even if all nodes are activated simultaneously and never fail (which readily provide a
global time), making the results obtained stronger.

We assume that a node is activated in the boundary between twoconsecutive time
slots. If a node is activated between slotst − 1 and t we say that it is activated at
slot t, and it is active in that slot. Upon activation, a node immediately starts running
from scratch an algorithm previously stored in its hardware, but no other information or
status is preserved while a node is inactive. Consequently,it is possible that a covered
node does not hold the informationI, because it has been inactive after receiving it. To
distinguish a covered node that does not hold the information from one that holds it, we
introduce the following additional terminology: we say that a nodep is informedat a
given timet if it holds the informationI at timet, otherwisep is said to beuninformed.



Radio Communication. Nodes communicate via a collision-prone single radio
channel. A nodev can receive a transmission of another nodeu in time slot t only
if their distance is at most therange of transmissionr during the whole slott. The
range of transmission is assumed to be the same for all nodes and all time slots. If two
nodesu andv are separated by a distance at mostr, we say that they areneighbors. In
this paper, no collision detection mechanism is assumed, and a node cannot receive and
transmit at the same time slot. Therefore, an active nodeu receives a transmission from
a neighboring nodev at time slotj if and only if v is the only node inu’s neighborhood
transmitting at time slotj. Also, a node cannot distinguish between a collision and no
transmission. In general, we say that a nodev ∈ V ′ transmits uniquelyamong the nodes
of setV ′ ⊆ V in a slott if it is the only node inV ′ that transmits int.

Link stability. We assume that nodes may move on the plane. Thus, the topology
of the network is time dependent. For simplicity, we assume that the topology only
changes in the boundaries between time slots. Then, at time slot t nodesu andv are
connected by a link in the network topology iff they are neighbors during the whole
slot t. An online route between two nodesu andv is a pathu = w0, w1, . . . , wk = v
and a sequence of time slotst1 < t2 < · · · < tk such that the network has a link be-
tweenwi−1 andwi at time slotti. Observe that in order to be able to solve an instance
of Dissemination, it is necessary that the network is potentially epidemic. I.e. after the
initial time t1, there is an online route from the sources to every node inVP . However,
as argued in [6], worst-case adversarial choice of topologies for a dynamic network
precludes any deterministic protocol from completing Broadcast, even if connectivity
is guaranteed. Note that Broadcast is an instance of Dissemination, and that if there is
connectivity then there are online routes between all nodes. Thus, the property that the
network is potentially epidemic as described is not sufficient to solve Dissemination,
and further limitations to the adversarial movement and activation schedule are in or-
der. While respecting a bound on the maximum speedvmax, which is a parameter, the
adversarial movement and activation schedule is limited bythe following connectivity
property:

Definition 2. Given a Mobile Ad-hoc Network, an instance of the Dissemination prob-
lem that starts at timet1, and two integersα ≥ 0 andβ ≥ 0, the network is(α, β)-
connectedif, for every time slott ≥ t1 at which the problem has not yet been solved,
there is a time slott′ such that the following conditions hold:

– the intersection of time intervals[t, t+ α) and[t′, t′ + β) is not empty, and
– there is a pair of nodesp, p′, such that att′ p is informed andp′ is uncovered, and

they are active and neighbors the whole time interval[t′, t′ + β).

It is of the utmost importance to notice that(α, β)-connectivity is a characterization
that applies toanymodel of dynamic network, given that for any mobility and activation
schedule, and any pair of nodes, there is a minimum time they are connected (even if
that time is0) and a maximum time they are disconnected (even if that time is very
large). Thus, any dynamic network model used to study the Dissemination problem has
its ownα andβ values.

Due to the same argument,(α, β)-connectivity does not guarantee by itself that the
network is epidemic (i.e. that the information is eventually disseminated); instead, an



(α, β)-connected network is onlypotentiallyepidemic. Consider for instance the source
node. Thanks to the(α, β)-connectivity, at most everyα slots, the sources is connected
to other nodes of the network for at leastβ time slots. But, we have progress only if the
protocol to solve Dissemination is able to use theβ slots of connectivity to cover some
uncovered node. As a consequence of the above discussed, impossibility results only
restrictβ, whereasα only constrains the running time, as it is shown in this paper.

1.3 Protocols for Dissemination

We consider distributed deterministic protocols, i.e., weassume that each node in the
network is preloaded with its own and possibly different deterministic algorithm that
defines a schedule of transmissions for it. Even if a transmission is scheduled for a
given node at a given time, that node will not transmit if it isuninformed.

Following the literature on various communication primitives [16,17], a protocol is
calledobliviousif, at each node, the algorithm’s decision on whether or not to schedule
a transmission at a given time slot depends only on the identifier of the node, and on
the number of time slots that the node has been active. Whereas, if no restriction is
put on the information that a node may use to decide its communication schedule, the
protocol is calledadaptive. Additionally, in this paper, we distinguish a third class of
protocols that we callquasi-oblivious. In a quasi-oblivious protocol the sequence of
scheduled transmissions of a node depends only on its ID and aglobal time. Quasi-
oblivious protocols have sometimes been called oblivious,since the model assumed
simultaneous activation, and hence a global time was readily available. However we
prefer to make the difference explicit, as done in [21], because we found a drastic gap
between this class and fully oblivious protocols.

1.4 Previous Work

A survey of the vast literature related to Dissemination is beyond the scope of this
article. We overview in this section the most relevant previous work. Additionally, a
review of relevant related work for static and dynamic networks beyond MANETs can
be found in [11].

The Dissemination problem abstracts several common problems in Radio Networks.
When some number1 ≤ k ≤ n of active nodes hold an information that must be dis-
seminated to all nodes in the network, the problem is calledk-Selection[16] or Many-
to-all [5]. If k = 1 the problem is calledBroadcast[2, 18], whereas ifk = n the
problem is known asGossiping[4,9]. Upper bounds for these problems in mobile net-
works may be used for Dissemination, and even those for static networks may apply if
the movement of nodes does not preclude the algorithm from completing the task (e.g.,
round-robin). On the other hand, if only the subset ofk nodes have to receive the infor-
mation, the problem is known asMulticast [5,13], and if only nodes initially located at
a parametric distance from the source node must receive the information the problem is
called Geocast [15], defined in Section 1.1.

Deterministic solutions for the problems above have been studied for MANETs.
Their correctness rely on strong synchronization or stability assumptions. In [19], de-
terministic Broadcast in MANETs was studied under the assumption that nodes move



in a one-dimensional grid knowing their position. Two deterministic Multicast proto-
cols for MANETs are presented in [14,20]. The solutions provided require the network
topology to globally stabilize for long enough periods to ensure delivery of messages,
and they assume a fixed number of nodes arranged in some logical or physical structure.
Leaving aside channel contention, a lower bound ofΩ(n) rounds of communication
was proved in [23] for Broadcast in MANETs, even if nodes are allowed to move only
in a two-dimensional grid, improving over theΩ(D logn) bound of [3], whereD is the
diameter of the network. This bound was improved toΩ(n log n) in [7] without using
the movement of nodes, but the diameter of the network in the latter is linear. Recently,
deterministic solutions for Geocast were proposed in [1] for a one-dimensional setting
and in [10] for the plane. In the latter work, the authors concentrate in the structure of
the Geocast problem itself, leaving aside communication issues such as the contention
for the communication channel.

1.5 Our Results

The main contribution of this work concerns negative results. Contrasting the lower
bounds obtained with upper bounds derived by careful combination of previous tech-
niques, interesting complexity gaps among protocol-classes are observed.

For a model where nodes may fail, there is no global clock, andnodes may be
activated at different times, we show in Theorem 6 that any oblivious protocol takes,
in the worst case,Ω((α + n2/ lnn)n) steps to solve the Geocast problem ifvmax >
πr/6(α+ ⌊(n/3)(n/3− 1)/ ln(n/3(n/3− 1))⌋− 2). Given the upper bound ofn(α+
4n(n−1) ln(2n)) for Dissemination established in Theorem 8 by means of an oblivious
deterministic protocol based on Primed Selection [12], this lower bound is tight up to a
poly-logarithmic factor.

Moreover, for the same model, Theorem 5 shows that, even if nodes are activated
simultaneously and do not fail, and an adaptive protocol is used, any Geocast protocol
takes, in the worst case,Ω(n(α+n)) if vmax > πr/(3(2α+n−4)). This result should
be contrasted with the quasi-oblivious protocol based onRound-Robinthat solves Dis-
semination in at mostn(α+ n) steps as established in Theorem 7.

The latter results are asymptotically tight and show that full adaptiveness does not
help with respect to quasi-obliviousness. The first lower bound and the last upper bound,
show an asymptotic separation almost linear between oblivious and quasi-oblivious pro-
tocols. In a more restrictive model, where nodes are activated simultaneously, there
exists an oblivious protocol (e.g. Round Robin) that solvesDissemination in at most
n(α + n) steps. Hence, the lower bound proved in Theorem 6 shows the additional
cost of obliviousness when nodes are not simultaneously activated. This gap is what
we call theprofit of global synchrony,since it represents the gain the network obtains
from global synchrony with respect to not having it. Moreover, the quasi-oblivious pro-
tocol derived shows that for the Dissemination problem, thesimultaneous activation
performance can be achieved by distributing the time elapsed since the source started
the dissemination. For a discussion of the importance of node-activation schedule in
distributed computing refer to [11].

Additionally, it is shown in Theorem 1 that no protocol can solve the Geocast prob-
lem (and hence Dissemination) in all(α, β)-connected networks unlessβ ≥ n − 1.



Interestingly, it is shown in Theorem 2 that this bound becomesβ > ⌊(n − 1)(n −
3)/4 ln((n− 1)(n− 3)/4)⌋ if the protocol is oblivious. Comparing these bounds with
the requirements of the protocols presented above, the quasi-oblivious protocol required
β ≥ n, which is almost optimal, while the oblivious protocol requiredβ ∈ Ω(n2 logn),
which is only a polylogarithmic factor larger than the lowerbound. These results also
expose another aspect of the profit of global synchrony mentioned before: whileβ = n
is enough for quasi-oblivious protocols to solve Dissemination, oblivious protocols re-
quire a value ofβ almost a linear factor larger.

Finally, for an arbitrary small bound on node speed, we show in Theorem 3 the
existence of an(α, β)-connected network where Geocast takes at leastα(n − 1) steps,
even using randomization; and the existence of an(α, β)-connected network where any
deterministic protocol that transmits periodically takesat leastn(n − 1)/2 steps, even
if nodes do not move, in Theorem 4.

1.6 Paper Organization

The rest of the paper is organized as follows. In Section 2 we introduce some tech-
nical lemmas that will be used to prove our main results; in Section 3 we prove the
lower bounds on link stability and on the time complexity to solve the Dissemination
problem with respect to some important aspects of the system(e.g. speed of movement
of nodes and their activation schedule) and of the protocols(e.g., obliviousness versus
adaptiveness). We finally present the corresponding upper bounds in Section 4.

2 Auxiliary Lemmas

The following lemmas will be used throughout the analysis. Astraightforward conse-
quence of the pigeonhole principle is established in the following lemma.

Lemma 1. For any time stept of the execution of a Dissemination protocol, where a
subsetV ′ of k informed nodes do not fail during the interval[t, t+ k − 2], there exists
some nodev ∈ V ′ such thatv does not transmit uniquely among the nodes inV ′ during
the interval[t, t+ k − 2].

In the following lemma, we show the existence of an activation schedule such that,
for any obliviousdeterministic protocol, within any subset of at least3 nodes, there
is one that does not have a unique transmission scheduled within a period roughly
quadratic in the size of the subset. The proof, based on the probabilistic method, is
omitted for brevity and can be found in [11].

Lemma 2. For any deterministic oblivious protocol that solves Dissemination in a
MANET ofn nodes, where nodes are activated possibly at different times, and for any
subset ofk nodes,k ≥ 3, there exists a node-activation schedule such that, for any
time slott and lettingm = ⌊k(k − 1)/ ln(k(k − 1))⌋, each of thek nodes is activated
during the interval[t−m+ 1, t], and there is one of thek nodes that is not scheduled
to transmit uniquely among thosek nodes during the interval[t, t+m− 1].



3 Solvability of the Dissemination Problem

If there is at least one node inVP − {s} at least one time slot is needed to solve Dis-
semination, since the source node has to transmit at least once to pass the information.
Furthermore, if all nodes inVP are neighbors ofs, one time slot may also be enough if
the source node transmits before neighboring nodes are ableto move out of its range.
On the other hand, if the latter is not possible, more than onetime slot may be needed.
Let us consider the Geocast problem. Given that the specific technological details of
the radio communication devices used determine the minimumrunning time when the
eccentricity isd ≤ r, all efficiency lower bounds are shown ford > r unless otherwise
stated.

3.1 Link Stability Lower Bounds

The following theorem shows a lower bound on the value ofβ for the Geocast problem.

Theorem 1. For anyVmax > 0, d > r, α > 0, and any deterministic Geocast protocol
Π , if β < n− 1, there exists an(α, β)-connected MANET ofn nodes such thatΠ does
not terminate, even if all nodes are activated simultaneously and do not fail.

Proof. Consider three sets of nodesA, B, andC deployed in the plane, each set de-
ployed in an area of sizeε arbitrarily small, such that0 < ε < r andd ≥ r + ε. The
invariant in this configuration is that nodes in each set forma clique, every node inA
is placed within distancer from every node inB, every node inB is placed at most
at distanceε from every node inC, and every node inA is placed at some distance
r < δ ≤ r + ε from every node inC. At the beginning of the first time slot, the adver-
sary placesn− 1 nodes, including the source nodes, in the setC, the remaining node
x in setA, and activates all nodes. The setB is initially empty. Given thatd ≥ r+ ε, x
must become informed to solve the problem. Also,ε is set appropriately so that a node
can moveε distance in one time slot without exceedingVmax.

For any protocolΠ for Geocast, lett be the first time slot where the source node is
the only node to transmit in the setC. Adversarially, lett be the first time slot when the
source is informed. Thus,(α, β)-connectivity is preserved up to time slott for anyα.
At time slott, all nodes placed inC are informed.

After time slott, the adversary moves the nodes as follows. Given that the problem
was not solved yet and nodes inC do not fail, according to Lemma 1, there exists a
nodey ∈ C that does not transmit uniquely among the nodes inC during the interval
[t+1, t+n− 2]. Given thatΠ is a deterministic protocol, and the adversary knows the
protocol and defines the movement of all nodes, the adversaryknows which is the node
y.

Assume, for the sake of contradiction, thatβ ≤ n − 2. Then, the adversary places
y in B for all time slots in the interval[t + 1, t + β]. Additionally, for each time slot
t′ ∈ [t+ 1, t+ β] wherey transmits, the adversary moves toB some nodez ∈ C that
transmits att′ to produce a collision. At the end of each time slott′ the adversary moves
z back toC. Such a nodez exists sincey does not transmit uniquely during the interval
[t+1, t+n−2] andn−2 ≥ β. At the end of time slott+β, the adversary movesy back



toC and the above argument can be repeated forever preserving the(α, β)-connectivity
and precludingΠ from solving the problem. Therefore,β must be at leastn− 1.

Building upon the argument used in the previous theorem, butadditionally exploit-
ing the adversarial node activation, the following theoremshows a lower bound on the
value ofβ for the Geocast problem if the protocol used is oblivious. The idea of the
proof is to split evenly the nodes of setC in the proof of Theorem 1 in two groups, so
that alternately the nodes in one group are activated while the nodes in the other group
produce collisions. The details are omitted for brevity andcan be found in [11].

Theorem 2. For anyVmax > 0, d > r, n ≥ 8, α > 0, and any deterministic oblivious
protocol for GeocastΠ , if β ≤ m = ⌊(n− 1)(n− 3)/4 ln((n − 1)(n− 3)/4)⌋, there
exists an(α, β)-connected MANET ofn nodes such thatΠ does not terminate.

3.2 Time Complexity Lower Bounds versus Speed, Activation and Obliviousness

Exploiting the maximum timeα that a partition can be disconnected, a lower bound
on the time efficiency of any protocol for Geocast, even regardless of the use of ran-
domization and even for arbitrarily slow node-movement, can be proved. The follow-
ing theorem establishes that bound. The proof is omitted forbrevity and can be found
in [11].

Theorem 3. For anyVmax > 0, d > r, α > 0, andβ > 0, there exists an(α, β)-
connected MANET ofn nodes, for which any Geocast protocol takes at leastα(n − 1)
time slots, even if all nodes are activated simultaneously and do not fail.

The linear lower bound for Geocast proved in Theorem 3 was shown exploiting the
maximum time of disconnection between partitions. Exploiting the adversarial schedule
of node activation, even if nodes do not move nor fail, the same bound can be simply
proved for arbitrary Geocast protocols, while a quadratic bound can be shown for the
important class ofequiperiodicprotocols. The protocol definition and the theorem for
the latter follows. The proof is omitted for brevity and can be found in [11].

Definition 3. A protocol of communication for a Radio Network isequiperiodicif for
each node, the transmissions scheduled are such that the number of consecutive time
steps without transmitting, call itT − 1, is always the same. We say thatT is theperiod
of transmission of such a node.

Theorem 4. For anyVmax ≥ 0, d > r, α > 0, β > 0, and any deterministic equiperi-
odic Geocast protocolΠ , there exists an(α, β)-connected MANET ofn nodes, for
whichΠ takes at leastn(n− 1)/2 time slots to solve the problem, even if nodes do not
fail and do not move.

In Theorems 3 and 4 we showed lower bounds for Geocast for arbitrarily small
values ofVmax. We now show that, by slightly constrainingVmax, a quadratic lower
bound can also be shown for arbitrary deterministic protocols.



Theorem 5. For anyVmax > πr/(3(2α + n − 4)), d > r, α > 0, β > 0, and any
deterministic Geocast protocolΠ , there exists an(α, β)-connected MANET ofn nodes,
for whichΠ takesΩ((α + n)n) time slots to solve the problem, even if all nodes are
activated simultaneously and do not fail.

Proof. The following adversarial configuration and movement of nodes shows the claimed
lower bound. Consider six sets of nodesA, A′, B, B′, C, andC′, each deployed in an
area of sizeε arbitrarily small, such that0 < ε < r andd ≥ r + ε, and four points,x,
y, x′, andy′ placed in the configuration depicted in Figure 1(a).
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(b) Initial configuration.

Fig. 1. Illustration of Theorem 5. A small empty circle depicts a point in the plane. A small
black circle depicts a node. A big empty area depicts an emptyset. A big shaded area depicts a
non-empty set.

The invariant in these sets is that nodes in each set form a clique; each node inA′

is placed at some distance> r and≤ r + ε from the pointsx, y′, and each node inB;
each node inA is placed at some distance> r and≤ r + ε from the pointsx′, y, and
each node inB; each node inB is placed within distancer of pointsx, y, x′, andy′,
and each node inC andC′; each node inC is placed at some distance> r and≤ r+ ε
from the pointx; each node inC′ is placed at some distance> r and≤ r + ε from the
pointx′; and each node inB′ is placed within distanceε of each node inB and within
distancer of each node inC andC′. 6

At the beginning of the first time slot, the adversary placesn/2 nodes, including
the source nodes, in setB′, the remainingn/2 nodes in the setA, and starts up all
nodes. (For clarity, assume thatn is even.) All the other sets are initially empty. (See
Figure 1(b).)Given thatd ≥ r + ε, all nodes must be covered to solve the problem.
Also, ε is set appropriately so that a node can be movedε distance in one time slot
without exceedingVmax, and so that a node can be moved from setA to pointx through

6 During some periods of time a given set could be empty, we meanthatx is separated (within)
that distance from any point in the area designated to the setX



the curved parts of the dotted line (see Figure 1(a)),of length less thanπ(r + ε)/6, in
α+ n/2− 2 time slots without exceedingVmax. (To see why the length bound is that,
it is useful to notice that the distance between each pair of singular points along each of
the circular dotted lines is upper bounded by(r + ε)/2.)

Let t be the first time slot when the source is scheduled to transmit. Adversarially, let
t be the first time slot when the source is informed. Nodes stay in the positions described
until t and, consequently, all the othern/2−1 nodes in setB′ receive it. Starting at time
slott+1, the adversary moves the nodes so that only one new node everyα+n/2 steps
becomes informed. First we give the intuition of the movements and later the details.
(See Figure 1(b).)Nodes that are not inB or B′ are moved following the dotted lines.
Some of the nodes inB′ are moved back and forth toB. Nodes initially inA are moved
clockwise toA′, except for one of them, sayu, which is moved simultaneously counter-
clockwise to the pointx. Upon reachingA′ nodes are moved counter-clockwise back to
A, except for one of them, sayv, which is moved simultaneously clockwise to the point
x′, while the nodeu is also moved simultaneously to the pointy. Upon reachingA, the
remaining nodes repeat the procedure whileu keeps moving towardsC andv keeps
moving towardsC′ throughy′ respectively. Nodes initially inA are moved in the above
alternating fashion, one toC and the next one toC′, until all nodes become informed.
Movements are produced so that(α, β)-connectivity is preserved. The details follow.

The movement of each nodeu moved fromA to C is carried out in three phases
of at leastα + n/2 − 2 time slots each as follows. (As explained below, some nodes
initially in A will be moved instead toC′, but the movement is symmetric. For clarity,
we only describe the whole three phases for one node. The movement is illustrated in
Figure 4 in [11], which is omitted here for brevity.)

Phase 1 During the firstα− 2 time slots,u is moved counterclockwise fromA towards the
pointx maintaining a distance> r and≤ r+ ε with respect to every node inB. In
the(α − 1)-th time slot of this phase,u is moved within distancer of every node
in setB preserving(α, β)-connectivity. Nodes inB′ stay static during this interval.
Given that only nodes inB′ are informed and the distance between them andu is
bigger thanr, u does not become covered during this interval.
During the followingn/2 − 1 time slots of the first phase, the counterclockwise
movement of nodeu towards the pointx continues, but now maintaining a distance
at mostr with respect to every node inB. In the last time slot of the second phase,
u is moved to pointx. During this interval, nodes inB′ are moved back and forth to
B as described in Theorem 1 to guarantee thatu does not become covered before
reaching pointx. Upon reaching pointx, u and all the other nodes in the network
not inB orB′ remain static. Phase 1 ends the time slot beforeu becomes covered.
Simultaneously, along the firstα+ n/2− 2 time steps of this phase, the remaining
nodes initially inA are moved clockwise toA′. Then, even ifu becomes informed
immediately upon reaching pointx, u cannot inform nodes inA′ because they are
separated by a distance> r.

Phase 2 During this phase,u is moved counterclockwise towards pointy maintaining a
distance at mostr with respect to every node inB andB′. Simultaneously, nodes
that were inA′ at the end of the second phase are moved counterclockwise toA
except for one nodev that moves in its own first phase tox′.



Nodes moving fromA′ to A maintain a distance> r with respect tou. Thus, even
if u becomes covered the information cannot be passed to the former. At the end of
this phasev is placed in pointx′. Thus, even ifv becomes covered in the first step
of its second phase,v cannot inform nodes inA because they are separated by a
distance> r.

Phase 3 During this phase,u is moved counterclockwise towards setC maintaining a dis-
tance at mostr with respect to every node inB andB′. Simultaneously, nodes that
were inA at the end of the second phase are moved clockwise toA′ except for one
nodew that moves in its own first phase tox. Also simultaneously,v continues its
movement towards setC′ in its own second phase.
Nodes moving fromA to A′ maintain a distance> r with respect tov. Thus, even
if v becomes covered the information cannot be passed to the former. Also, nodes
u andw are moved maintaining a distance> r between them. Thus,u cannot
inform w. At the end of this phaseu has reached setC, v is placed in pointy′,
andw is placed in pointx. Thus, even ifw becomes covered in the first step of its
second phase,w cannot inform nodes inA because they are separated by a distance
> r. Upon completing the third phase,u stays static inC forever so that(α, β)-
connectivity is preserved.

The three-phase movement detailed above is produced for each node initially inA,
overlapping the phases as described, until all nodes have became covered. Given that
when a nodeu reaches the pointx, its phase 1 is stretched until the time step beforeu
becomes covered by a nodev in B and all other nodes remain static, the next nodew
that will be moved fromA′ to x′ does not become covered byv, becausew stays inA′

until u becomes covered. In each phase of at leastα+ n/2− 2 time slots every node is
moved a distance at mostπ(r + ε)/6 + ε. Thus, settingε appropriately, the adversarial
movement described does not violateVmax. Given thatn/2 nodes initially inA are
covered one by one, each at least withinα+ n/2− 2 time slots after the previous one,
the overall running time is lower bounded as claimed, even ift = 1.

The quadratic lower bound shown in Theorem 5 holds for any deterministic proto-
col, even if it is adaptive. Building upon the argument used in that theorem, but addition-
ally exploiting the adversarial node activation, the following theorem shows a roughly
cubic lower bound for oblivious protocols, even relaxing the constraint onVmax. The
proof is omitted for brevity, the details can be found in [11].

Theorem 6. For anyn ≥ 9, d > r, α > 0, β > 0, Vmax > πr/6(α + ⌊(n/3)(n/3−
1)/ ln(n/3(n/3−1))⌋−2), and any oblivious deterministic Geocast protocolΠ , there
exists an(α, β)-connected MANET ofn nodes, for whichΠ takesΩ((α+ n2/ lnn)n)
time slots to solve the problem.

4 Upper Bounds

Solving the Dissemination problem under arbitrary node-activation schedule and node-
movement is not a trivial task. To the best of our knowledge, deterministic protocols for
such scenarios were not studied before, not even for potentially epidemic networks such



as an(α, β)-connected MANET, and not even for specific instances of Dissemination.
In this section, a quasi-oblivious protocol and an oblivious one that solve Dissemina-
tion, both based on known algorithms particularly suited for our setting, are described
and their time efficiency proved. The first bound is asymptotically tight with respect to
the more powerful class of adaptive protocols.

A Quasi-Oblivious Protocol.The idea behind the protocol is to augment the well-
known Round-Robin protocol with the synchronization of theclock of each node with
the time elapsed since the dissemination started, which we call the global time. This
is done by embedding a counterτ , corresponding to the global time, in the messages
exchanged to disseminate the informationI. Given that the schedule of transmissions
of a node depends only on its ID and the global time, the protocol is quasi-oblivious.
More details about the algorithm can be found in [11].

It can be proved that this quasi-oblivious algorithm solvesDissemination for arbi-
trary values ofVmax in at mostn(α+ n) time steps. The details are omitted for brevity
and can be found in [11]. Formally,

Theorem 7. Given an(α, β)-connected MANET whereβ ≥ n, there exists a quasi-
oblivious deterministic protocol that solves Dissemination for arbitrary values ofVmax

in at mostn(α+ n) time steps.

Recall thatβ ≥ n − 1 is required for the problem to be solvable as shown in
Theorem 1. This upper bound is asymptotically tight with respect to the lower bound
for general deterministic Geocast protocols whenVmax > πr/(3(2α+ n− 4)) shown
in Theorem 5. Thus, we can conclude that having extra information in this case does
not help.

An Oblivious Protocol.We finally describe how to implement an oblivious protocol for
Dissemination, based onPrimed Selection, a protocol presented in [12] for the related
problem of Recurrent Communication. Given that in this protocol the schedule of trans-
missions of a node depends only on its ID, the protocol is oblivious. This upper bound
is only a poly-logarithmic factor away from the lower bound shown in Theorem 6.

In order to implement Primed Selection, one ofn prime numbers is stored in ad-
vance in each node’s memory, so that each node holds a different prime number. Letpℓ
denote theℓ-th prime number. We set the smallest prime number used to bepn, which
is at leastn, because Primed Selection requires the smallest prime number to be at
least the maximum number of neighbors of any node, which in our model is unknown.
The algorithm is simple to describe, upon receiving the information, each node with
assigned prime numberpi transmits with periodpi.

It was shown in [12] that, for any Radio Network formed by a setV of nodes running
Primed Selection, for any time slott, and for any nodei such that the number of nodes
neighboringi is k − 1, 1 < k < n, i receives a transmission without collision from
each of its neighbors within at mostkmaxj∈V pj steps aftert. Given that in our setting
the biggest prime number used isp2n−1, thatpx < x(ln x + ln lnx) for anyx ≥ 6 as
shown in [25], and that due to mobility all nodes may get closeto i in the worst case,
we have thatkmaxj∈V pj < n(2n− 1)(ln(2n− 1)+ ln ln(2n− 1)), for n ≥ 4. Which



is in turn less than4n(n− 1) ln(2n) for n ≥ 3. Hence, given that in the worst case all
nodes must be covered at least one at a time and that the network is (α, β)-connected,
the overall running time is less thann(α+4n(n− 1) ln(2n)). We formalize this bound
in the following theorem. Recall thatβ > ⌊(n− 1)(n− 3)/4 ln((n− 1)(n− 3)/4)⌋ is
required for the problem to be solvable whenn ≥ 8 as shown in Theorem 2.

Theorem 8. Given an(α, β)-connected MANET, whereβ ≥ n(2n− 1)(ln(2n− 1) +
ln ln(2n − 1)) andn ≥ 4, there exists an oblivious deterministic protocol that solves
Dissemination for arbitrary values ofVmax in at mostn(α + 4n(n − 1) ln(2n)) time
steps.
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