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Abstract. The topic of this paper is the study ifformation Disseminationin
Mobile Ad-hoc Networks by means of deterministic protoctge characterize
the connectivity resulting from the movement, from faikieand from the fact that
nodes may join the computation at different times with twhuea,a and 3, so
that, withina time slots, some node that has the information must be costhec
to some node without it for at leasttime slots. The protocols studied are clas-
sified into three classesblivious(the transmission schedule of a node is only a
function of its ID), quasi-oblivious(the transmission schedule may also depend
on a global time), anddaptive.

The main contribution of this work concerns negative resutontrasting the
lower and upper bounds derived, interesting complexitysgapong protocol-
classes are observed. More precisely, in order to guaranteprogress towards
solving the problem, it is shown that must be at least — 1 in general, but
that 3 € 2(n?/logn) if an oblivious protocol is used. Since quasi-oblivious
protocols can guarantee progress vidth O(n), this represents a significant gap,
almost linear in3, between oblivious and quasi-oblivious protocols. Reigard
the time to complete the dissemination, a lower bound2¢ha + 1>/ log n)

is proved for oblivious protocols, which is tight up to a polyarithmic factor
because a constructive(na + n* log n) upper bound exists for the same class.
It is also proved that adaptive protocols requi?éna + n?), which is optimal
given that a matching upper bound can be proved for quasiiobs protocols.
These results show that the gap in time complexity betweévials and quasi-
oblivious, and hence adaptive, protocols is almost linBais gap is what we call
the profit of global synchronysince it represents the gain the network obtains
from global synchrony with respect to not having it.
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1 Introduction

A Mobile Ad-hoc Network (aka MANET) is a set of mobile nodesialih communi-
cate over a multihop radio network, without relying on a &abfrastructure. In these
networks, nodes are usually battery-operated devices#tratommunicate via radio
with other devices that are in range. Due to unreliable posugaply and mobility,
nodes may have a continuously changing set of neighborsainrtimge. This dy-
namic nature makes it challenging to solve even the simp@asmunication problems
in general. Hence, proposed protocols often have stronghsgnization and stability
requirements, like having a stable connected network fog Enough time.

Current trends in networking-architecture developmédikis,delay and disruption
tolerant networksand opportunistic networking8, 22], aim to deal with the discon-
nections that naturally and frequently arise in wirelessrenments. Their objective is
to allow communication in dynamic networks, like a MANETgemf a route between
sender and receiver never exists in the network. The restiftait multi-hop commu-
nication is provided throughpportunistic communicationn which theonline route
of a message is followed one link at a time, as links in theedeédcome available.
While the next link is not available, the message is held inoglen With opportunistic
communication, strong connectivity requirements are mgés needed. Furthermore,
in some cases mobility is the key to allow communication.(egnsider two discon-
nected static nodes, where communication between thenovsded by a device that,
due to mobility, sometimes is in range of one and sometimésenbther).

In this paper, we formally define a particular class of MANETMigh is suited for
opportunistic communication, and which we caditentially epidemicA MANET is
potentially epidemic if the changes in the communicatiqgrotogy are such that an
online route exists among any two nodes that wish to comnaitmuic

The network ispotentially epidemic because the actual propagation of the infor-
mation on the online routes, and then the possibility for dento affect another node,
depends on the stability of each communication links of thiéne route.

In this context, we define and study the deterministic sdliglof a problem that
we call DisseminationlIn this problem, at a given time a source node holds an infor-
mation that must be disseminated to a given set of nodes djialpto the MANET.
The nodes elected to eventually receive the informatiotrer@nes that satisfy a given
predicate. Depending on this predicate, the Disseminatioblem can instantiate most
of the common communication problems in distributed systersuch as Broadcast,
Multicast, Geocast, Routing, etc.

In particular, we determine assumptions on link stability @apeed of nodes under
which a distributed deterministic protocol exists thateslDissemination in potentially
epidemic networks. Moreover, we relate the time complexitye solution to the speed
of movement and to the information that protocols may use.

1.1 The Dissemination Problem

We study the problem of disseminating a piece of informatioitially held by a dis-
tinguished source node, to all nodes of a given set in thear&twormally,



Definition 1. Given a MANET formed by a s&t of n nodes, letP be a predicate on
V ands € V a node that holds a piece of informatidrat timet; (s is the source of
dissemination). ThBisseminationproblem consists of distributingto the set of nodes
Vp = {z € V :: P(z)}. A node that has receivellis termedcovered and otherwise
it is uncoveredThe Dissemination problem is solved at time glot> ¢, if, for every
nodev € Vp, v is covered by time slat.

The Dissemination problem abstracts several common prabie distributed sys-
tems. E.g. Broadcast, Multicast, Geocast, Routing ete athinstances of this problem
for a particular predicat®. In order to prove lower bounds, we will use one of these
instances: the Geocast problem. The predi@afer Geocast isP(z) = true if and
only if, at timet;, x is up and running, and it is located within a parametric dista
d > 0 (calledeccentricity from the position of the source node at that time.

1.2 Model

We consider a MANET formed by a skt of » mobile nodes deployed iR?, where
no pair of nodes can occupy the same point in the plane simadtssly. It is assumed
that each node has data-processing and radio-commumicafi@bilities, and a unique
identificator number (ID) inn] £ {1,...,n}.

Time. Each node is equipped with a clock that ticks at the same umifatep but,
given the asynchronous activation, the clocks of differesdes may start at different
times. A time interval of duratioth/p is long enough to transmit (resp. receive) a mes-
sage. Computations in each node are assumed to take no tiangngfrom a time
instant used as reference, the global time is slotted asweneq of time intervals or
time slotsl, 2, ..., where slot > 0 corresponds to the time intenvidf — 1)/p,i/p).
Without loss of generality [24] all node’s ticks are assunt@dbe in phase with this
global tick.

Node Activation. We say that a node a&ctiveif it is powered up, anéhactiveoth-
erwise. Itis assumed that, due to lack of power supply orratheanted events that we
call failures active nodes may become inactive. Likewise, due also tioranp events
such as replenishing their batteries, nodes may be reatetiv\We call the temporal
sequence of activation and failures of a node db#vation scheduleThe activation
schedule for each node is assumed to be chosen by an adyénsarger to obtain
worst-case bounds. Most of the lower-bound arguments deciun this paper hold,
even if all nodes are activated simultaneously and neve(dich readily provide a
global time), making the results obtained stronger.

We assume that a node is activated in the boundary betweecomsgcutive time
slots. If a node is activated between slots 1 and¢ we say that it is activated at
slot ¢, and it is active in that slot. Upon activation, a node imnagely starts running
from scratch an algorithm previously stored in its hardwbuot no other information or
status is preserved while a node is inactive. ConsequéniBypossible that a covered
node does not hold the informatidnbecause it has been inactive after receiving it. To
distinguish a covered node that does not hold the informditaom one that holds it, we
introduce the following additional terminology: we say ttlanodep is informedat a
given timet if it holds the information at timet, otherwisep is said to beauninformed



Radio Communication. Nodes communicate via a collision-prone single radio
channel. A nodes can receive a transmission of another nadm time slott only
if their distance is at most theange of transmissiom during the whole slot. The
range of transmission is assumed to be the same for all nodeesllaime slots. If two
nodesu andv are separated by a distance at mgate say that they aneeighbors In
this paper, no collision detection mechanism is assumebaawde cannot receive and
transmit at the same time slot. Therefore, an active nogeeives a transmission from
a neighboring node at time slotj if and only if v is the only node in's neighborhood
transmitting at time slof. Also, a node cannot distinguish between a collision and no
transmission. In general, we say that a nede V' transmits uniquelamong the nodes
of setV’ C V in a slott if it is the only node inl’’ that transmits irt.

Link stability. We assume that nodes may move on the plane. Thus, the topology
of the network is time dependent. For simplicity, we assuha¢ the topology only
changes in the boundaries between time slots. Then, at tohé sodesu andv are
connected by a link in the network topology iff they are nd&igts during the whole
slott. An online route between two nodesandwv is a pathu = wg, w1, ..., wr = v
and a sequence of time slats < to < --- < t; such that the network has a link be-
tweenw;_1 andw; at time slott;. Observe that in order to be able to solve an instance
of Dissemination, it is necessary that the network is paaéyntepidemic. I.e. after the
initial time ¢4, there is an online route from the sourct® every node if/p. However,
as argued in [6], worst-case adversarial choice of topefpr a dynamic network
precludes any deterministic protocol from completing Blwast, even if connectivity
is guaranteed. Note that Broadcast is an instance of Dissgion, and that if there is
connectivity then there are online routes between all notless, the property that the
network is potentially epidemic as described is not sufficie solve Dissemination,
and further limitations to the adversarial movement ané/aiibn schedule are in or-
der. While respecting a bound on the maximum spggd, which is a parameter, the
adversarial movement and activation schedule is limitethkyfollowing connectivity

property:

Definition 2. Given a Mobile Ad-hoc Network, an instance of the Disserungirob-
lem that starts at time;, and two integersx > 0 and 8 > 0, the network if«, 3)-
connectedf, for every time slot > t; at which the problem has not yet been solved,
there is a time slot’ such that the following conditions hold:

— the intersection of time intervals, ¢ + «) and[t’, ¢ 4+ () is not empty, and
— there is a pair of nodesg, p’, such that at’ p is informed ang’ is uncovered, and
they are active and neighbors the whole time intefi/ak’ + 3).

Itis of the utmost importance to notice that, )-connectivity is a characterization
that applies t@anymodel of dynamic network, given that for any mobility andieetion
schedule, and any pair of nodes, there is a minimum time theeg@nnected (even if
that time is0) and a maximum time they are disconnected (even if that taneery
large). Thus, any dynamic network model used to study theddigsnation problem has
its owna andg values.

Due to the same argumeiity, 3)-connectivity does not guarantee by itself that the
network is epidemic (i.e. that the information is eventyalisseminated); instead, an



(o, B)-connected network is onfyotentiallyepidemic. Consider for instance the source
node. Thanks to thgy, 8)-connectivity, at most every slots, the sourceis connected

to other nodes of the network for at leastime slots. But, we have progress only if the
protocol to solve Dissemination is able to use th&lots of connectivity to cover some
uncovered node. As a consequence of the above discussenssitifity results only
restrict, whereasy only constrains the running time, as it is shown in this paper

1.3 Protocols for Dissemination

We consider distributed deterministic protocols, i.e.,agsume that each node in the
network is preloaded with its own and possibly differentedetinistic algorithm that
defines a schedule of transmissions for it. Even if a trarsomisis scheduled for a
given node at a given time, that node will not transmit if iiignformed.

Following the literature on various communication privets [16,17], a protocol is
calledobliviousif, at each node, the algorithm’s decision on whether or asthedule
a transmission at a given time slot depends only on the iikndf the node, and on
the number of time slots that the node has been active. Wieife@o restriction is
put on the information that a node may use to decide its conmation schedule, the
protocol is callecadaptive Additionally, in this paper, we distinguish a third clads o
protocols that we caltjuasi-oblivious In a quasi-oblivious protocol the sequence of
scheduled transmissions of a node depends only on its ID aidbal time. Quasi-
oblivious protocols have sometimes been called oblivisirs;e the model assumed
simultaneous activation, and hence a global time was neasdilable. However we
prefer to make the difference explicit, as done in [21], seawe found a drastic gap
between this class and fully oblivious protocols.

1.4 Previous Work

A survey of the vast literature related to Dissemination éydnd the scope of this
article. We overview in this section the most relevant prasiwork. Additionally, a
review of relevant related work for static and dynamic neksdeyond MANETSs can
be found in [11].

The Dissemination problem abstracts several common preile Radio Networks.
When some number < k < n of active nodes hold an information that must be dis-
seminated to all nodes in the network, the problem is c&i&electior{16] or Many-
to-all [5]. If & = 1 the problem is calledBroadcast[2, 18], whereas ifk = n the
problem is known a§&ossiping4, 9]. Upper bounds for these problems in mobile net-
works may be used for Dissemination, and even those focstativorks may apply if
the movement of nodes does not preclude the algorithm fronpteting the task (e.g.,
round-robin). On the other hand, if only the subset aiodes have to receive the infor-
mation, the problem is known &4ulticast[5, 13], and if only nodes initially located at
a parametric distance from the source node must receivafibrriation the problem is
called Geocast [15], defined in Section 1.1.

Deterministic solutions for the problems above have beedistl for MANETS.
Their correctness rely on strong synchronization or stgtakssumptions. In [19], de-
terministic Broadcast in MANETs was studied under the aggion that nodes move



in a one-dimensional grid knowing their position. Two dateristic Multicast proto-
cols for MANETS are presented in [14,20]. The solutions pited require the network
topology to globally stabilize for long enough periods tsere delivery of messages,
and they assume a fixed number of nodes arranged in somellogdaysical structure.
Leaving aside channel contention, a lower bound2¢f) rounds of communication
was proved in [23] for Broadcast in MANETS, even if nodes diensed to move only
in a two-dimensional grid, improving over tli&( D log n) bound of [3], whereD is the
diameter of the network. This bound was improved@ log ) in [7] without using
the movement of nodes, but the diameter of the network indtterlis linear. Recently,
deterministic solutions for Geocast were proposed in [Lfone-dimensional setting
and in [10] for the plane. In the latter work, the authors @oritate in the structure of
the Geocast problem itself, leaving aside communicatisues such as the contention
for the communication channel.

1.5 Our Results

The main contribution of this work concerns negative resufontrasting the lower
bounds obtained with upper bounds derived by careful coatioin of previous tech-
niques, interesting complexity gaps among protocol-elsisse observed.

For a model where nodes may fail, there is no global clock, rodes may be
activated at different times, we show in Theorem 6 that ariviolois protocol takes,
in the worst casef2((a + n?/Inn)n) steps to solve the Geocast problem,if,, >
mr/6(a+ [(n/3)(n/3—1)/In(n/3(n/3 —1))| —2). Given the upper bound af(a +
4n(n—1)1In(2n)) for Dissemination established in Theorem 8 by means of axiobs
deterministic protocol based on Primed Selection [12§ kinver bound is tight up to a
poly-logarithmic factor.

Moreover, for the same model, Theorem 5 shows that, evendiésiare activated
simultaneously and do not fail, and an adaptive protocosedyany Geocast protocol
takes, in the worst cas@,(n(a+n)) if vmas > 7/ (3(2a+n—4)). This result should
be contrasted with the quasi-oblivious protocol base&ound-Robirthat solves Dis-
semination in at most(« + n) steps as established in Theorem 7.

The latter results are asymptotically tight and show thltafdaptiveness does not
help with respect to quasi-obliviousness. The first lowerrtzband the last upper bound,
show an asymptotic separation almost linear between oblsénd quasi-oblivious pro-
tocols. In a more restrictive model, where nodes are aetivatmultaneously, there
exists an oblivious protocol (e.g. Round Robin) that soésemination in at most
n(a + n) steps. Hence, the lower bound proved in Theorem 6 shows iticahl
cost of obliviousness when nodes are not simultaneousiyaéetl. This gap is what
we call theprofit of global synchronysince it represents the gain the network obtains
from global synchrony with respect to not having it. Moregtiee quasi-oblivious pro-
tocol derived shows that for the Dissemination problem,dineultaneous activation
performance can be achieved by distributing the time ethps®e the source started
the dissemination. For a discussion of the importance otraxdivation schedule in
distributed computing refer to [11].

Additionally, it is shown in Theorem 1 that no protocol catvedhe Geocast prob-
lem (and hence Dissemination) in &l, 5)-connected networks unlegs > n — 1.



Interestingly, it is shown in Theorem 2 that this bound beesph > |(n — 1)(n —
3)/41n((n — 1)(n — 3)/4)] if the protocol is oblivious. Comparing these bounds with
the requirements of the protocols presented above, théghlgous protocol required

B > n, which is almost optimal, while the oblivious protocol rémal 3 € 2(n? logn),
which is only a polylogarithmic factor larger than the loverund. These results also
expose another aspect of the profit of global synchrony roeetl before: whilgg = n

is enough for quasi-oblivious protocols to solve Disseridmg oblivious protocols re-
quire a value of3 almost a linear factor larger.

Finally, for an arbitrary small bound on node speed, we showWheorem 3 the
existence of ariw, 3)-connected network where Geocast takes at least— 1) steps,
even using randomization; and the existence dfigm)-connected network where any
deterministic protocol that transmits periodically takeseast:(n — 1)/2 steps, even
if nodes do not move, in Theorem 4.

1.6 Paper Organization

The rest of the paper is organized as follows. In Section 2nt@duce some tech-
nical lemmas that will be used to prove our main results; inti6a 3 we prove the
lower bounds on link stability and on the time complexity tdve the Dissemination
problem with respect to some important aspects of the sy@amspeed of movement
of nodes and their activation schedule) and of the protgeots, obliviousness versus
adaptiveness). We finally present the corresponding upperds in Section 4.

2 Auxiliary Lemmas

The following lemmas will be used throughout the analysistiightforward conse-
quence of the pigeonhole principle is established in tHewohg lemma.

Lemma 1. For any time steg of the execution of a Dissemination protocol, where a
subsefl”” of k informed nodes do not fail during the internval¢ + k& — 2], there exists
some node € V'’ such that does not transmit uniquely among the node¥irduring

the intervallt, ¢ + k — 2].

In the following lemma, we show the existence of an activatiohedule such that,
for any oblivious deterministic protocol, within any subset of at ledstodes, there
is one that does not have a unique transmission schedulééhveitperiod roughly
quadratic in the size of the subset. The proof, based on thigapilistic method, is
omitted for brevity and can be found in [11].

Lemma 2. For any deterministic oblivious protocol that solves Disseation in a
MANET ofn nodes, where nodes are activated possibly at differenttiened for any
subset oft nodes,k > 3, there exists a node-activation schedule such that, for any
time slott and lettingm = |k(k — 1)/In(k(k — 1)), each of thek nodes is activated
during the intervalt — m + 1, ¢], and there is one of the nodes that is not scheduled
to transmit uniquely among thogenodes during the intervdt, ¢t + m — 1].



3 Solvability of the Dissemination Problem

If there is at least one node I — {s} at least one time slot is needed to solve Dis-
semination, since the source node has to transmit at leasttorpass the information.
Furthermore, if all nodes ii¥p are neighbors of, one time slot may also be enough if
the source node transmits before neighboring nodes ard@hieve out of its range.
On the other hand, if the latter is not possible, more thantiome slot may be needed.
Let us consider the Geocast problem. Given that the speeifltnblogical details of
the radio communication devices used determine the minimwmming time when the
eccentricity isd < r, all efficiency lower bounds are shown fér> » unless otherwise
stated.

3.1 Link Stability Lower Bounds
The following theorem shows a lower bound on the valug fifr the Geocast problem.

Theorem 1. For any V.4 > 0,d > r, a > 0, and any deterministic Geocast protocol
II1,if 8 < n— 1, there exists aifir, 3)-connected MANET of nodes such thall does
not terminate, even if all nodes are activated simultangoarsd do not fail.

Proof. Consider three sets of nodds B, andC' deployed in the plane, each set de-
ployed in an area of size arbitrarily small, such thdd < ¢ < » andd > r + . The
invariant in this configuration is that nodes in each set farglique, every node il

is placed within distance from every node inB, every node inB is placed at most
at distances from every node inC', and every node i is placed at some distance
r < 6 < r+ ¢ from every node irC'. At the beginning of the first time slot, the adver-
sary places: — 1 nodes, including the source noslgn the set”, the remaining node
x in setA, and activates all nodes. The gets initially empty. Giventhatl > r +¢, «
must become informed to solve the problem. Alsis set appropriately so that a node
can move distance in one time slot without exceedivig,,...

For any protocol for Geocast, let be the first time slot where the source node is
the only node to transmit in the s€t Adversarially, let: be the first time slot when the
source is informed. Thusq, 8)-connectivity is preserved up to time slofor any a.

At time slott, all nodes placed i’ are informed.

After time slott, the adversary moves the nodes as follows. Given that tHegno
was not solved yet and nodes@hdo not fail, according to Lemma 1, there exists a
nodey € C that does not transmit uniquely among the nodeS iduring the interval
[t+1,t+n —2]. Given that/] is a deterministic protocol, and the adversary knows the
protocol and defines the movement of all nodes, the adveksarys which is the node
Y.

Assume, for the sake of contradiction, titat n — 2. Then, the adversary places
y in B for all time slots in the intervalt + 1,¢ + (]. Additionally, for each time slot
t' € [t + 1,t + 3] wherey transmits, the adversary movesfosome node € C that
transmits at’ to produce a collision. At the end of each time gldhe adversary moves
z back toC. Such a node exists sincegy does not transmit uniquely during the interval
[t+1,t+n—2]andn—2 > (. Atthe end of time slot+ 3, the adversary movesback



to C' and the above argument can be repeated forever presereifg, th)-connectivity
and precluding’ from solving the problem. Therefor@,must be at least — 1.

Building upon the argument used in the previous theoremadditionally exploit-
ing the adversarial node activation, the following theosdraws a lower bound on the
value of 3 for the Geocast problem if the protocol used is obliviouse Tdea of the
proof is to split evenly the nodes of s€tin the proof of Theorem 1 in two groups, so
that alternately the nodes in one group are activated wienbdes in the other group
produce collisions. The details are omitted for brevity aad be found in [11].

Theorem 2. For any V... > 0,d > r,n > 8, a > 0, and any deterministic oblivious
protocol for Geocast, if 5 < m = |[(n — 1)(n — 3)/41n((n — 1)(n — 3)/4)], there
exists an(«, 8)-connected MANET of nodes such thall does not terminate.

3.2 Time Complexity Lower Bounds versus Speed, Activationrad Obliviousness

Exploiting the maximum timey that a partition can be disconnected, a lower bound
on the time efficiency of any protocol for Geocast, even relgas of the use of ran-
domization and even for arbitrarily slow node-movement, ba proved. The follow-
ing theorem establishes that bound. The proof is omittedfevity and can be found
in[11].

Theorem 3. For any V4, > 0,d > 7, a > 0, andj > 0, there exists arja, 3)-
connected MANET of nodes, for which any Geocast protocol takes at legst — 1)
time slots, even if all nodes are activated simultaneoustydo not fail.

The linear lower bound for Geocast proved in Theorem 3 wawslexploiting the
maximum time of disconnection between partitions. Expigithe adversarial schedule
of node activation, even if nodes do not move nor fail, thees@ound can be simply
proved for arbitrary Geocast protocols, while a quadradieridl can be shown for the
important class oéquiperiodicprotocols. The protocol definition and the theorem for
the latter follows. The proof is omitted for brevity and canfound in [11].

Definition 3. A protocol of communication for a Radio Networkeiguiperiodidf for
each node, the transmissions scheduled are such that thbaruwhconsecutive time
steps without transmitting, call it — 1, is always the same. We say thats theperiod
of transmission of such a node.

Theorem 4. For anyV,,,... > 0,d > r, a > 0, 5 > 0, and any deterministic equiperi-
odic Geocast protocol, there exists ar{«, 5)-connected MANET of nodes, for
which II takes at least(n — 1)/2 time slots to solve the problem, even if nodes do not
fail and do not move.

In Theorems 3 and 4 we showed lower bounds for Geocast fotraibi small
values ofV,,,... We now show that, by slightly constraining,..., a quadratic lower
bound can also be shown for arbitrary deterministic pratco



Theorem 5. For any V42 > 7r/(32a +n — 4)),d > r, « > 0, f > 0, and any
deterministic Geocast protocdl, there exists afi, 3)-connected MANET of nodes,

for which II takes(2((« + n)n) time slots to solve the problem, even if all nodes are
activated simultaneously and do not fail.

Proof. The following adversarial configuration and movement ofeeshows the claimed
lower bound. Consider six sets of nodésA’, B, B’, C, andC’, each deployed in an
area of sizes arbitrarily small, such thal < ¢ < r andd > r + ¢, and four pointsg,

y, ', andy’ placed in the configuration depicted in Figure 1(a).

(a) Distances invariant. (b) Initial configuration.

Fig. 1. lllustration of Theorem 5. A small empty circle depicts amiain the plane. A small
black circle depicts a node. A big empty area depicts an esgityA big shaded area depicts a
non-empty set.

The invariant in these sets is that nodes in each set forngasleach node ial’
is placed at some distancer and< r + ¢ from the pointsz, 3/, and each node i;
each node iM is placed at some distancer and< r + ¢ from the pointst’, y, and
each node imB; each node imB is placed within distance of pointsz, y, 2, andy’,
and each node i@ andC’; each node i is placed at some distancer and< r + ¢
from the pointz; each node i’ is placed at some distancer and< r + ¢ from the
pointz’; and each node i’ is placed within distance of each node iB and within
distancer of each node i andC”.

At the beginning of the first time slot, the adversary plaegg nodes, including
the source node, in setB’, the remaining:/2 nodes in the seti, and starts up all
nodes. (For clarity, assume thais even.) All the other sets are initially empty. (See
Figure 1(b).)Given thatl > r + ¢, all nodes must be covered to solve the problem.
Also, ¢ is set appropriately so that a node can be mavelistance in one time slot
without exceedind,,,..., and so that a node can be moved from&éd pointx: through

% During some periods of time a given set could be empty, we rtfesn: is separated (within)
that distance from any point in the area designated to th& set



the curved parts of the dotted line (see Figure 1(a)),oftletess thant(r + ) /6, in
a + n/2 — 2 time slots without exceeding,,.... (To see why the length bound is that,
it is useful to notice that the distance between each paingtar points along each of
the circular dotted lines is upper bounded(by+ ¢)/2.)

Lett be the first time slot when the source is scheduled to transahersarially, let
t be the first time slot when the source is informed. Nodes stya positions described
until t and, consequently, all the other2 — 1 nodes in seB’ receive it. Starting attime
slott+ 1, the adversary moves the nodes so that only one new node®very?2 steps
becomes informed. First we give the intuition of the movetaamd later the detalils.
(See Figure 1(b).)Nodes that are notBnor B’ are moved following the dotted lines.
Some of the nodes iB’ are moved back and forth #. Nodes initially inA are moved
clockwise toA’, except for one of them, say which is moved simultaneously counter-
clockwise to the point. Upon reachingd’ nodes are moved counter-clockwise back to
A, except for one of them, say which is moved simultaneously clockwise to the point
2’, while the node: is also moved simultaneously to the paointUpon reachingd, the
remaining nodes repeat the procedure whilkeeps moving toward§' andv keeps
moving toward<”’ throughy’ respectively. Nodes initially il are moved in the above
alternating fashion, one 0 and the next one t6”, until all nodes become informed.
Movements are produced so thjat 5)-connectivity is preserved. The details follow.

The movement of each nodemoved fromA to C is carried out in three phases
of at leasta + n/2 — 2 time slots each as follows. (As explained below, some nodes
initially in A will be moved instead t@", but the movement is symmetric. For clarity,
we only describe the whole three phases for one node. Themmeoss illustrated in
Figure 4 in [11], which is omitted here for brevity.)

Phase 1 During the firgt — 2 time slots,u is moved counterclockwise from towards the
pointz maintaining a distance r and< r + ¢ with respect to every node ia. In
the (o — 1)-th time slot of this phase; is moved within distance of every node
in setB preserving «, 3)-connectivity. Nodes i3’ stay static during this interval.
Given that only nodes i3’ are informed and the distance between them-aisl
bigger than-, v does not become covered during this interval.

During the followingn /2 — 1 time slots of the first phase, the counterclockwise
movement of node towards the point continues, but now maintaining a distance
at mostr with respect to every node iR. In the last time slot of the second phase,
u is moved to point. During this interval, nodes iB’ are moved back and forth to
B as described in Theorem 1 to guarantee thdbes not become covered before
reaching pointz. Upon reaching point, « and all the other nodes in the network
notin B or B’ remain static. Phase 1 ends the time slot befdbecomes covered.
Simultaneously, along the firat+ n/2 — 2 time steps of this phase, the remaining
nodes initially inA are moved clockwise td’. Then, even if. becomes informed
immediately upon reaching poimt « cannot inform nodes i’ because they are
separated by a distancer.

Phase 2 During this phase,is moved counterclockwise towards poiptmaintaining a
distance at most with respect to every node iB and B’. Simultaneously, nodes
that were inA’ at the end of the second phase are moved counterclockwide to
except for one node that moves in its own first phase 0.



Nodes moving fromd’ to A maintain a distance r with respect ta:. Thus, even

if u becomes covered the information cannot be passed to thefoitthe end of
this phase» is placed in point’. Thus, even ift becomes covered in the first step
of its second phase, cannot inform nodes i because they are separated by a
distance> r.

Phase 3 During this phase,is moved counterclockwise towards geétmaintaining a dis-
tance at most with respect to every node iB and B’. Simultaneously, nodes that
were inA at the end of the second phase are moved clockwigg éxcept for one
nodew that moves in its own first phase 10 Also simultaneouslyy continues its
movement towards sét’ in its own second phase.

Nodes moving from4 to A’ maintain a distance r with respect ta. Thus, even

if v becomes covered the information cannot be passed to thefofiso, nodes

u andw are moved maintaining a distance r between them. Thus; cannot
inform w. At the end of this phase has reached se&t, v is placed in point/,
andw is placed in pointc. Thus, even ifw becomes covered in the first step of its
second phasey cannot inform nodes ial because they are separated by a distance
> r. Upon completing the third phase,stays static irC' forever so thatc, 5)-
connectivity is preserved.

The three-phase movement detailed above is produced fomeate initially in A,
overlapping the phases as described, until all nodes hazani®covered. Given that
when a node: reaches the point, its phase 1 is stretched until the time step before
becomes covered by a nodén B and all other nodes remain static, the next nede
that will be moved fromA’ to =’ does not become covered bybecausev stays inA’
until w becomes covered. In each phase of at least: /2 — 2 time slots every node is
moved a distance at mostr + ¢)/6 + . Thus, setting appropriately, the adversarial
movement described does not violdtg,.. Given thatn/2 nodes initially in A are
covered one by one, each at least within- n/2 — 2 time slots after the previous one,
the overall running time is lower bounded as claimed, everfl.

The quadratic lower bound shown in Theorem 5 holds for angrdenhistic proto-
col, evenifitis adaptive. Building upon the argument useithat theorem, but addition-
ally exploiting the adversarial node activation, the faling theorem shows a roughly
cubic lower bound for oblivious protocols, even relaxing ttonstraint orl/,,.... The
proof is omitted for brevity, the details can be found in [11]

Theorem 6. Foranyn > 9,d > r,a > 0, 8 > 0, Vipas > 7r/6(a+ [(n/3)(n/3 —
1)/In(n/3(n/3—1))| —2), and any oblivious deterministic Geocast protofhlthere
exists ana, 3)-connected MANET of nodes, for whichT takes2((a + n?/Inn)n)
time slots to solve the problem.

4 Upper Bounds

Solving the Dissemination problem under arbitrary nodgvation schedule and node-
movement is not a trivial task. To the best of our knowledg¢edninistic protocols for
such scenarios were not studied before, not even for patiyregpidemic networks such



as an(a, 5)-connected MANET, and not even for specific instances ofd@geation.
In this section, a quasi-oblivious protocol and an oblig@mne that solve Dissemina-
tion, both based on known algorithms particularly suiteddior setting, are described
and their time efficiency proved. The first bound is asympéily tight with respect to
the more powerful class of adaptive protocols.

A Quasi-Oblivious Protocol.The idea behind the protocol is to augment the well-
known Round-Robin protocol with the synchronization of theck of each node with
the time elapsed since the dissemination started, whichalehe global time This
is done by embedding a countercorresponding to the global time, in the messages
exchanged to disseminate the informatiorGiven that the schedule of transmissions
of a node depends only on its ID and the global time, the podtiscquasi-oblivious.
More details about the algorithm can be found in [11].

It can be proved that this quasi-oblivious algorithm soléssemination for arbi-
trary values ofl/,,,... in at mostn(« + n) time steps. The details are omitted for brevity
and can be found in [11]. Formally,

Theorem 7. Given an(a, §)-connected MANET wherg > n, there exists a quasi-
oblivious deterministic protocol that solves Dissemiaatior arbitrary values oV,
in at mostn(« + n) time steps.

Recall that3 > n — 1 is required for the problem to be solvable as shown in
Theorem 1. This upper bound is asymptotically tight withpexs to the lower bound
for general deterministic Geocast protocols whgn,, > 7r/(3(2a +n — 4)) shown
in Theorem 5. Thus, we can conclude that having extra inftioman this case does
not help.

An Oblivious Protocol We finally describe how to implement an oblivious protocal fo
Dissemination, based dPrimed Selectiona protocol presented in [12] for the related
problem of Recurrent Communication. Given that in this pcot the schedule of trans-
missions of a node depends only on its ID, the protocol isvahls. This upper bound
is only a poly-logarithmic factor away from the lower bourbg/n in Theorem 6.

In order to implement Primed Selection, oneroprime numbers is stored in ad-
vance in each node’s memory, so that each node holds a differiene number. Lep,
denote the-th prime number. We set the smallest prime number used g, p&hich
is at leastn, because Primed Selection requires the smallest prime ewtokbe at
least the maximum number of neighbors of any node, which immdel is unknown.
The algorithm is simple to describe, upon receiving therimiation, each node with
assigned prime numbeyf transmits with periogh;.

Itwas shown in [12] that, for any Radio Network formed by algetf nodes running
Primed Selection, for any time slgtand for any node such that the number of nodes
neighboringi is k — 1, 1 < k < n, i receives a transmission without collision from
each of its neighbors within at mosinax;cy p; steps after. Given that in our setting
the biggest prime number usedpis, 1, thatp, < z(Inz + Inlnz) for anyz > 6 as
shown in [25], and that due to mobility all nodes may get cltwsein the worst case,
we have that max;cy p; < n(2n—1)(In(2n—1)+Inln(2n — 1)), forn > 4. Which



is in turn less thadn(n — 1) In(2n) for n > 3. Hence, given that in the worst case all
nodes must be covered at least one at a time and that the kesiar, 3)-connected,
the overall running time is less tharfa + 4n(n — 1) In(2n)). We formalize this bound
in the following theorem. Recall that > |(n — 1)(n — 3)/41n((n — 1)(n —3)/4)| is
required for the problem to be solvable whe 8 as shown in Theorem 2.

Theorem 8. Given an(«, 3)-connected MANET, whefe> n(2n — 1)(In(2n — 1) +

Inln(2n — 1)) andn > 4, there exists an oblivious deterministic protocol thatvesl
Dissemination for arbitrary values df,,q, in at mostn(a + 4n(n — 1) In(2n)) time
steps.
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