Biographical Sketch

Antonio Fernandez (Anta) graduated from the Universidad Politécnica de Madrid with
the degree of Diplomado en Informatica in March 1988 and with the degree of Licenciado
en Informatica in July 1991. In Fall of 1991 he joined the Ph.D. program in Computer
Science at the University of Southwestern Louisiana and was supported by a Fulbright
Scholarship. In Fall 1992 he obtained the Master of Science degree in Computer Science.

His professional experience includes positions as system manager at the Departamento
de Ingenieria Telematica of the Universidad Politécnica de Madrid for nine months, as an
assistant professor for 20 months, and as an associate professor for a further 20 months
at the Departamento de Arquitectura y Tecnologia de Computadores of the Universidad
Politécnica de Madrid. He was recently awarded a post-doctoral research grant by the
Spanish Ministry of Education and Science for the year 1995.

109

Abstract

This dissertation proposes the cartesian product operation for graphs as a unifying frame-
work for the study of interconnection networks. In this research, we concentrate on
homogeneous product networks and generate a large set of important general results
which yield the characteristics of the product network from those of its factor network.
From these characteristics, a network can be evaluated and different networks can be
meaningfully compared.

The results of this study are grouped in four main areas. First, we obtain structural
properties of homogeneous product networks. We have compiled results on the diame-
ter, vertex degree, connectivity, and partitionability of these networks. Then, we have
addressed the study of other properties and derived results on the bisection width and
crossing number. To generate these results we introduce a new structural property of a
graph, the maximal congestion, which seems to be interesting for future research.

Second, we have obtained simple but powerful results on embeddings between homo-
geneous product networks. These results allow to transfer the computational power of
one network to the other by emulation.

Third, we have developed algorithms that can be implemented in any homogeneous
product network without variation. These algorithms cover several important problems:
sorting, summation, matrix multiplication, and minimum-weight spanning-tree finding.
Some of them can be readily modified to solve many other problems.

Finally, we have studied the VLSI layout complexity of homogeneous product net-
works, obtaining lower bounds on the area and wire length they require and presenting
methods to produce optimal-area layouts.

We have applied these results to several instances of homogeneous product networks,
showing how simply the results can be used to evaluate a network. Then, we have
concentrated in the study of three of them: the product of complete binary trees, shuffle-
exchange graphs, and de Bruijn graphs. These three homogeneous product networks
have been shown to be very powerful and interesting candidates for being used as inter-
connection networks.

108

APPENDIX 107

In the rest of the proof we first show how to embed a (r(h — 3) 4 1)-level tree in the
first graph whose leaves are the leaves of PT,(2"~? —1). Then, we show how to embed a
(3r — [§])-level tree in each copy of PT,(7) so that the root of the tree is the root of the
copy. The combination of both embeddings to PT,(N) yields the desired embedding.

We first recall from Theorem 7.4 that PT,(N) has a subgraph isomorphic to the
(r(h—1)+1)-level tree. By construction, the leaves of this tree are also leaves of PT,(N).
The direct application of this theorem to PT,(2"=% — 1) allows to obtain a subgraph of
this graph isomorphic to the (r(h — 3) + 1)-level tree and whose leaves are the leaves of
PT, (22 —1).

Corollary A.1 shows how to embed T'(2°"~L2] —1) with congestion 3 and dilation 3 into
each copy of PT,.(7) so that the root of the tree is the root of the copy. Combining this
result with the previous one we have obtained an embedding of the (3r — L%J +r(h—3)) =
(rh — | 5])-level complete binary tree in PT,(NN) with dilation 3 and congestion 3.]

APPENDIX 106

has label © = x...xq, where x; = 1 for ¢ = 1, ..., k, and the edges incident to the root are
edges of PTy(7).

Now consider only the roots of the embedded trees and reconnect them along dimen-
sions k+ 1 and k + 2. The graph so obtained contains the nodes of PTj12(7) of the form
T = Tpy2lht12g...01, Where @; = 1 for ¢ = 1,..., k, and is isomorphic to PT(7).

Each node in the above graph is the root of an embedded complete binary tree. Then,
considering again the whole graph, we have obtained an embedding of TT(Z%_% —
1,2,7) into PTy12(7), where the PT5(7) subgraph and the first two levels of the trees are
embedded with dilation 1 and congestion 1. Since the embedding defined in Lemma A.1
only changes this part of the T'T" graph, it can be applied here to obtain an embedding
of the (3k — k% +5)=3(k+2)— £klgu)—level complete binary tree in PTj42(7) with
dilation 3 and congestion 3.

From Lemma A.1, the root of the embedded tree is the root of the PT5(7) subgraph,
that is of the form = = xy 92411 2%...71, where x; = 1 for ¢ = 1, ..., k + 2, and the edges
incident to this root have dilation 1 and congestion 1. |

Corollary A.1 The (3r—|5])-level complete binary tree, T(2°=121=1), can be embedded
into PT,.(7) with dilation 3 and congestion 3. In this embedding the root of the embedded
tree is the root of PT,.(7).

Proof: If r is odd the above lemma can be trivially applied and the claim follows. The
case of even r requires a little more elaboration.

Note that by removing all the dimension-r edges we obtain 7 disjoint copies of
PT,_1(7). Since r is even r — 1 is odd and the above lemma can be applied to each
copy. Then T(ZS(T_I)_B;Z)) can be embedded in each copy with its root in the node
xr=x,_1..v1, witha;, =1fore=1,...,r — 1.

We can now connect the roots of the embedded trees with a dimension-r tree. This
tree has 3 levels and each of its leaves is the root of a (3(r — 1) — 252)-level tree, therefore
we have found an embedding of T(2%~% — 1) into PT,(7). Since the dimension-r tree

connects the roots of the 7 copies and the root of the complete binary tree embedded is

the root of this tree, the root of the embedded tree is the node @ = x,...x{, with x; =1
for ¢ = 1,...,r, root of PT,(7).]

Then, we can obtain the proof of Theorem 7.5.
Proof: Note that if we remove the 2 lowest levels from every tree along each dimension
in PT,(N), where N = 2" — 1, we obtain a graph isomorphic to PT,(2"72 —1). Similarly,
if we remove the h — 3 top levels from every tree along each dimension we obtain a graph
formed by 27("=3) disjoint copies of PT,(7). Both graphs have exactly 2""=%) common
nodes, that are the leaves of the PT,(2"=2—1) graph and the roots of the copies of PT,(7)
in the other graph.

APPENDIX 105

@
@

@ (b)

Figure A.1: Embedding the (/4 5)-level complete binary tree into a subgraph of TT (2! —
1,2,7).

congestion of 3 is found in the edges connecting large empty nodes with small empty
nodes in Figure A.1.(a).

Since the tree of Figure A.1.(b) has 6 levels and each dark node represents a col-
lapsed [-level tree, we have obtained an embedding of the (I + 5)-level complete binary
tree into TT(2' — 1,2,7) where the dilation and the congestion are 3. From the figure it
is easily verified that the root of the embedded tree coincides with the root of the PT5(7)
subgraph and that the edges incident to the root of the tree are edges of TT(2'—1,2,7). m

The properties of the embedding highlighted in the statement of the lemma are needed
in order to iteratively apply the embedding (in the next lemma) without increasing the
congestion of the global embedding.

Lemma A.2 The (3r — 5%)-level complete binary tree, T(237°_T2>;1 —1), can be embedded
into PT.(7), where r is odd, with dilation 3 and congestion 3. In this embedding the
root of the embedded tree is the root of PT,(7) and the edges incident to the root of the

embedded tree have dilation 1 and congestion 1.

Proof: We prove the claim by induction on the number of dimensions, r. The initial
condition, r = 1, is trivially verified, since PT(7) is isomorphic to T'(7). In the induction
step we have to show that, given an embedding of T(23’“_k2;1 —1) into PTy(7) as specified,
it is possible to embed T(23(k+2)_% — 1) into PTy12(7) as described.

Note that by removing all the edges in dimensions k& + 1 and k + 2 from PTj42(7)
we obtain 49 disjoint copies of PT¢(7). From the induction hypothesis, we can embed a
disjoint copy of T(23k_k2;1 — 1) into each of these copies. The root of the tree embedded

APPENDIX 104

Proof of Theorem 7.5

In order to simplify the proofs we will first distinguish special sets of nodes in the PT,(NV)
networks as follows.

Definition A.1 A node v = x,..x1 is a leaf of PT.(N) if and only if x; is a leaf of
T(N), forie=1,....r.

Definition A.2 The node v = x,...x1 is the root of PT,(N) if and only if x; =1 (i.e.
x; s the root of T(N)), fori=1,...,r.

We now define a new class of graphs that is going to be useful in this section. We do
not give a special name to the graphs of this class but we instead use a short notation
to identify any member of the class.

Definition A.3 TT(M,r,N) is the graph obtained by connecting the roots of N” disjoint
copies of T(M) by the PT.(N) pattern, i.e. TT(M,r,N) is obtained by “hanging” a
complete binary tree T (M), from each node of PT,(N).

We start by presenting some results that will allow us to reach the final result (com-
piled as Theorem 7.5.) First we show that the complete binary tree with [+ 5 levels,
T(2'%5 — 1), can be embedded into TT(2" — 1,2, 7) with constant dilation and congestion
and that this embedding has particular properties. These properties allow the iterative
application of the embedding without increasing the dilation or the congestion. This
fact is used to obtain the subsequent results which show how to embed the complete
binary tree with 3r — [Z] levels, T(2>-151 — 1), into PT.(7) by iteratively using this
first embedding. Finally, by combining this results and Theorem 7.4 the general result is
obtained.

Lemma A.1 T(2%° —1) can be embedded into TT(2'—1,2,7), where | > 2, with dilation
3 and congestion 3. In this embedding the root of the embedded tree coincides with the
root of the PTy(7) subgraph of TT (2" — 1,2,7) and the edges incident to the root are
embedded with dilation 1 and congestion 1.

Proof: Figure A.1.(a) shows a subgraph of TT(2' — 1,2,7). In this figure, dark nodes
represent T'(2'—1) trees collapsed into supernodes for the purpose of a suitable abstraction
for the discussion below. Large empty nodes represent roots of other T'(2" — 1) trees, and
small empty nodes represent their immediate children in their T'(2" — 1) trees. The
subtrees rooted at small empty nodes are ignored. Figure A.1.(b) shows the tree that
can be embedded into this subgraph. The edges shown correspond to the edges of the
complete binary tree embedded.

It can be easily checked that any edge in Figure A.1.(b) corresponds to a path of
length not more than 3 in Figure A.1.(a). It can be also easily seen that the maximum

APPENDIX 103

Case z;, # yi: Note that there are p vertex-disjoint paths between xx and xpy along
the PTF(N) subgraph. Similarly, there are p vertex-disjoint paths between y,z and
yry. These two sets of paths follow the same pattern in their respective subgraph
and one path in one set has its corresponding path in the other. Along dimension
k, a unique path exists between corresponding vertices, xz and yiz, for any vertex

z of PT,_1(N).

We obtain the first paths by taking the shortest path between zpz and xy and
the corresponding path between yix and yry. We can obtain, then, two shortest
vertex-disjoint paths given by zpx — xry — yry and xx — yrr — yry.

Now, take the p — 1 paths left between xpx and x,y. For each path ¢ take an
intermediate node z*. Then, y;2° is in the correspondmg path between yrr and
yry. We find, then, p—1 vertex-disjoint paths as zpr — 22" — ypz® — yry, for ¢ =
1,...,p—1. Note that, so far, the p+1 paths obtained follow the same pattern along
dimension k because they connect the same pair of PTF(N) subgraphs. Therefore,
at most 2h — 1 PT}(N) subgraphs have been visited by them.

To find the remaining pr — 1 paths, we need to consider two possibilities. In the first
case, the degree of y; is at least equal to the degree of x;, and the p; — 1 paths can
traverse neighbors of y;y along dimension k. The second case arises when ¢, < 9,
and 6,, > ¢,,. In this case, we need to use the fact that y will have neighbors in
its PTF(N) subgraph not traversed by any of the p initial paths. We may thus
use these neighbors to build the required number of new paths. A more formal
argument appears below.

Let pp < 6,,. Then x;x has exactly pr — 1 and yxy has at least p, — 1 neighbors
along dimension k not used in the above paths. Each of these neighbors is in a
different PTJ(N) subgraph and no one of these subgraphs has been visited in the
above paths. We take p; — 1 of these neighbors. Let xiz denote the 7th neighbor
of zrx and yiy the ith neighbor of ygy, for i = 1,...,pr — 1. We can choose pj, — 1
vertices z* in PTy_;(N) not visited by any of the paths between T and y and obtain
pr — | new vertex-disjoint paths as xpz — ziz — 212" — yiz' — yly — yy, for
v=1,....pr — 1.

If, on the other hand, py > ¢,,, then there are at least p, — ¢,, neighbors of y not
used in the p paths between x and y. Similarly, xzx has at least pp — 1 unused
dimension-k neighbors. Let ziz denote the ith such neighbor of zzz and yy® the
1th such nelghbor of kY for 2 v=1,..,pk— 0y,- Then p; —6,, paths can be obtained
as xpr — rtx — 24y’ — yry' — yrpy. The remaining §,, — 1 paths can be obtained
by using the procedure of the case p; < 6,,.

We have, thus, found p + p; vertex-disjoint paths, and the claim follows.

This concludes the proof of the theorem.

APPENDIX 102

different dimension-2 tree. Let x5z be one of these neighbors of x, then y,y¢ = y2}
is also a neighbor of y, for ¢ = 1,...,p;. Then, p; paths between x and y can be
obtained as x — z92% — yoxi — y, fori =1,...,p;.

Finally, note that each of x and y has at least p; = min{é,,,é,,} — 1 neighbors
along dimension 2 not traversed in previous paths, each in a non-visited dimension-
1 tree. We can choose p, of these neighbors from each of and y. Since at most
p1 + 1 < 4 dimension-2 trees have been visited by the previous paths, there are at
least N — 4 non-visited dimension-2 trees. We can, then, choose any one of these
non-visited dimension-2 trees, v’, and obtain a path through the ith neighbor as
r — xhry — xhvt — yivt — yly; — y, for 1 = 1, ..., py. This completes the set of m
paths and the claim is shown to be true for this case.

Case 5 = y9: This case in analogous to the previous one.

Case x3 # ys, 21 # y1: The two existing shortest paths can be obtained as © — x9y; — y
and x — yyz; — y. Note that at most 2h — 1 (where N = 2" — 1) dimension-1 and
dimension-2 trees are visited by these paths and that only one neighbor of each
x and y along each dimension has been traversed. Furthermore, the remaining
neighbors along dimension 1 (resp. dimension 2) are in a non-visited dimension-2
(resp. dimension- 1) tree. We can, then, obtain pi; = min{éz,, 6, } — 1 paths as
T — raxt — yirt — ylyy — y, for ¢ =1,..., pr2. Similarly, py = min{éz,, 6y, } —
paths can be obtained as = — z4a; — x4yl — ¥yt — y, for i = 1,..., pa1.

The remaining [=m— piz — pa1 — 2 paths if | > 0, may be obtamed as v —
:1;2:1;1 — ulal — ulyl — yyl — yor & — xhay — by’ — yv* — yiy1 — y, where
u® are dimension-1 trees not visited in previous paths and v* are dimension-2 trees
not visited in previous paths. A simple case analysis shows that such trees exist.

This completes the proof for 2 dimensions. For the purpose of induction, we take two
vertices & and y of PT,_1(N), x # y. Assume that they are connected by p vertex-disjoint
paths, where, without loss of generality, p = 6, and p < 6,. In PTy(N) these vertices
become x,x and yy, respectively, where x) and y; are the labels for the dimension k.
The minimum vertex degree of the pair is p + py = min{é,,., 6y, }, where 1 < p, < 3,
and xjx has at least py neighbors along dimension £.

Case 7 = yi: Each xpr and yry has exactly pp neighbors along dimension k. These
neighbors are not visited by the initial p paths because they are in a different
PTF(N) subgraph. If ziz is a neighbor of xz, for ¢+ = 1,....pg, then yly = xly is
also neighbor of y,y, they are both in the same PT}(N) subgraph, and no other
neighbor is in that subgraph. One path can be found, then, along this subgraph
between ziz and z'y, for i = 1,..., pg, and therefore p; new paths can be obtained
between x,x and yry. Then, the total number of paths obtained is p 4+ p. and the
claim follows.

Appendix

Proof of Theorem 7.1

Clearly, m is an upper bound on the number of vertex-disjoint paths. We need to show
that it is also a lower bound, by showing how to find m such paths. For this proof
we define the concepts of “use of a tree” and “visit of a tree.” By “use”, we mean the
traversal of at least one edge in the tree. By “visit”, we mean the traversal of at least
one node in the tree. Clearly, the use of a tree implies a visit of the tree, whereas a visit
of a tree may not use the tree (i.e. if no edges are traversed.)

Briefly, we obtain the paths in two phases. Initially, we obtain as many vertex-disjoint
shortest paths between the nodes as possible. Then, we obtain the rest of the paths by
determining routes between neighbors of the nodes not traversed by the previous paths,
along trees not previously visited. This guarantees the vertex disjointness of the paths.

The proot proceeds by induction on the number of dimensions. We start by estab-
lishing the base case for 2 dimensions. We use a case-by-case study to construct the
appropriate number of paths and show that the claim is true for two dimensions.

For the induction hypothesis, we assume p paths for the PT;_1(/N) subgraph obtained
by taking only k& — 1 dimensions, where p is consistent with the claims of the theorem.
For the inductive step we add another dimension and we restrict our attention to the
newly added dimension, while treating the rest of the graph as a unit. We show, once
again by construction, that an appropriate number of paths, as suggested by the various
individual cases, is added as a result of introducing the new dimension.

Along the proof we use ¢, to represent the vertex degree of a generic vertex x, while
6., refers to the degree of the vertex z along dimension 7. In addition, we use the notation
x! to denote the jth neighbor of z along dimension .

Then, we start by considering the case for r = 2. The claim for N = 3 is trivially
true and N > 3 will be assumed. Let © = @321 and y = y2y1 be two vertices of PTy(N),

T £ y.

Case 1 = y1: The first path is obtained by just noting that = and y are in the same
dimension-2 tree and that a path can be found in this tree.

Another set of paths is derived from the fact that each of @ and y has exactly
;= 6y = 0, neighbors along dimension 1 and each of these neighbors is in a

101

BIBLIOGRAPHY 100
[86] A. Youssef, “Cartesian Product Networks,” in Proceedings of the 1991 International
Conference on Parallel Processing, vol. 1, pp. 684685, Aug. 1991.

[87] M. Zubair and S. N. Gupta, “Embeddings on a Boolean Cube,” BIT, vol. 30, pp. 245~
256, 1990.

BIBLIOGRAPHY 99

73]

[81]

[82]

[83]

[84]

[85]

D. D. Sherlekar and J. JaJa, “Embedding Graphs in Binary Trees,” in Computing
and Information: Proceedings of the International Conference on Computing and
Information, ICCI'89 (R. Janichi and W. W. Kczkodaj, eds.), (Toronto, Canada),
pp. 111-115, Elsevier Science Publisher B. V. (North-Holland), May 1989.

Y. Shiloach and U. Vishkin, “An O(log n) Parallel Connectivity Algorithm,” Journal
of Algorithms, vol. 3, pp. 5767, 1982.

H. Stone, “Parallel Processing with the Perfect Shuffle,” IEFEE Transactions on
Computers, vol. C-20, pp. 153-161, Feb. 1971.

0. Sykora and I. Vrfo, “On the Crossing Number of the Hypercube and the Cube
Connected Cycles,” in Proceedings of 17th International Workshop, WG'91, Graph-
Theoretic Concepts in Computer Science (G. Schmidt and R. Berghammer, eds.),
vol. 570 of Lecture Notes in Computer Science, pp. 214218, Fischbachau, Germany:
Springer Verlag, June 1991.

C. D. Thompson, “Area-Time Complexity for VLSI.,” in Proceedings of the 11th
Annual ACM Symposium on Theory of Computing, (Atlanta), pp. 81-88, May 1979.

C. D. Thompson, A Complexity Theory for VLSI. PhD thesis, Carnegie-Mellon
University, Aug. 1980.

C. D. Thompson and H. T. Kung, “Sorting on a Mesh-Connected Parallel Com-
puter,” Communications ACM, vol. 20, pp. 263271, Apr. 1977.

J. D. Ullman, Computational Aspects of VLSI. Rockville: Computer Science Press,
1984.

L. G. Valiant, “Universality Considerations in VLSI Circuits,” IFEE Transactions
on Computers, vol. C-30, pp. 135-140, Feb. 1981.

P. M. Weichsel, “Products of Highly Regular Graphs,” in Progress in Graph Theory
(J. A. Bondy and U. S. R. Murty, eds.), Ontario: Academic Press, 1984.

M. Yoeli, “Binary Ring Sequences,” Amer. Math. Monthly, vol. 69, pp. 852-855,
1962.

A. S. Youssef and B. Narahari, “The Banyan-Hypercube Networks,” I[EEE Trans-
actions on Parallel and Distributed Systems, vol. 1, pp. 160-169, 1990.

A. Youssef, “Product Networks: A Unified Theory of Fixed Interconnection Net-
works,” Tech. Rep. GWU-IIST-90-38, Institute for Information Science and Tech-
nology, The George Washington University, Washington, D.C., Dec. 1990.

BIBLIOGRAPHY 98

[60]

[61]

[62]

[63]

[64]

[65]

[66]

N. Ranganathan and S. Venugopal, “An Efficient VLSI Architecture for Template
Matching,” in Proceedings of the 1994 International Conference on Parallel Process-
ing, vol. I, (St. Charles, 1), pp. 224-231, CRC Press Inc., Aug. 1994.

A. L. Rosenberg, “Product-Shuffle Networks: Toward Reconciling Shuffles and But-
terflies,” Discrete Applied Mathematics, vol. 37/38, pp. 465488, July 1992.

Y. Saad and M. H. Schultz, “Topological Properties of Hypercubes,” I[EEE Trans-
actions on Computers, vol. 37, no. 7, pp. 867-872, 1988.

G. Sabidussi, “Graphs with Given Group and Given Graph-Theoretical Properties,”
Canadian Journal of Mathematics, vol. 9, pp. 515-525, 1957.

G. Sabidussi, “Graph Multiplication,” Math. Zeitschr., vol. 72, no. 5, pp. 446-457,
1960.

K. Sado and Y. Agarasi, “Some Parallel Sorts on a Mesh-Connected Processor Array
and their Time Efficiency,” Journal of Parallel and Distributed Computing, vol. 3,
pp. 398-410, Sept. 1986.

I. Scherson, S. Sen, and A. Shamir, “Shear-Sort: A True Two-Dimensional Sort-
ing Technique for VLSI Networks,” in Proceedings of the IEEE-ACM International
Conference on Parallel Processing, pp. 903-908, Aug. 1986.

C. P. Schnorr and A. Shamir, “An Optimal Sorting Algorithm for Mesh Connected
Computers,” in Proceedings of the 18th Annual ACM Symposium on Theory of Com-
puting, (Berkeley, CA), pp. 255-263, May 1986.

E. J. Schwabe, “Embedding Meshes of Trees into deBruijn Graphs,” Information
Processing Letters, vol. 43, pp. 237-240, 1992.

H. S. Shapiro, “The Embedding of Graphs in Cubes and the Design of Sequential
Relay Circuits,” unplublished Bell Telephone Laboratories Memorandum, July 1953.

D. D. Sherlekar and J. JaJ4, “Layouts of Graphs of Arbitrary Degree,” in Proceedings
of the 25th Annual Allerton Conference, Sept. 1987.

D. D. Sherlekar and J. JaJa, “Balanced Graph Dissections and Layouts for Hierar-
chical VLSI Layout Design,” Tech. Rep. CSE-TR-22-89, Department of Electrical
Engineering and Computer Sciente, University of Michigan, Ann Arbor, 1989.

D. D. Sherlekar and J. JaJa, “Input Sensitive VLSI Layouts for Graphs of Arbitrary
Degree.” in Proceedings of the 3rd Aegean Workshop on Computing, AWOC 88:
VLSI Algorithms and Architectures (J. H. Reif, ed.), vol. 319 of Lecture Notes in
Computer Science, pp. 268-277, Corfu, Greece: Springer Verlag, July 1988.

BIBLIOGRAPHY 97

[48]

[49]

[50]

[51]

[52]

[54]

[55]

[58]

[59]

K. J. Liszka and K. E. Batcher, “A Generalized Bitonic Sorting Network,” in Proceed-
ings of the 1993 International Conference on Parallel Processing, vol. I, pp. 105-108,
1993.

T. Nakatani, 5.-T. Huang, B. W. Arden, and 5. K. Tripathi, “/A-Way Bitonic Sort,”
IEEFE Transactions on Computers, vol. 38, pp. 283-288, Feb. 1989.

D. Nassimi and S. Sahni, “Bitonic Sort on a Mesh-Connected Parallel Computer,”
IEEFE Transactions on Computers, vol. C-27, pp. 2-7, Jan. 1979.

D. Nath, S. N. Maheshwari, and P. C. P. Bhatt, “Efficient VL.SI Networks for Parallel
Processing Based on Orthogonal Trees,” IEFE Transactions on Computers, vol. C-

32, pp. H569-581, June 1983.

J. Nesetfil and V. Rodl, “Products of Graphs and Their Applications,” in Proceedings
of Graph Theory, Lagow 1981 (M. Borowiecki, J. W. Kennedy, and M. M. Syslo,
eds.), vol. 1018 of Lecture Notes in Mathematics, pp. 151-160, Lagéw: Springer
Verlag, 1981.

S. R. (“)hring and S. K. Das, “The Folded Petersen Cube Networks: New Competitors
for the Hypercube,” in Proceedings of the 5th IEEFE Symposium on Parallel and
Distributed Computing, pp. 582-589, Dec. 1993.

S. R. Ohring and S. K. Das, “The Folded Petersen Network: A New Communication-
Efficient Multiprocessor Topology,” in Proceedings of the 1993 International Con-
ference on Parallel Processing, vol. I, pp. 311-314, Aug. 1993.

S. R. Ohring and S. K. Das, “Mapping Dynamic Data and Algorithm Structures
into Product Networks,” in Proceedings of ISAAC’93, (Hong Kong), pp. 147-156,
Dec. 1993.

S. R. (“)hring and D. H. Hohndel, “Optimal Fault-Tolerant Communication Algo-
rithms on Product Networks using Spanning Trees,” in Proceedings of the 6th I[FEFE
Symposium on Parallel and Distributed Processing, (Dallas, TX), Oct. 1994.

R. B. Panwar and L. M. Patnaik, “Solution of Linear Fquations on Shuffle-Fxchange
and Modified Shuffle Exchange Networks,” in Proceedings of the 26th Allerton Con-
ference, pp. 1116-1125, 1988.

F. Preparata and J. Vuillemin, “Area-optimal VLSI Network for Matrix Multiplica-
tion,” in Proceedings of the 14th Princeton Conference on Information Science and

Systems, pp. 300-309, 1980.

F. Preparata and J. Vuillemin, “The Cube-Connected Cycles: A Versatile Network
for Parallel Computation,” Communications ACM, vol. 24, pp. 300-309, May 1981.

BIBLIOGRAPHY 96

[34]

[35]

[36]

38]

[39]

[40]

[41]

[42]

[43]

P. C. Kainen, “A Lower Bound for Crossing Numbers of Graphs with Applications
to K., K,,, and Q(d),” Journal of Combinatorial Theory, vol. 12, pp. 287-298,
1972.

D. J. Kleitman, “The Crossing Number of K5 ,.” Journal of Combinatorial Theory,
vol. 9, pp. 315-323, 1971.

D. Knuth, Searching and Sorting, vol. 3 of The Art of Computer Programming.
Reading, MA: Addison-Wesley, 1973.

R. Koch, T. Leighton, B. Maggs, S. Rao, and A. L. Rosenberg, “Work-Preserving
Emulations of Fixed-Connection Networks,” in Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, (Seattle), pp. 227-240, May 1989.

D.-L. Lee and K. E. Batcher, “On Sorting Multiple Bitonic Sequences,” in Pro-
ceedings of the 1994 International Conference on Parallel Processing, vol. I, (St.
Charles,IL), pp. 121-125, Aug. 1994.

F. T. Leighton, “New Lower Bound Techniques for VLSL.” in Proceedings of the
22nd Annual Symposium on Foundations of Computer Science, pp. 1-12, 1981.

F. T. Leighton, “A Layout Strategy for VLSI Which Is Provably Good,” in Proceed-
ings of the 14th Annual ACM Symposium on Theory of Computing, (San Francisco,
CA), pp. 85-98, May 1982.

F. T. Leighton, Complezity Issues in VLSI. Cambridge: The MIT Press, 1983.

F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
and Hypercubes. San Mateo: Morgan Kaufmann, 1992.

C. E. Leiserson, “Area-Efficient graph Layout (for VLSI),” in Proceedings of the 21st
Annual Symposium on Foundations of Computer Science, pp. 270-281, Oct. 1980.

C. E. Leiserson, Area-Efficient VLSI Computation. PhD thesis, Carnegie-Mellon
University, 1981. The MIT Press, 1983.

E. L. Leiss and H. N. Reddy, “Embedding Complete Binary Trees into Hypercubes,”
Information Processing Letters, vol. 38, pp. 197-199, 1991.

R. J. Lipton and R. E. Tarjan, “A Separator Theorem for Planar Graphs,” SIAM
Journal on Applied Mathematics, vol. 36, pp. 177-189, Apr. 1979.

R. J. Lipton and R. E. Tarjan, “Applications of a Planar Separator Theorem,” STAM
Journal on Computing, vol. 9, pp. 615-627, Aug. 1980.

BIBLIOGRAPHY 95

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

30]

31]

32]

33]

K. Efe, “Embedding Mesh of Trees in the Hypercube,” Journal of Parallel and
Distributed Computing, vol. 11, pp. 222-230, Mar. 1991.

K. Efe and K. Ramaiyer, “Congestion and Fault Tolerance of Binary Tree Embed-
dings on Hypercube,” in Proceedings of the 5th International Parallel Processing
Symposium, (Anaheim, CA), pp. 458-463, May 1991.

T. El-Ghazawi and A. Youssef, “A Unified Approach to Fault-Tolerant Routing,” in
Proceedings of the 12th International Conference on Distributed Computing Systems,
(Yokohama, Japan), pp. 210-217, June 1992.

R. Feldmann and P. Mysliwietz, “The Shuffle Exchange Network has a Hamiltonian
Path,” in Proceedings of Mathematical Foundations of Computer Science, pp. 246—
254, 1992.

J. P. Fishburn and R. A. Finkel, “Quotient Networks,” I[FFE Transactions on Com-
puters, vol. 31, pp. 288-295, Apr. 1982.

R. W. Floyd and J. D. Ullman, “The Compilation of Regular Expressions into
Integrated Circuits,” J. ACM, vol. 29, pp. 603-622, July 1982.

E. Ganesan and D. K. Pradhan, “The Hyper-deBruijn Networks: Scalable Versa-
tile Architecture,” IEFE Transactions on Parallel and Distributed Systems, vol. 4,
pp. 962-978, Sept. 1993.

D. Greenberg, L. Heath, and A. L. Rosenberg, “Optimal Embeddings of Butterfly-
like Graphs in the Hypercube,” Mathematical Systems Theory, vol. 23, no. 1, pp. 61—
77, 1990.

F. Harary, “On the Group of the Composition of Two Graphs,” Duke Mathematical
Journal, vol. 26, pp. 29-34, Mar. 1959.

I. Havel and P. Liebl, “Embedding the Polytomic Tree into the n-cube,” Casopis
pro Péstovan « Matematiky, vol. 98, pp. 307-314, 1973.

R. Heckmann, R. Klasing, B. Monien, and W. Unger, “Optimal Embeddings of
Complete Binary trees into Lines and Grids,” in Proceedings of 17th International
Workshop, WG'91, Graph-Theoretic Concepts in Computer Science (G. Schmidt and
R. Berghammer, eds.), vol. 570 of Lecture Notes in Computer Science, pp. 25-35,
Fischbachau, Germany: Springer Verlag, June 1991.

D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate, “Computing Connected Com-
ponents on Parallel Computers,” Communications ACM, vol. 22, pp. 461-464, Aug.
1979.

BIBLIOGRAPHY 94

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

S. N. Bhatt and C. E. Leiserson, “Minimizing Wire Delay in VLSI Layouts,” MIT
VLSI memo 82-86, 1982.

L. Bhuyan and D. P. Agrawal, “Generalized Hypercubes and Hyperbus Structures
for a Computer Network,” I[EEE Transactions on Computers, vol. C-33, pp. 323-333,
1984.

M. Y. Chan, F. Y. L. Chin, and C. K. Poon, “Optimal Specified Root Embedding
of Full Binary Trees in Faulty Hypercubes,” in Proceedings of the 2nd International
Symposium on Algorithms (W. L. Hsu and R. C. T. Lee, eds.), vol. 557 of Lecture

Notes in Computer Science, pp. 241-250, Taipei, R.O.C.: Springer Verlag, Dec.
1991.

M. Y. Chan and S.-J. Lee, “Fault-Tolerant Embedding of Complete Binary Trees
in Hypercubes,” IEEE Transactions on Parallel and Distributed Systems, vol. 4,
pp- 277-288, Mar. 1993.

P. 7. Chinn, J. Chvatalova, A. K. Dewdney, and N. E. Gibbs, “The Bandwidth Prob-
lem for Graphs and Matrices-A Survey,” Journal of Graph Theory, vol. 6, pp. 223—
254, 1982.

F. R. K. Chung, “Labelings of Graphs,” in Selected Topics in Graph Theory 3 (L. W.
Beineke and R. J. Wilson, eds.), pp. 151-168, Academic Press, 1988.

J. Chvatalova, “Optimal Labelling of a Product of Two Paths,” Discrete Mathemat-
ics, vol. 11, pp. 249-253, 1975.

O. Collins, S. Dolinar, R. McEliece, and F. Pollara, “A VLSI Decomposition of the
deBruijn Graph,” J. ACM, vol. 39, pp. 931-948, Oct. 1992.

R. Cypher and C. G. Plaxton, “Deterministic Sorting in Nearly Logarithmic Time
on the Hypercube and Related Computers,” in Proceedings of the 22nd Annual
ACM Symposium on Theory of Computing, (Baltimore, Maryland), pp. 193-203,
May 1990.

S. K. Das and A. K. Banerjee, “Hyper Petersen Networks: Yet Another Hypercube-
Like Topology,” in Proceedings of the Jth Symposium on the Frontiers of Massively
Parallel Computation, (McLean, VA), pp. 270-277, Computer Society Press, Oct.
1992.

A. M. Despain and D. A. Patterson, “X-Tree: A Tree Structured Multi-Processor
Computer Architecture,” in Proceedings of the 5th Annual Symposium on Computer
Architecture, pp. 144-151, 1978.

Bibliography

1]

F. Annexstein, M. Baumslag, and A. L. Rosenberg, “Group Action Graphs and
Parallel Architectures,” SIAM Journal on Computing, vol. 19, pp. 544-569, June
1990.

K. Batcher, “Sorting Networks and their Applications,” in Proceedings of the AFIPS
Spring Joint Computing Conference, vol. 32, pp. 307-314, 1968.

K. E. Batcher, “On Bitonic Sorting Networks,” in Proceedings of the 1990 Interna-
tional Conference on Parallel Processing, vol. I, pp. 376-379, 1990.

M. Baumslag and F. Annexstein, “A Unified Framework for Off-Line Permutation
Routing in Parallel Networks,” Math. Systems Theory, vol. 24, no. 4, pp. 233-251,
1991.

S. N. Bhatt, F. R. K. Chung, J. W. Hong, F. T. Leighton, and A. L. Rosenberg,
“Optimal Simulations by Butterfly Networks,” in Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, (Chicago), pp. 192-204, May 1988.

S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, “Optimal Simu-
lations of Tree Machines,” in Proceedings of 27th Annual Symposium on Foundations
of Computer Science, pp. 274-282, Oct. 1986.

S. N. Bhatt, F. R. K. Chung, J.-W. Hong, F. T. Leighton, B. Obreni¢, A. L.
Rosenberg, and E. J. Schwabe, “Optimal Emulations by Butterfly-Like Networks,”
J. ACM, 1994. to appear.

S. N. Bhatt and 1. C. F. Ipsen, “How to Embed Trees in Hypercubes,” Tech. Rep.
RR-443, Department of Computer Science, Yale University, New Haven, CT, 1985.

S. N. Bhatt and F. T. Leighton, “A Framework for Solving VLSI Graph Layout
Problems.” Journal of Computer and System Sciences, vol. 28, pp. 300-343, 1984.

S. N. Bhatt and C. E. Leiserson, “How to Assemble Tree Machines,” in Proceedings
of the 14th Annual ACM Symposium on Theory of Computing, (San Francisco, CA),
pp. 77-84, May 1982.

93

CHAPTER 8. CONCLUSIONS 92

lay out these networks in such a way that, in many cases, the layout is optimal in
area and almost optimal in wire length.

e We have exhaustively applied all the above results to several specific instances of
product networks, as a proof of the power of the approach. Then we have con-
centrated in three specific networks and we have been able to show, among other
properties, that these product networks are more powerful than their respective
factor graphs, with a small increase in cost. The emulation capabilities of these
networks present them as important candidates for popular interconnection net-
works.

As a conclusion, we have been able to create a basic framework for a general theory
where existing and new homogeneous product networks can be evaluated. Observe that
we have reached generality without losing efficiency. The methods to obtain VLSI layouts
for the networks, besides their generality, produce very efficient layout in most of the
cases (layouts optimal in area and almost optimal in wire length.) Similarly, the sorting
algorithm developed has optimal complexity in a bounded-dimension grid and has the
same complexity as the most popular sorting algorithm in the hypercube.

Like any research of this generality, there is room for extensions. More results on other
structural properties of homogeneous product networks can be derived. Even our bounds
on the bisection width and the crossing number can be made tighter. For instance, it is
not known the exact value of the bisection width of such a simple product network as
the N"-node r-dimensional grid when N is odd [42].

Many new general algorithms can be developed for homogeneous product networks.
Specifically, because we have assumed a SIMD model of computation, we have only briefly
addressed the routing problems in homogeneous product networks (sections 1.1 and 5.2.)
However, it a MIMD model is assumed, many new routing problems arise which can be
addressed using the proposed framework. For instance, it seems to be very interesting to
obtain a general wormhole-routing algorithm for homogeneous product networks.

Finally, since general product networks need not be built with the same factor graph
in each dimension, it is necessary to extend all the investigations conducted and the open
problems presented to heterogeneous product networks. For instance, at the end of Sec-
tion 6.4 we briefly outlined how the results obtained in VLSI complexity for homogeneous
product networks could be extended to heterogeneous product networks.

Chapter 8

Conclusions

The main contribution of the dissertation described in this prospectus is to conduct an
exhaustive study of homogeneous product networks as interconnection networks. To our
knowledge, this is the first study of this kind realized. This study is useful given the
number of product networks already proposed in the literature. This study can also be
used to evaluate properties of new interconnection networks for parallel architectures.

The comprehensive investigation of homogeneous product networks has been devel-
oped along several lines:

We have obtained general results on the structural properties of product networks.
We have presented important characteristics like the vertex degree, the diameter,
the partitionability, and the connectivity. We specially emphasize the results on
the bisection width and the crossing number, since they are not easily derived from
same properties of the factor graph. To obtain these properties we have defined
a new parameter of a graph, the maximal congestion, which we believe will be
important in future research.

We have obtained several general embedding properties, applicable to any product
network. The combination of these properties with embeddings between factor
graphs allows to obtain important embedding results for product networks, as has
been seen in the presented examples. These results will allow to meaningfully
compare the relative powers of product networks.

We have produced general algorithms whose performance is optimal for some in-
stances of product networks. The algorithms developed allow to sort, compute
summations, multiply matrices, and find the minimum-weight spanning tree of a
graph in homogeneous product networks. Other algorithms with similar structure
are simply derived from the ones presented.

We have obtained lower bounds on the VLSI layout area and wire length required by
homogeneous product networks. We have also developed procedures to effectively

91

CHAPTER 7. INTERESTING PRODUCT NETWORKS 90

our networks emulate the grid efficiently while they require logarithmic dilation to host
it. Observe again that the cost in layout area of the additional power is not high if we
bound the number of dimensions.

Therefore, depending on the specific purpose of the network we offer three interesting
candidates with bounded degree. If still more computational power is needed, it might be
necessary to use higher-cost networks with unbounded vertex degree, like the hypercube.

CHAPTER 7. INTERESTING PRODUCT NETWORKS 89

| [P [PSOV [POV]
PR,(N) d=3,¢=2| d=3,¢=2 Subgraph
PL,.(N) d=3,c=2]| Subgraph Subgraph
M.o.T. Subgraph d=2,¢c=2 Subgraph
C.B.T. Subgraph d=2,¢c=2 Subgraph
S(NT) - d=2r,c=2|d=4r,c=1
D(N") - d=2r,c=8| d=r,c=1
PT.(N —1) N/A d=2¢=2 Subgraph
PS.(N) - N/A d=2,c=2
PD,.(N) - d=2,c=2 N/A

Table 7.2: Embedding capabilities of the product of complete binary trees, shuffle-
exchange, and de Bruijn graphs.

From the figures in Table 7.1 we can see that all the three networks present interesting
properties. Their diameter is logarithmic with respect to the number of nodes, they have
large bisection width, and rather large connectivity if r is large. Also, all of them perform
very efficiently the algorithms presented. Finally, the layout area required for them is
reasonably small. The product of complete binary trees has same asymptotic layout
area as the mesh of trees, while we have shown that the former is more powerful. The
other two networks have similar asymptotic layout area than their factor networks if r is
bounded, while we proved that they are more powerful.

However, the real power of the networks presented comes from their embedding capa-
bilities. The product of complete binary trees (and its extension) can efficiently emulate
the torus, the mesh of trees, and the complete binary tree. Any embedding of the n-node
mesh of trees into the similar-size grid requires Q(n/log n) dilation, given their respective
diameters, while no efficient emulations of the grid by the mesh of trees is known. Thus,
the PT,(N) network (and specially the P X, (N) network) seems more powerful than both
these networks, and the logical option if we need a network with the capabilities of the
grid and the mesh of trees. If we add to this that the network has the same layout area
complexity as the mesh of trees and, for more than 2 dimensions, than the grid, it looks
like a clear substitute to them.

Now, if further computational power is needed, we can use the products of shuffle-
exchange or de Bruijn graphs. By emulation, these networks give us the power of the
PT,.(N) network plus the power of hypercube-derived networks. This fact will speed up
some computations not suited to be performed neither on the grid nor on the mesh of trees
(for instance, sorting) but which are very efficiently performed in a hypercube-derived
network. Another advantage of these networks over the traditional hypercube-derived
networks used (pure shuffle-exchange, de Bruijn, butterfly, cube-connected cycles) is that

CHAPTER 7. INTERESTING PRODUCT NETWORKS

88

‘ Property /algorithm ‘ PT,.(N) PS.(N) PD,.(N) ‘
Nodes N7 N7 N7
Edges r(N —1)N"1 3rN" /2 2rN”
Diameter 2r(log(N +1) — 1) r(2log N — 1) rlog N
Connectivity r r 2r
o r 3r 4y
A 3r 3r 4y
Partitionability 201 =0,...,log(N + 1) - -
Maximal congestion (NT‘H) O(N"log N) O(N"log N)
Bisection width O(N™ O(N"/log N) | ©O(N"/log N)
Crossing number Q(N2-1) Q(N? /log” N) | Q(N* /log® N)
Sorting O(r*N) O(r?log” N) O(r?log” N)
Summation O(rlog N) O(rlog N) O(rlog N)
Matrix multiplication O(rlog N) O(rlog N) O(rlog N)
Min.-weight span. tree O(r?log” N) O(r?log” N) O(r?log” N)
Layout area O(N2=) (for r > 2) | O(N?/log> N) | ©O(N?"/log® N)
Max. wire length O(N™1Y) (for r > 2) O(N"[log N) | O(N"/log N)

Table 7.1: Comparison of the properties of the product of complete binary trees, shuffle-
exchange, and de Bruijn graphs.

CHAPTER 7. INTERESTING PRODUCT NETWORKS 87

Therefore, the first and last edges of the paths are traversed by two of the four paths
and the internal edges of the paths are traversed by the four paths. Since the edges
traversed by these four paths are not traversed by any other path, we can conclude that
the congestion of the embedding is at most four. Since for r = 2 the paths have length
2 and have no internal edges, the congestion in this case is only 2. |

It has been shown in [26] that D(2*) can host D(2¥7) with unit dilation cost. In
the resultant emulation, each vertex of D(2F) is assigned exactly 2’ nodes (the load of
the embedding.) The proof is based on the observation that, by erasing the rightmost j
bits from vertex labels of D(2¥+7), we obtain a graph isomorphic to D(2%). By the same
observation, the following results can be stated.

Corollary 7.3 D(N"*7) can be embedded onto PD,(N) with dilation r, congestion § (2
if r =2), and load N7.

And moreover,

Corollary 7.4 PD,(N2*) can be embedded onto PD,(N) with unit dilation, unit con-
gestion, and load 27" .

Therefore, for fixed r, a small size PD,(N) architecture can easily emulate larger size
machines with proportional slowdown in the running time.

Finally, the next result shows that products of de Bruijn graphs are more powertul
than the pure de Bruijn graphs (this is an extension of a similar result in [61] given for
two dimensions.)

Theorem 7.13 Any embedding of PD,(N) onto D(N") requires dilation Q(log(rlog N)).

Proof: From Corollary 4.4, we know that the grid PL,(N) is a subgraph of PD,(N). It
is shown in [7] that any embedding of PL,(N), for r > 1, onto D(N") requires dilation
cost Q(loglog N"). Hence, the claim follows. |

Like the PS,(N) network, the VLSI layout area required by PD,(N) is asymptotically
the same as that required by D(N") if r is bounded. The increase in power comes at
reasonable cost.

7.4 Discussions and Conclusions

In this chapter we have completed the study in depth of three new homogeneous product
networks. In Table 7.1 we have compiled their structural and VLSI complexity properties,
as well as the time complexity of running the algorithms presented for homogeneous
product networks.

CHAPTER 7. INTERESTING PRODUCT NETWORKS 86

Proof: The case for r = 2 was shown in [61]. For higher dimensions, since PD,(N) =
D(N) ® PD,_{(N), a vertex of PD,(N) can be written as v = tp_1Un—g...%(r—1)n| 5",
where S is a vertex in PD,_1(N). For the discussion below, we are only interested in
the leftmost bit in 57, so we can write it as S’ = s5. That is,

U = Upp—1 Upp—z.--U(r—1)n |55

In D(N"), the outgoing edges are to

v = urn—?---u(r—l)n5|5urn—1

and
W = Upp—2. U(r 1) S| U1

For PD,(N), u has two neighbors at the highest dimension, @ and y, where

L = Uppn—2.---U(r_1)nlUrn-1 |SS

and

Yy = urn—?---u(r—l)nﬂrn—l |SS

Let x; denote the leftmost (log V)-bit substring of x (i.e. the part to the left of “|”.)
Then, observe that

oy = 0y = xp i Uy = s,
y, otherwise

This means that, by following one of the outgoing edges from w at the highest di-
mension, we correct the leftmost log N bits of the address towards v. Since the next set
of log N bits can be corrected by the same method as above, r — 1 additional steps are
needed to reach v.

We can study now the congestion of the embedding. Note that the first edge of the
path from u to v and the first edge of the path from u to w are the same, since depending
on s the correction of the leftmost log N bits of u takes both paths to either x or y.
Furthermore, the paths from u to v and form u to w share all the edges but the last one,
where the rightmost log N bits are corrected.

Similarly, there exist edges in D(N") from the node

u' = HTn—luTn—Q---u(7°—1)n|35

to v and w. The paths in PD,(N) from ' to v and from u' to w have a common first
edge, that depending on s takes the paths to either x or y. From there they share all the
edges but the last one. The paths from u to v and from v’ to v share all the edges but
the first one, and same thing happens with the paths from u to w and from v to w.

CHAPTER 7. INTERESTING PRODUCT NETWORKS 85

Proof: The proof is very simple. It has been shown in [7] that any embedding of the grid
PL.(N), for r > 1, into the similar-size shuffle-exchange requires dilation Q(loglog N").
Since this grid is a subgraph of PS,(N), the claim follows. |

The results presented for PS,(/N) show that the network is more powerful than its
factor network. Observe that, if the number of dimensions is bounded, their VLSI layout
area complexity is asymptotically the same.

7.3 Products of de Bruijn Graphs

We finally study in this section the product of de Bruijn graphs, denoted PD,(N). Com-
paring to the product networks in the previous sections, the vertex degree of this network
increases by 25%, while PD,(N) has better properties in other respects. Diameter re-
duces by 50%, and the minimum number of parallel paths between an arbitrary pair of
vertices doubles. It also has better embedding properties as is shown below.

It is well known that shuffle-exchange and de Bruijn networks are computationally
equivalent. That is, every computation which can be performed on one of them, can be
also performed on the other with constant slowdown. We presented in Corollary 4.6 that
this is also true for their respective product versions. However, PD,(N) presents better
dilation and congestion in most of the embeddings.

We first present a whole family of tori as subgraphs of PD,(N).

Theorem 7.11 For all k < N, PR, (k) is a subgraph of PD,(N).

Proof: Due to Theorem 4.1, it suffices to note that the de Bruijn network is pancyclic
[83], i.e. for every value of k < N, D(N) contains a cycle of length k. |

In Section 4.2 we have presented the fact that PT,(N) is a subgraph of PD,(N).
Therefore, the following corollary is immediate.

Corollary 7.2 The r-dimensional mesh of (N — 1)-node trees is a subgraph of PD,(N).

Observe that this embedding is much better than the embedding of the 2-dimensional
mesh of trees into the pure de Bruijn graph presented in [68], which presents dilation of
2, congestion of 8, and load of 2.

The next two results show that PD,(N) is more powerful than the de Bruijn graph
D(N").

Theorem 7.12 D(N") can be embedded onto PD,(N) with dilation r, and congestion 2
when r = 2, or congestion 4 when r > 2.

CHAPTER 7. INTERESTING PRODUCT NETWORKS 84

above.) Then, observe that

xj otherwise

oy = {) if wppoy = s,
That is, 2° is at a distance of two from u, and going from u to =® corrects just the leftmost
log N bits of the address towards v. Since the next set of log NV bits can be corrected by
the same method as above, 2(r — 1) additional steps are needed to reach v.
To study the congestion of the described embedding we take two vertices of S(N"),
where the leftmost log N bits and the rightmost log N bits are explicitly shown, and
S'=sS is a vertex in PS,_3(N), as

U = Uy Upp—g- - U(r—1)n| S5 [Up—1Up_z...Up

and
7 —
U = U1 Upp—z. U (r—1)n |85 [Un—1Up_a...20

whose respective shuffle neighbors are
V= U2 U(p 1) S| SUn—1 [Un—.. UoUyn—1

and
! J—
v = Uppge (1) 8| U1 [U—2 . UT -1

The paths in PS,(N) for the edges (u,v) and (u’,v") meet at the node
Upp—g-e-U(r—1)n5 |85 |Un—1Up_a...20

after the leftmost log N bits have been corrected (by traversing one or two edges, de-
pending on whether u,,_; = s.) From there, both paths share the same edges until the
node

Upp—gee-U(r 1) | SUp—1 [Un—2 .. UGUR_1

is reached. Since no other paths contain these edges the congestion in the edges traversed
until this point is at most 2.

Let assume now, without loss of generality, that u,_y = u,,—1. Then, the vertex
reached by the paths is v and the edge (u,v) has been completely mapped. The path
from ' to v’ still needs to traverse an exchange edge to invert its rightmost bit. The path
only shares this edge with the exchange edge (v,v) in S(N”) and then, the congestion
of the edge is 2.

Hence, the congestion of the embedding is 2 and the proof is complete. []

Theorem 7.10 Any embedding of PS,(N) into S(N") requires dilation Q(log(rlog N)).

CHAPTER 7. INTERESTING PRODUCT NETWORKS 83

and

5,

W’ = Ugp—2...-Upp1UpUUsn_1 |un—1un—2---u1u0

In the following discussion, subscripts “¢” and “r” are used to denote the left-hand
half of a label, and the right-hand half of a label. For example, w;“ denotes the left-hand
half of the vertex w®¢ above. There are two cases to consider:

Case 1: uy, 1 = u,_;. In this case the reader can easily verify that v = w;|w?".
This means that one can go from u to v in PSy(N) in two steps: by moving to
the shuffle neighbor of u in the column and then to the shuffle neighbor in the row.
Alternatively, one can move to the shuffle neighbor in the row first, and then in the
column.

Case 2: ug,—1 # uy—1. Then, given u and v as above, the left-hand half and the
right-hand half of v can be computed as:

s,C €,c
vy = w, + w,

and
v, = w)" Fw”

where the “47 sign denotes sequencing of the two moves. That is, w?® 4 wi°
denotes moving to the shuffle neighbor in the column, followed by moving to the
exchange neighbor in the column. Since v = v|v,, a sequence of four moves yields
the desired vertex label.

To extend these arguments for r > 2, since PS,(N) = S(N)® PS,_1(N), a vertex of
PS.(N) can be written as u = Upp_1Urp—2...t(r—1),|5’, where " is a vertex in P.S,_1(V).
For the discussion below, only the leftmost bit of 5" is relevant, so we can write S" = 9.

That is,

U = Upp—1Upp—2.--U(r—1)n|5S.

In S(N"), the shuffle neighbor is
V= Upp—z. U(r—1)7 8| SUrp—1
For the product network, u has a shuffle neighbor x°, where
T = Upp—g. o U(r—1)plrpn—1]5S
which in turn has an exchange neighbor z¢, where
25 = Upp—g.o U(r—1)nlrpn—1]5S

Let x, denote the leftmost log N-bit substring of = (i.e. the part to the left of “|”

CHAPTER 7. INTERESTING PRODUCT NETWORKS 82

shuffle-exchange graph. However the resulting embedding has larger load, dilation, and
congestion than the one presented here into PS,(N).

The next two results consider the embedding of the shuffle-exchange graph into its
product version, and the reverse embedding of the product network into the pure shuffle-
exchange graph.

Theorem 7.9 S(N") can be embedded onto PS,(N) with dilation 2r and congestion 2.

Proof: First consider the case for r = 2. Both S(N?) and PS3(N) are labeled by
(2log N)-bit strings. For the product graph, the rightmost log N bits determine the
“row address,” while the leftmost log V bits determine the “column address.” We show
that whenever (u, v) is an exchange edge in S(N?), it is also an exchange edge in PSy(N).
Alternatively, whenever (u, v) is a shuffle edge in S(N?), there is a path of length at most
4 from u to v in PSy(N).

Consider the vertex:

U = U2p-1U2p—2...Up1Unp |un—1un—2---u1u0

Here “|” separates the left-hand half of the label from the right-hand half. We use directed
edges as we did in Definition 2.10 to simplify the proof. Then, it suffices to focus on the
outgoing edges only. If v is the exchange neighbor of u in S(N?), then

V= Uz Uzp— 2w Uy U | Uy 1 U3 U Ty

In the PS3(N) graph, u has an exchange neighbor w in its row, whose address is obtained

by complementing the rightmost bit of the address. Clearly, w = v. In fact, it is true for

arbitrary r that whenever (u,v)is an exchange edge of S(NN"), it is also an exchange edge

of PS,(N). Therefore, the rest of this proof only needs to consider the shuffle edges.
Now suppose (u,v) is a shuffle edge in S(N?). If u is as above, v must be:

U= Ugp—2...Upp1UpUn- |un_2...u1u0u2n_1 .

For PS3(N), the row neighbors of u are

€,T

WO = Uy U2 Ut Uy [U1 Uy .. U T

and

5,7

w " = Up—1U2p—2...Upp1lUy |un—2---u1u0un—1

Y

where the superscripts “e, s, r” stand for “exchange,” “shuffle,” and “row,” respectively.

The column neighbors of u, indicated by the superscript “c,” are

e,Cc J—
wr = u2n—1u2n—2---un+1un|un—1un—2---u1u0

CHAPTER 7. INTERESTING PRODUCT NETWORKS 81

left subtree.]

It can be easily shown that this new product network has the same VLSI layout
complexity as the original PT,(N). Therefore it seems to be even more interesting than
the original network.

7.2 Products of Shuffle-Exchange Graphs

The second network studied in this chapter is the product of shuffle-exchange graphs,
denoted PS,(N). We have observed many interesting properties of this network. This
network seems to be more powerful than the pure shuffle-exchange graph from several
points of view. Its connectivity is larger, as well as its bisection width. This network
can emulate the grid with constant dilation, while any embedding of the grid into the
shuffle-exchange of similar size requires unbounded dilation.

Here we present several results that further show the power of this network, to finally
prove that it is even more powerful than the pure shuffle-exchange.

We first show that products of binary trees can be embedded in the products of
shuffle-exchange graphs with dilation 2 and congestion 2. While this result carries all the
embedding properties of PT,(N) to the PS,(N) graph, it may be better to find direct
embeddings for some cases. Next, it is shown that the shuffle-exchange graph S(N") can
be embedded onto PS,(N) with dilation 2r and congestion 2. For an implementation
with a fixed number of dimensions, this embedding can be considered of constant dilation,
particularly because N can grow independently from r. Moreover, it is shown that
PS,.(N) cannot be embedded onto S(N") with less than logarithmic dilation. This makes

the product network more powerful than the shuffle-exchange network itself.

Theorem 7.8 PT.(N —1) can be embedded into PS,(N) with dilation 2 and congestion
2.

Proof: Due to corollaries 4.1 and 4.2, it suffices to show that T (N —1) can be embedded

into S(N) with dilation 2 and congestion 2. The labeling of the complete binary tree
described in Definition 2.8 and Figure 2.5 induces the desired embedding. |

The following result is now immediately observed.

Corollary 7.1 As in Theorem 7.3, a hierarchy of meshes of trees can be embedded into
PS.(N) with dilation 2 and congestion 2.

There are known efficient embeddings of the 2-dimensional mesh of trees into the
shuffle exchange, since we can apply the embedding of the mesh of trees into the de
Bruijn graph presented by Schwabe [68] and then embed the de Bruijn graph onto the

CHAPTER 7. INTERESTING PRODUCT NETWORKS 80

Figure 7.3: Extending the complete binary tree by connecting the leaves.

Finally, we present a simple but very interesting extension of the PT,.(N) network
which contains the torus as a subgraph.

Consider connecting the leaves of the complete binary tree as shown in Figure 7.3.
We denote the resulting graph as X (N) which is a subgraph of the X-tree graph [21].
In a modular implementation, all the nodes of a tree could be designed with the same
number of I/O channels, and the unused channels at the leaves could be used to connect
the leaves in this fashion. Moreover, the extra channels at the roots can be used for I/O
with the external world.

If we construct the product of these trees, denoted PX,(N), the resulting network
has the power of the PT,(N). The next result shows that it also contains the torus (and
hence the grid) as a subgraph.

Theorem 7.7 PX,(N) contains PR,(N) as a subgraph.

Proof: We show that X(N) contains a hamiltonian cycle. The claim then directly
follows from Theorem 4.1.
We first show that X(N) contains the following hamiltonian paths

LL-path: A path from the leftmost leaf to the rightmost leaf.
LR-path: A path from the leftmost leaf to the root.

Note that X(N) is symmetric and a LR-path can be converted into a path from the
rightmost leaf to the root (symmetric LR-path.)

We proceed by induction on the number of levels in X(N). If we have two levels,
X(3) is just a triangle and the above paths are contained in it. Therefore assume that
these paths exist in the h-level tree, X (2" — 1), where h > 1.

The LL-path for the (h + 1)-level tree X (2"+! — 1) is obtained as the LR-path in the
left subtree of the root, followed by the root, followed by the symmetric LR-path in the
right subtree.

The LR-path for the (h + 1)-level tree X (2"+! — 1) is obtained as the LL-path in the
left subtree of the root, followed by the LR-path in the right subtree, followed by the
root.

The hamiltonian cycle for any tree X (V) is, then, obtained as the LR-path in the
right subtree of the root, followed by the root, followed by the symmetric LR-path in the

CHAPTER 7. INTERESTING PRODUCT NETWORKS 79

dilation and constant congestion. The following theorem presents this fact (the proof can
be found in the Appendix.)

Theorem 7.5 The complete binary tree of rlog(N+1) — | Z] levels can be embedded into
PT.(N), where N > 3, with dilation 3 and congestion 3.

The complete binary tree that the above theorem embeds in PT,(N) is the largest
possible for r < 3 and very close to the largest (when not the largest) for small values of
r. For instance, PTy(7) has enough nodes to contain a 25-level complete binary tree and
the above theorem embeds a 23-level tree into it.

The case N = 3 is not considered in Theorem 7.5 although it is specially interesting
because PT,(3) is isomorphic to the grid PL,(3). Theorem 7.4 allows to obtain a complete
binary tree subgraph of PT,(3) that is the largest possible for » < 3. For larger values
of r it is possible to apply an approach similar to the one used in Theorem 7.5.

Observe that, if the number of dimensions is bounded, the above embeddings have
bounded expansion.

The next result shows that complete binary tree cannot emulate its comparable-size
product network with less than logarithmic dilation.

Theorem 7.6 Any embedding of PT,(N) into the large-enough complete binary tree re-
quires dilation Q(log(rloglog N)).

Proof: To prove the claim we show that PT,(N) contains a subgraph, Gy, and that
there exists a supergraph of the complete binary tree, G5, such that any embedding of
(71 into (G requires the claimed amount of dilation.

(41 is the r-dimensional grid. Since T'(N) contains a path of length M = 2(log(N +
1) = 1), PT,(N) contains PL,(N) as a subgraph. We can select (3 as the de Bruijn
graph since it contains the complete binary tree as a subgraph. It is shown in [7] that
any embedding of PL,(N) (for r > 1) into the de Bruijn graph requires a dilation of at
least Q(loglog M"). That gives the claimed result. |

We have also presented in Chapter 5 several algorithms that perform efficiently in the
product of complete binary trees. Some of them give better performance that the mesh
of trees for problems specially suited for this last network. This presents the PT,(N)
network as a very interesting candidate to take over the position of the mesh of trees
between the interconnection networks.

One last fact will make this assertion stronger: both networks present same VLSI
layout area complexity. We obtained the bounds for the PG, (N) in Section 6.4. They
can be compared with the bounds for the mesh of trees obtained in [41]. This fact implies
that the increase in area necessary to create a network more powerful than the mesh of
trees is bounded.

CHAPTER 7. INTERESTING PRODUCT NETWORKS 78

Figure 7.2: Embedding of the complete binary tree into the two-dimensional product of
complete binary trees.

the construction of the two-dimensional mesh of trees, i.e. all the colored nodes, red or
blue, are contained in the two-dimensional mesh of trees. For induction, assume that the
(r — 1)-dimensional mesh of trees has been already colored in the PT,_;(N) graph. The
coloring rule for the r-dimensional mesh of trees is the same. That is, when going from
PT,_1(N) to PT,(N), color the internal nodes of a dimension-r tree in blue if and only
if it has red leaves. The set of vertices colored red or blue gives the largest r-dimensional
mesh of trees contained in PT,.(N).

Once the largest mesh of trees is colored, successively smaller meshes of trees are then
obtained by removing all the colored vertices and coloring the remaining vertices by the
same strategy. |

Observe that the largest mesh of trees subgraph of PT,(N) has ©(N”") nodes. The
expansion of this embedding is, hence, constant.

The next results show that PT,(N) is strictly more powerful than the similar-size
complete binary tree.

Theorem 7.4 The complete binary tree of r(log(N + 1) — 1) + 1 levels is a subgraph of
PT,(N).

Proof: For r = 2, the embedding of 5-level complete binary tree into PT5(7) is shown in
Figure 7.2. Note, in particular, that the tree in the middle row constitutes the highest 3
levels of the tree. The leaves of this row tree correspond to the roots of column trees. This
pattern can be recursively repeated for larger values of N in two dimensions. Assuming
that the claim is true for PT,_1(N), the embedding proof for r dimensions follows from
the recursive construction of PT,(N).]

Note that, for r = 2, the tree embedded by the above method is the largest tree
possible. In general, for larger values of r, larger trees can be embedded with constant

CHAPTER 7. INTERESTING PRODUCT NETWORKS 77

Figure 7.1: Embedding meshes of trees into products of complete binary trees.

product of complete binary trees can emulate the torus (and, hence, the grid) very effi-
ciently. The following result shows that this network is in fact more powerful than the
grid, by presenting an optimal-dilation embedding of PT,(NN) onto the grid.

Theorem 7.2 The optimal dilation of embedding PT,(N) into PL.(N) is |7210g£\]7\77_+11)—2—|
Proof: Section 3 in [32] presents an embedding of the complete binary tree T'(N) onto
the linear array L(/N) with dilation cost [mggvi_-:l)—z} The dilation of this embedding
is optimal as it matches the trivial lower bound obtained by comparing the respective
diameters of both networks. Then by the simple application of Corollary 4.1 the claimed
embedding is obtained. Optimality of the dilation follows from the trivial lower bound
obtained by comparing the diameters of the networks. []

We show now that meshes of trees of comparable size are subgraphs of PT,(N). In
fact, the PT.(N) graph contains not just one mesh of trees, but a hierarchy of meshes of
trees as shown next.

Theorem 7.3 Foralli =1,...,log(N +1), PT,(N) contains the mesh of (N +1)/2'-leaf

trees as a subgraph.

Proof: Figure 7.1 shows the two-dimensional meshes of trees contained in PT5(7). Note
that in this figure there are three meshes of trees contained, one with (N +1)/2 = 4
leaves for each tree (shown in dark nodes), one with (N 4 1)/4 = 2 leaves for each tree
(shown in empty nodes), and one degenerate with (N 4 1)/8 = 1 leaf (the central node.)
In general, the largest mesh of trees contained in PT,(N) is obtained as follows. Start
with the PT3(N) graph and select the uth dimension-1 trees such that u is a leaf. For
those trees selected, color the leaves in red and the internal nodes in blue. Do not color
the non-selected trees. For the dimension-2 trees, color the internal nodes of a tree in
blue if and only if it has red leaves. Note that this coloring scheme is consistent with

Chapter 7

Interesting Product Networks

In the previous chapters we have derived many general results for homogeneous product
networks. In each chapter, the results obtained have been applied to several instances of
product networks to show the results’ power.

In this chapter we concentrate on three of these specific instances of homogeneous
product networks and we propose them as new interconnection networks. The three
networks to be covered are the product of complete binary trees, PT,(N), the product of
shuffle-exchange graphs, PS,.(N), and the product of de Bruijn graphs, PD,(N). On top
of the capabilities of these networks presented in previous chapters, we compare them
here with their respective factor network and with other popular non-product networks.
We show that all of them are very powerful networks and very interesting candidates for
their use as interconnection networks.

7.1 Products of Complete Binary Trees

In previous chapters we have covered different aspects of the product of complete binary
trees. We have obtained that it has logarithmic diameter, large bisection width, and
bounded vertex degree when the number of dimensions is bounded. We have seen also
that it has connectivity of r and many ways to be partitioned.

The first result of this section shows that the number of vertex-disjoint paths between
any two nodes in this network is larger, in some cases, than the lower bound defined by
its connectivity. The proof of this theorem is presented in the Appendix.

Theorem 7.1 FEvery pair of vertices in PT,(N), where r > 1, is connected by exactly m
vertex-disjoint paths, where m is the minimum vertex degree of the vertices in the pair.

Despite its simple structure, the product of complete binary trees have very inter-
esting embedding properties. For instance, while tori and meshes of trees are powerful
architectures, they have different strengths and weaknesses. We have shown that the

76

CHAPTER 6. VLSI LAYOUT COMPLEXITY 75

1e+09

Buitterfly and CCC 3-dimensions
T T T T T ———

1e+08 [T]
1e+07 [e I
1e+06

100000 |

Wire length

8
Q
8

1000 |/

100 ¢

10 | | | | | | | | |
100 200 300 400 5%0 600 700 800 900 1000

Figure 6.11: Comparison of the maximum wire length bounds obtained for PBs(N) and
PC5(N).

by only a polylogarithmic function of N.

From Table 6.3 and figures 6.8 to 6.11, only if the number of dimensions r is bounded
the collinear method obtains bounds that match the lower bounds. In most cases it
gave better bounds than the other two approaches. The only exception we have is the
product of complete binary trees. When applicable, the use of bisectors seems to give
same maximum wire lengths as the use of bifurcators.

The above analyses suggest the method based on collinear layouts as a very usetul
and powerful approach to the layout problem for homogeneous product networks. More
research may help in finding normal collinear layouts with small wiring width and small
bandwidth for a variety of factor graphs.

Clearly, it is still necessary to study how these results can be extended to obtain
layouts for heterogeneous product networks. If the heterogeneous product network is
obtained from same-size factor graphs it is not difficult to derive bounds similar to those
presented by just considering the worst case. For instance, the lower bounds presented
in theorems 6.5 and 6.6 are still valid if we define (' as the maximum of the maximal
congestions of the factor graphs. Similarly, if f is the largest asymptotic complexity
bisector of all the factor graphs, then the product graph has a O(z"=1/" f(2'/"))-bisector.
The results for bifurcators and collinear layouts can be generalized in a similar way.

CHAPTER 6. VLSI LAYOUT COMPLEXITY 74

Linear array 3-dimensions
le+06 T T T T LIS oy

100000 |- e]

10000 |- o E

1000 |-/ 4

Wire length

1 | | | | | | | | |
100 200 300 400 5%0 600 700 800 900 1000

Figure 6.8: Comparison of the maximum wire length bounds obtained for PLs(N).

Complete binary tree 2-dimensions Complete binary tree 3-dimensions
10000 T T T T L le+07 T T T T T =
L 1e+06 - —
1000 1 I | ' .- v -
’) 100000 - 7 e E
= < g
=3 I 5 /
B 100l -] & 10000} /
e / e
B 2 !
1000
10 b Bi Lgv‘fl o
. H IS, BIT -~
Bis, Bif 100 Col ---- i
Col ----
1 L L L L L L L L L 10 L L L L L L L L L
100 200 300 400 SR‘O 600 700 800 900 1000 100 200 300 400 SRIO 600 700 800 900 1000

Figure 6.9: Comparison of the maximum wire length bounds obtained for PT3(N) and
PT5(N), respectively.

Shuffle exchange and de Bruijn 3-dimensions
le+09 T T T T T T T

o S
i R / |
1le+06

100000

Wire length

10000 [
1000

100

10 | | | | | | | | |
100 200 300 400 5%0 600 700 800 900 1000

Figure 6.10: Comparison of the maximum wire length bounds obtained for PS3(N) and
PDs(N).

CHAPTER 6. VLSI LAYOUT COMPLEXITY 73

on the layout area in Table 6.2. We do not know the bandwidth of these layouts to
obtain a bound on the wire length. Instead, we use the wiring width and bandwidth
of a collinear layout presented in [78] for the shuffle-exchange graph, which has wiring
width O(N/log'* N) and bandwidth O(N/log'/? N). Note, then, that the maximum
wire length bounds presented in Table 6.3 for these networks may not be achievable with
the optimal area layout presented in Table 6.2.

The normal collinear layout obtained by placing the levels of the butterfly in order
one after the other has wiring width O(N/log N) and bandwidth O(N/log N). A similar
approach can be used for the cube-connected cycles to obtain the same bounds. The
hypercube has, as factor network, the 2-node linear array which is laid out with wiring
width 1 and bandwidth 1 (see Figure 6.4.(a).) The Petersen graph can be laid down in a
normal collinear layout with both wiring width and bandwidth O(1). Also, it is possible
to obtain a normal collinear layout for K (N) with wiring width O(N?).

In figures 6.5 to 6.11 we plot these bounds in a graphical form for those networks
considered more interesting. In these figures the x axis shows the value of N (the num-
ber of nodes in the factor graph) while the y axis shows the value of the bounds on a
logarithmic scale, with all the constant factors neglected (we ignore the € and the O.)
The curves have been labeled with “Low” (lower bound), “Bis” (upper bound obtained
by using bisectors), “Bif” (upper bound obtained by using bifurcators), and “Col” (up-
per bound obtained by using collinear layouts.) In the figures we fix the value of r to
3, representing also the value r = 2 when interesting. For larger values of r the shape
of the figures will remain practically the same, since the difference between bounds is a
function of N. The area bounds for the linear array are not plotted for 2 dimensions
for the triviality of the layout in this case. For more dimensions all the approaches yield
area-optimal layouts and the plot is not interesting. The bounds are not plotted neither
for the hypercube nor for the product of Petersen graphs, since N is fixed for both net-
works. Also, we did not plot the case for products of complete graphs since there is only
one upper bound result. For hypercubes and products of Petersen and complete graphs
the area of collinear layouts are optimal, but in maximum wire length they differ from
the lower bound by a factor of r.

From the results presented in Table 6.2 and figures 6.5 to 6.7, the proposed method
based on collinear layouts seems to generate layouts with optimum area in most of the
cases. Only for products of complete binary trees the layout area is not minimum, and
it 1s not possible to reach an optimal area layout for this network using this method,
since we would need a normal collinear layout for the complete binary tree with constant
wiring width. The layouts obtained by using bisectors (when applicable) are also quite
area-efficient, since they have optimal area for more than two dimensions in the studied
cases (see figures 6.5 and 6.7.) In fact, the layout obtained for the product of complete
binary trees is also optimal for 2 dimensions since, as we see in Chapter 7, this network
has the mesh of trees as a subgraph, which requires area Q(N?log* N) for two dimensions
[41]. The layouts obtained by using bifurcators are not always area-optimal, but are off

CHAPTER 6. VLSI LAYOUT COMPLEXITY 72

Complete binary tree 2-dimensions Complete binary tree 3-dimensions
le+08 T T T T T i let+l4 T T T T T T
.) le+13 |- . I 4
ler07 - e 1 let12 |-
16+06 L le+ll
1le+10
8 100000 - 8 1er00 |
< ! <
: 1e+08 -
10000 | ; Low, Bis, Bif —
[1e+07 Col - b
Bis, Bif. GOl 1
is, Bif, Col - ; i
1000 |- — lev06 4
100000 -
100 L L L L L L L L L 10000 L L L L L L L L L
100 200 300 400 5’(310 600 700 800 900 1000 100 200 300 400 SIC\JIO 600 700 800 900 1000

Figure 6.5: Comparison of the area bounds obtained for PT3(N) and PT3(N), respec-
tively.

Shuffle exchange and de Bruijn 3-dimensions
1e+20 T T T T T T T

8 1e+10

Bif -

1 | | | | | | | | |
100 200 300 400 5%0 600 700 800 900 1000

Figure 6.6: Comparison of the area bounds obtained for PS5(/N) and PDs(N).

Butterfly and CCC 2-dimensions Butterfly and CCC 3-dimensions
T T T T T T T

le+l2

‘ : ‘ S 1e+20
lel1 | B e By
1e+10 -)
1e+09 |-
1e+08 -

1e+07 |-

Area

1e+06 -

100000 | Low, Col — By
i Bis, Bif - Low, Bis, Col —
10000 g Bif

1000 - -

100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
100 200 300 400 5’(3‘0 600 700 800 900 1000 100 200 300 400 SR‘O 600 700 800 900 1000

Figure 6.7: Comparison of the area bounds obtained for PBy(N) and PCy(N), and
PBy(N) and PCy(N), respectively.

CHAPTER 6. VLSI LAYOUT COMPLEXITY 71

6.4 Application to Specific Networks

In tables 6.2 and 6.3 we have compiled the bounds obtained by applying the presented
results to several networks. In both tables UN stands for “unknown” and N.A. stands
for “not applicable.” Table 6.2 presents the bounds on layout area. The upper bounds
marked in this table with “*” are optimal. Table 6.3 presents the bounds on maximum
wire length. The upper bounds marked in this table with “*” are optimal if r is bounded.
We first present how these bounds have been obtained.

The second column in both tables presents the lower bounds obtained by direct ap-
plication of theorems 6.5 and 6.6. The value of the maximal congestion for all the factor
networks was already obtained in Section 3.3.

The third and fourth columns of the tables present upper bounds obtained from
bisectors of the factor graphs. It is easy to observe that the linear array and the complete
binary tree have O(1)-bisectors. By applying Corollary 6.1 the presented bounds are
directly obtained. There have not been found, as far as we know, tight bisectors for the
shuffle-exchange and the de Bruijn graphs. Thus we present the corresponding bounds as
unknown. We can easily show that the (n2")-node butterfly can be bisected by removing
O(2") edges, resulting in two butterflies with one less level and several isolated nodes.
Therefore we conclude that the butterfly has a O(x/log x)-bisector. Similarly it can be
shown that the cube-connected cycles has a O(x/log x)-bisector. To obtain the bounds
on wire length we use z/log x = 2® for some « > 0 and, therefore, « > 0 in Corollary 6.1
for both networks. Since the hypercube and the product of Petersen graphs can only
grow by increasing the number of dimensions, they are considered here as networks with
unbounded number of dimensions, and the bisector approach can not be applied to them.
Similarly, this approach can not be applied to the product of complete graphs since K (V)
has not bounded vertex degree.

The fifth and sixth columns contain the bounds obtained from bifurcators of the factor
networks. The linear array and the complete binary tree have 0-special bifurcators. The
value of the bifurcators for the shuffle-exchange and de Bruijn networks are obtained from
known layouts of area O(N?/log® N) [41], that implies the existence of O(N/log N)-
bifurcators for these networks [9]. It is easy to see that the butterfly and the cube-
connected cycles have 1-special bifurcators. We then apply corollaries 6.2 and 6.3 to
obtain the bounds on layout area and maximum wire length for all these networks. Again,
the hypercube and the product of complete and Petersen graphs are not considered.

The last column of the tables present the upper bounds obtained from collinear layouts
for the factor networks. If the nodes of the linear array are laid down in a line we obtain
a collinear layout with wiring width 1 and bandwidth 1. The complete binary tree has a
collinear layout with wiring width O(log N') and bandwidth O(N), which can be obtained
by just labeling the nodes in in-order. For the shuffle-exchange and de Bruijn graphs we
can apply lemmas 6.3 and 6.4 to their optimal O(N/log N) x O(N/log N) area layouts
[41] to obtain normal collinear layouts with wiring width O(/N/log N), hence the bounds

CHAPTER 6. VLSI LAYOUT COMPLEXITY 70
| G(N) | Area Max. Wire Length | Condition |
C': max. congestion Q(NUHD /C?) Q(N™L/Crd)
d: diameter
f(x)-bisector O(N?f*(N)log” N) r=2
O(N?=Df2(N)) r > 2
O(z%)-bisector O(NZ%log” N) O(N log N/ loglog N) a=0andr=2
O(N2r+a-1)) O(NTFa=1) Otherwise
. 2(r—1 2 2 r—1 log(N/F)
F-bifurcator O(N?r=D[F210g*(N/F)) | O(N Floglog(N/6(2+\/§)F))
a-special bifurcator O(N?log” N) O(N log N/ loglog N) a=0andr=2
O(N2r+a-1)) O(NTFa=1) Otherwise
w: wiring width O(w?N?0r—1)) O(bwN™=?)
b: bandwidth
Table 6.1: Results on VLSI layout complexity obtained.
Upper bound for the area of product network
Factor Lower Bisector Bisector Bifurcator Bifurcator
network bounds (r=2) (r > 2) (r=2) (r > 2) Collinear
LIN) | @W2U-D) | O(N?log2 N) | O(N2U=-Dy* [O(N21log? N) | O(N2Ur—D) * O(N2(r=1)y *
T(N) | QN2U=D) | O(N21og? N) * | O(N2U'=D) * | O(N2log? N) * | O(N2U=1)) * | O(N20"—D1]og? N)
S(N) Q(IOJZ?N) UN 0(N2T1—°1%(%%N—N) O(N27 [log? N) *
by | eZsy) UN O(N?rleE Lo O(N?7 /log? N) *
B(N) | ady) O(NY) 025" O(N?7) O(N?"/log? N) *
C(N) (e O(NY) o025 " O(N?") O(N?" /log? N) *
Q1 Q22— N.A. N.A. 0(220r—1)) *
P(10) | Q10201 N.A. N.A. 01027 1)) *
K(N) | QW20+ N.A. N.A. O(N2(r+1)y *

Table 6.2: Bounds on the layout area obtained by application of the presented methods.

Upper bound for the wire length of product network
Factor Lower Bisector Bisector Bifurcator Bifurcator
network bounds (r=2) (r>2) (r=2) (r>2) Collinear
L) | 00V =/n) | O(N gy [0V [OV o) [0V | o) *
T(N) Q(TJYO%N) O(N &%) | O(N™ 1) O(Nﬁ{éo{:—Nl) 1 (?V(N’“‘l) O(N™'log N)
S(N)Y | Qo Hé; <) UN O(N” Jj—logjvﬁo%io%ow) O(N"/log N)
T r oglog r
D(N) Q(rltﬁgf2 N) UN O(N logNlogloglogN) O(N /log N)
- - = - 2
B(N) | Q=) O(N™) O(N™) O(N"/log” N) *
- . - - 7
C(N) | Qpey) O(N™) O(N™) O(N"/log” N) *
Q1 Q(Qr_z/r) N.A. N.A. 0(2’"_2) *
P(10) Q(lO’“_z/r) N.A. N.A. 0(10’"_2) *
K(N) Q(N’“"‘l/r) N.A. N.A. O(N’""‘l) *

Table 6.3: Bounds on the wire length obtained by application of the presented methods.

CHAPTER 6. VLSI LAYOUT COMPLEXITY 69

enough connection points in each side of the node when needed. Figure 6.4.(b) presents
this initial situation for our example graph.

For each row of nodes we apply the following iterative process. We start by creating
w new rows above the row of nodes. The nodes in the row are divided in N"/21=1 groups
of N adjacent nodes each, and the nodes in each group are connected using the created
rows with the wires laid down as specified by the normal collinear layout of GG(N). This
completes the connections for the first dimension of the product graph. We subsequently
create wN new rows, divide the nodes in a row into NI"/21=2 groups of N? adjacent nodes
each, and use the w/N new rows in groups of w each to connect N nodes of the second
dimension. These nodes are N nodes apart from one another.

In the ith iteration we create wN*~' new rows, divide the nodes in NI"/21=¢ groups of
NP nodes each, and connect sets of N nodes in the 7th dimension, each Ni~! nodes apart
from one another.

This process is applied [r/2] times for each row of nodes. The total number of wiring
rows created is w 22[2/021_1 N¢. This is the distance between two rows of processors. Two
adjacent processors in the same row are still touching each other. Figure 6.4.(c) presents
the example layout after completion of the above process. To obtain this layout we
applied the iterative step twice.

The same iterative process can be applied |r/2] times to connect the columns. As a

pletes the proof. Figure 6.4.(d) shows the final layout obtained for our example graph. m

result, we find that the columns of processors are at distance wZZLZ/OzJ_l N*. This com-

From this theorem we can obtain bounds on the area and maximum wire length for
the layout.

Corollary 6.4 [fG(N) has a normal collinear layout with wiring width w and bandwidth
b, then PG,.(N) can be laid out in an area of dimensions O(wN"™') x O(wN"™1) with

maximum wire length ©(bwN""?).

Proof: The length of the layout obtained from the above theorem along the horizontal
dimension is NI"/21(A[r/2] +w ZZL;/OQJ_I N*). Since w > A/2, ZZL;/OQJ_I Nt =@Q(NU/2-1),
and Nl/21-1 > [r/2] for N > 2 and r > 2, then this length is ©@(wN""!). The length
along the vertical dimension is NU/2(ATr/2] + wzz[;/oﬂ_l NY) = O(wN"1). Simi-
larly, the length of the longest edge is at most 2w 22[2/021_1 N4+ b(NT/2A=Y(A[r/2] +
w LT N = O(bwNT2), n

In Table 6.1 we have compiled the results obtained in this chapter.

CHAPTER 6. VLSI LAYOUT COMPLEXITY 68

& @il
Ty

(b) © (d)

Figure 6.4: Layout for the 3-dimensional hypercube.

Since the N-node directed complete graph can be embedded onto the graph G(N) with
congestion C, it follows that any embedding of G(N) onto L(N) requires congestion at
least N?/2C if N is even, or at least (N? —1)/2C if N is odd, since otherwise we could
obtain an embedding of the directed complete graph with congestion smaller than its
maximal congestion.

Since the congestion of any embedding of G(NN) onto L(N) is a lower bound on the
number of rows needed to route the edges of G/(IV), the result follows. |

The Layout Method for Product Graphs

The following theorem represents the main result of this section. The proof gives an
algorithm to obtain the layout for a product graph from a normal collinear layout of its
factor graph.

Theorem 6.12 [fG(N) has a normal collinear layout with wiring width w, then PG, (N)
has a layout with square nodes of side A[r)2] placed regularly in NU/?1 columns of NL7/2

nodes each, where two adjacent columns of nodes are at distance wZZL;/OQJ_l N and two
adjacent rows of nodes are at distance wzi;/oﬂ_l Nt
Proof: We show the iterative process that can be used to obtain the desired layout.
The proof is illustrated in Figure 6.4, which presents the construction of a layout for
the 3-dimensional hypercube. Figure 6.4.(a) presents a normal collinear layout for the
2-node linear array.

Initially, we place the N” nodes of PG,.(N) in the layout as squares of side A[r/2] in
a grid fashion with NT"/21 columns of nodes and N"/2! rows of nodes. Each node touches
its neighbor nodes in the layout. The size of the nodes will guarantee that there are

CHAPTER 6. VLSI LAYOUT COMPLEXITY 67

side across the columns just created. Figure 6.3.(c) presents the 2 new columns created
in this step. Then, move u to the bottom rows, after resizing it to 6, x A. Finally, use
the newly created columns as well as the rows originally allocated to u to reroute the
edges from the bottom rows. Since u had at least 6, rows and we have ¢, columns, this
rerouting can be done. Figure 6.3.(d) presents the final result for our example.

This ends the transformation. Note that the total number of added columns is
>uev 0u, where V' is the set of nodes of G(N) and, therefore, the length of the lay-
out is O(I + NA). n

The above lemma shows that any layout can be transformed into a seminormal
collinear layout with wiring width of the same order as the width of the original lay-
out. While the transformation increases the length of the collinear layout, we will see
that it is the width of the normal collinear layout which dominates the layout area com-
plexity for the product graph. The collinear layout obtained can now be compressed to
obtain a normal collinear layout with at most same wiring width. This is shown in the
following lemma.

Lemma 6.4 [f G(N) has a seminormal collinear layout with wiring width w and band-
width b, it also has a normal collinear layout with wiring width at most w and bandwidth

b.

Proof: The original layout gives us a possible labeling (i.e. the order in which the nodes
of G(N) can be placed) to obtain the desired wiring width w. This is all we need for
the purpose of obtaining the desired normal layout. We start by placing the N nodes
touching each other along a straight line. The ¢th node in this line corresponds to the :th
node in the seminormal collinear layout. We then connect these nodes by three-segment
wires (two vertical and one horizontal) as required by the original layout.

Since there is a seminormal collinear layout of width w that uses the same node order,
we can obtain a layout which has at most w rows used for wires. The bandwidth of the
layout remains the same. []

Note that, in the above obtained layout, the length of the longest wire is at most
2w + bA, where b is the bandwidth of the layout.

We finish this section by presenting a lower bound on the wiring width of any normal
collinear layout for arbitrary graphs.

Theorem 6.11 [f the mazimal congestion of G(N) is C then the wiring width for any
normal collinear layout of G(N) is at least N*/2C if N is even, and (N? —1)/2C if N
is odd.

Proof: Note first that any embedding of the N-node directed complete graph onto the
linear array L(N) requires congestion N?/2 if N is even, and (N? — 1)/2 if N is odd.

CHAPTER 6. VLSI LAYOUT COMPLEXITY 66

@

(b)

(d

Figure 6.3: Transformation of a compact layout into a collinear layout.

isolated nodes, and at step ¢ at most F/\/Z_Z edges are removed to divide the graph, for
i =0,...,2log F. Then, the number of rows needed to route the edges of G(N) are at
most Y218 /20 = O(F).]

Finally, we present a general method to obtain a normal collinear layout from an
arbitrary layout. The following result shows that there is always a seminormal collinear
layout with small wiring width.

Lemma 6.3 [f G(N) has a layout of length | and with w, G(N) also has a seminormal
collinear layout of length O(1 + NA) and wiring width O(w).

Proof: We prove the lemma by showing how to transform the given layout into a semi-
normal collinear layout with the claimed dimensions. The transformation is illustrated in
Figure 6.3, where we show only the process for one node of the layout. The appearance
of this node in the original layout is shown in Figure 6.3.(a).

We first transform the nodes of the given layout by adding enough rows so that each
node uses at least 6, rows, where 9, is the vertex degree of the node u being transtformed.
The width of the resulting layout is at most O(w). Figure 6.3.(b) shows the result of
enlarging our example node to use 2 rows.

We subsequently create A new rows at the bottom of the layout. We will eventually
move all the nodes in the layout to these new rows. No other rows are added in the rest
of the transformation process, therefore the wiring width of the new layout will be O(w).
In our example we assumed A = 3 and then, at the bottom of Figure 6.3.(c), the 3 new
rows introduced are shown.

Then, the following step is applied iteratively until all the nodes are in the created
bottom rows and we have a seminormal collinear layout. The step searches from left to
right for the first column with tiles assigned to nodes not yet moved. This column can
have tiles from several nodes. If so, we take one node arbitrarily.

Let u be the node we have chosen. Create 6, new columns on the left side of w.
When creating these columns do not stretch the end of the wires incident to u in that

CHAPTER 6. VLSI LAYOUT COMPLEXITY 65

also on the bandwidth of the collinear layout. Below, we present several ways to
obtain normal collinear layouts with small wiring width for arbitrary graphs.

3. It is applicable to any graph regardless of the vertex degree, while the applicabil-
ity of bisector or bifurcator-based approaches are limited to graphs with bounded
degree.

4. The aspect ratio of layouts is always O(1), which is a desirable characteristic for
fabrication.

Methods for Obtaining Normal Collinear Layouts

In this section we are interested in obtaining normal collinear layouts with small wiring
width and small bandwidth, because these are the properties that influence the char-
acteristics of the layout of the product graph that we obtain. We can devise several
methods to obtain normal collinear layouts for any graph.

First, observe that any graph G/(N) has a normal collinear layout of wiring width at
most 3,y 0u, where V is the set of nodes of G(N), since this is the number of wires
in the layout and each wire requires no more than one row.

Second, the problem of finding an efficient collinear layout is closely related to the
class of problems known as “graph labeling” [16]. Given a way of labeling the nodes of
an N-node graph with integer labels 1, ..., N (or, equivalently, given a way of placing the
nodes of the graph on a line), the maximum distance between two connected nodes is
the bandwidth of the labeling, while the maximum number of edges that cross a vertical
line placed between any two nodes is the cutwidth of the labeling. Thus, if there is an
embedding of a graph G(N) onto the linear array L(N) with bandwidth b and cutwidth ¢
it is trivial to obtain a normal collinear layout for G/(V) with wiring width ¢, bandwidth
b, and longest edge of length O(bA + ¢). For an arbitrary graph, we can obtain a label-
ing which minimizes the bandwidth and the cutwidth by using dynamic programming
algorithms, or heuristics.

Third, it is shown in [44] how to construct normal collinear layouts for a graph G(N)
with a f(x)-separator. The layout has wiring width O(f(/N)log N) in general but, if
flz) = Q(x®) for a > 0, then the wiring width is O(f(N)). For graphs with F'-bifurcators

we obtain a similar result in the following lemma.

Lemma 6.2 [f G(N) has a F-bifurcator, then it has a normal collinear layout with
wiring width O(F).

Proof: The construction of the layout is similar to the construction shown in [44] for
separators. We use a divide-and-conquer process that divides the graph into two sub-
graphs, obtains a collinear layout for each, and reconnects the two layouts by adding at
most as many new rows as edges were removed in the partition step. From the defini-
tion of bifurcator, the division process is applied at most 2log F' times before we obtain

CHAPTER 6. VLSI LAYOUT COMPLEXITY 64

and j to count the partitions within an application of the basic process, varying j from
0 to r — 1. The absolute count of partition steps for the whole graph is, then, k = 2r + ;.

In the :th application of the basic process the size of the factor subgraphs that we
are considering is m = N/2' and we remove at most O((N/2°)?) edges to partition this
subgraph. Then, the kth absolute partition step removes at most O((N/2%)*(N/2¢)r—i~1
(N/2%1)7) edges. We can write

. . 1 1y Nrta—1
T\ INT—]7— 7 J
(NJZ)X(INJ2) N2 = gy
Since k —i(1 —) > k/2 for r > 2 we can conclude that PG, (N) has a O(N"T~1)-
bifurcator. We still need to show in which cases this is a (r + o — 1)-type B bifurcator.

Note that
Nrta-1 (Nr)l—(l—oz)/r

ph=ii=a) — (2F)I-ili-a)/k"
Since (1 — a)/r > i(1 — a)/k then 1 —i(1 —a)/k > 1 — (1 — «)/r and, therefore,

(NT)I_(I_O[)/T r fok\1—(1—a)/r
(2Fy=i-a)/E — O((N7/28)1= (=)
where 1 — (1 — a)/r > 1/2 (i.e. we have a type B bifurcator) if either r > 2, or r = 2
and o > 0. |

We can now apply theorems 6.3 and 6.4 combined with this theorem to obtain the
following corollary.

Corollary 6.3 If G(N) has a a-special bifurcator then PGL.(N) can be laid out in an
area of O(N*log® N) with mazimum wire length O(Nlog’igN) ifr =2 and o =0, or in

an area of O(N2U+a=1Y with mazimum wire length O(N"t*1) otherwise.

6.3.3 Upper Bounds Based on Collinear Layouts

In this section we present another approach to obtain layouts for product networks. We
use a collinear layout for the factor network to obtain a layout for the homogeneous
product network. This collinear approach for laying out product graphs has several
advantages:

1. It gave the optimal area layouts for all the cases we considered (with only one
exception), and wire lengths were quite close to optimal.

2. It depends on obtaining a collinear layout for the factor graph, which is much easier
to obtain than good bisectors or bifurcators. The area of the layout only depends
on the wiring width of the collinear layout. The maximum wire length depends

CHAPTER 6. VLSI LAYOUT COMPLEXITY 63

the worst case, we take the larger of the two obtained subgraphs. We can partition this
subgraph by dimension 2 by removing at most H[N/2|N"~? edges. This value is smaller
than HN"'/\/2.

We can continue in this way partitioning the subgraphs by each dimension. When
dividing the largest subgraph by dimension i we remove at most H[N/2]""' N"~" edges,
that is smaller than HNT_i/\/T_l. After dividing by dimension r each subgraph obtained
has at most [/N/2] nodes along each dimension.

If we start the process again, the next division will remove at most H[N/2]"~'/v/2
edges, that is smaller than HNT_I/\/§T. Therefore, the process can be repeated without
exceeding the maximum number of edges allowed by the definition of bifurcator.

As in the proof of Theorem 6.7, we can apply the partition process just described to
each of the 2" subgraphs of PG, (V) obtained, to the subgraphs obtained from them, and
so on, until all the nodes are isolated. By repeating this process at most log N + 1 times
all the nodes in PG, (N) will be isolated, and the theorem follows. [|

We recall here that Bhatt and Leighton [9] showed that if G(NNV) can be laid out in an
area A it has a v/A-bifurcator. Thus, if G(N) can be laid out in an area A then PG, (N)
has a NT_16(2 + ﬂ)\/Z—bifurcator. FFrom Theorem 6.9 we can obtain bifurcator-based

bounds for the area and maximum wire length by using Theorem 6.3.

Corollary 6.2 [f G(N) has a F-bifurcator then PG.(N) can be laid out in an area of

T_) : . o log(N/F
O(N?U=D F2log*(N/F)) with maximum wire length O(N lFloglog(]\g7(/6(/2—|—)\/§)F))'

The above theorem and corollary are universally applicable. However, as Bhatt and
Leighton [9] noted, there are graphs with special characteristics which allow to improve
the above bounds. This fact is reflected in the following results.

Theorem 6.10 If G(N) has a a-special bifurcator then PG,(N) has a O(N™t*~1)-
bifurcator. This is a (r + a — 1)-type B bifurcator if either r > 2, orr =2 and o > 0.

Proof: Let N be a power of two for simplicity. From Theorem 5 in [9] we know
that G(N) has a partition process where each partition in the ¢th partition step bi-
sects the corresponding graph without removing more than 6 Y_4_;, O((N/2°)*) edges, for
t = 0...log N—1, and p is the number of steps of the original partition process. This sum-
mation is a decreasing geometric series, that is essentially on the order of its first term.
Then, G(N) has a partition process such that each partition in the ith partition step
bisects the corresponding graph without removing more than 60((N/2%)*) = O((N/2"))
edges, for 2 = 0...1og N — 1.

The partition process is similar to the one presented in the proof of Theorem 6.9. We
apply a basic process log N times, partitioning the graphs r times in each application.
We will use ¢ to count the applications of the basic process, ¢ varying from 0 to log N —1,

CHAPTER 6. VLSI LAYOUT COMPLEXITY 62

the proof is complete. []

Once we obtain a bisector for product networks we are ready to apply it to obtain
bounds on the layout parameters. We can use Theorem 6.1 to obtain the following result.

Theorem 6.8 [f G(N) has a f(x)-bisector then PG.(N) can be laid out in a square of
side O(N f(N)log N) when r =2, or side O(NU=Y f(N)) when r > 2.

Proof: In Theorem 6.7 we have obtained that PG, (N) has a O(z=1/" f(2'/7))-bisector.
Since PG, (N) has N™ nodes, we can obtain the value of the summation presented in The-
orem 6.1 as Yriost N 2O((N7 /41 =01 f(N4T)) = O(F(N) Silese ¥ 2/(B0)7=1/7) since
f(z) is a monotonically non-decreasing function. The value of this last summation is
O(Nlog N) when r = 2, or O(N"™!) when r > 2 [80]. Therefore, the value of the first
summation is O(N f(N)log N) when r = 2, or O(N""'f(N)) when r > 2, and the claim
follows. |

The most studied kind of bisectors has been O(a®)-bisectors, for bounded a. Theo-
rem 6.2 can be directly applied to product networks to obtain the next corollary.

Corollary 6.1 If G(N) has a O(x®)-bisector, for bounded o, then PG,(N) can be laid
out in an area of O(N?log® N) with maximum wire length O(N log N/loglog N) when
a =0 and r =2, orin an area of O(N*U+=1) with maximum wire length O(N™to=1)
otherwise.

6.3.2 Upper Bounds Based on Bifurcators

The following theorem and its corollary present the initial general results of this section.
After these we present additional results applicable to graphs with a-special bifurcators,
which yield tighter bounds.

Theorem 6.9 IfG(N) has a F-bifurcator then PG, (N) has a N""*6(24-+/2) F -bifurcator.

Proof: From Theorem 6 in [9] we know that if G(N) has a F-bifurcator then it has a
H = 6(2+4+/2) F-bifurcator (balanced bifurcator) that bisects the graph at each partition.
Then, after at most log N+1 partitions G/(NV) is transformed into N isolated nodes. Along
the rest of the proof we will denote 6(2 4 /2)F as H for brevity.

The proof is very similar to the proof of Theorem 6.7. We show that given PG, (V) we
can obtain 2" subgraphs, each being the r-dimensional (possibly heterogeneous) product
of factor graphs with H//2-bifurcators and at most [N/2] nodes.

We initially consider dimension 1. To partition PG, (N) we can bisect each G(N)-
subgraph in this dimension, removing no more than H N"~! edges in total. Each dimension-

1 G/(N)-subgraph is so divided into a | N/2]-node and a [N/2]-node subgraphs. To follow

CHAPTER 6. VLSI LAYOUT COMPLEXITY 61

Case N odd: The logic in this case is similar to the logic in the above case, but we
must be careful because by simply bisecting each subgraph along a dimension we
are not bisecting the whole graph. What we do in this case is breaking each G(N)-
subgraph in a given dimension into two subgraphs, with (N —1)/2 nodes each, and
one isolated node. As the isolated nodes are connected between themselves by the
other dimensions, we also remove these connections and distribute the so obtained
isolated nodes evenly between the two large connected subgraphs.

We can initially take dimension 1. By bisecting each dimension-1 G/(N)-subgraph
we remove no more than N"7!'f(N) edges and we obtain two subgraphs with
N'™"YN —1)/2 and N"7Y(N + 1)/2 nodes, respectively. Clearly, PG, (N) has not
been bisected. Now, we can take the subgraph with the larger number of nodes
and isolate one node along dimension 1 from each of the dimension-1 subgraphs,
the same node in each subgraph. Since we are assuming that GG(N) has bounded
vertex degree, we can do so by removing a bounded number of edges from each
dimension-1 subgraph. This leads to a total of O(N"™!) edges removed.

Now we have two subgraphs with N"7'(N — 1)/2 nodes each, and a (r — 1)-
dimensional subgraph, isomorphic to PG,_y. From Lemma 6.1, the factor graph
G/(N) that generates the (r —1)-dimensional subgraph has no more than O(N f(N))

edges. Therefore we can isolate the nodes of this subgraph by removing at most

(r—1)N"20(Nf(N)) = O(N""' f(N)) edges.

As a result of the above process we have two subgraphs with the same number of
nodes and some isolated nodes. If we distribute the isolated nodes evenly between
the two subgraphs our bisection is done. The total number of edges removed has
been N"™"'f(N)+ O(N"™™') + O(N"" ' f(N)) = O(N""' f(N)) from the initial N"-
node graph.

This process can be applied to each dimension as in the case of N even. In each
application O(N""f(N)) edges are removed from a ©O(N")-node graph. After the
graph has been bisected in this way along each dimension, we have 2" disjoint r-
dimensional subgraphs, each being the product of ((V — 1)/2)-node graphs with
f(a)-bisector, plus several isolated nodes distributed evenly between them.

We have now 2" subgraphs of PG, (N) each being the r-dimensional product of factor
graphs with | N/2| nodes and f(x)-bisectors. Note that in the above described process
we only use the fact of PGL(NN) having the same number of nodes along each dimension
and of each factor graph having a f(x)-bisector. Since the obtained subgraphs fullfil these
requirements, the described process can be applied again to each of them. Subsequently,
the subgraphs obtained from them will also fullfil the requirements, and the process can
be applied to each of them, and so on, until all the nodes are isolated.

Since in each bisection of the whole process the number of edges removed does not
exceed the limits imposed by the definition of ¢(x)-bisector for g(z) = O(x"=V/" f(2'/7)),

CHAPTER 6. VLSI LAYOUT COMPLEXITY 60

Proof: We initially present the following lemma that shall be used in the proof.
Lemma 6.1 [f G(N) has a f(x)-bisector, then it has at most O(N f(N)) edges.

Proof: Assume for simplicity that N is a power of 2. By the definition of bisector, G(NV)
can be divided into two subgraphs by removing no more than f(N) edges. Then, we
obtain 2 subgraphs with N/2 nodes each, which can be bisected by removing no more
that f(N/2) edges from each. After i bisections of this kind, we obtain 2° subgraphs with
N/2" nodes each, which in turn can be bisected by removing no more that f(N/2') edges
from each. After applying the bisection process log N times we obtain NV isolated nodes.
The maximum number of edges removed in the whole process can be easily computed
as, JN) + 20(N/2) + 2 [(NJ22) + ... + 208N (N208 1) = 518N =1 o1 (o) =
O(N F(N)). .

The proof now shows how to divide PG, (V) into isolated nodes by repeatly applying
bisections that respect the definition of O(x{"=1/" f(21/7))-bisector.

Initially, we show how to divide PG, (N) into 2" disjoint subgraphs and, possibly,
some isolated nodes. This process is done in r bisection steps, each of which removes
O(N™ ' f(N)) edges from its corresponding graph. At the end of the process, each of
the obtained subgraphs is the r-dimensional (possibly heterogeneous) product of factor
graphs with | N/2| nodes and f(x)-bisectors.

A partition process similar to the one applied to PG, (N) can then be applied to each
of these subgraphs, to the subgraphs obtained from them, and so on, until all the nodes
are isolated.

The basic partition process considers two cases, when N is even and when N is odd.

Case N even: By definition of bisector, each of the G/(NN)-subgraphs in each dimension
can be bisected by removing no more than f(N) edges. We can initially consider
only the G/(N)-subgraphs in dimension 1. PG, (N) can be divided into two sub-
graphs with the same number of nodes in each by bisecting each of the dimension-1
G(N)-subgraphs. As there are N"~!' such subgraphs, we have removed no more

than N"7'f(N) edges from the N"-node graph.

Now, we can take one of the two subgraphs of PG, (N) obtained and divide it into
two subgraphs with same number of nodes by bisecting each of its dimension-
2 G(N)-subgraphs. The number of edges removed this time is no more than
N1 f(N)/2 from a graph with N”/2 nodes.

We can continue this process, bisecting the obtained subgraphs along each dimen-
sion. When bisecting the subgraphs by dimension ¢ we are removing no more than
N=Lf(N)/2:7t = O(N""1f(N)) edges from N” /2=t = O(N")-node graphs.

After bisecting the subgraphs by dimension r we obtain 2" disjoint subgraphs, each
being the r-dimensional product of (N/2)-node graphs with f(x)-bisectors (because
they are bisections of graphs with f(x)-bisectors.)

CHAPTER 6. VLSI LAYOUT COMPLEXITY 59

two parameters anymore, since the maximal congestion gives us the same bounds that
we can obtain from them.

Now we present a lower bound on the length of the longest wire in any layout of a
product graph.

Theorem 6.6 [f the maximal congestion of G(N) is C and its diameter is d, then the

length of the longest wire in any layout of PGL(N) is at least Q(Ncr:dl).

Proof: Theorem 5-2 in [41] shows that any layout of a graph with diameter D and
minimum layout area A has some wire of length at least A'/?/3D. From Theorem 3.1,
the diameter of PG.(N) is D = rd and, from Theorem 6.5, its layout area is at least
Q(NZ)(CT;D). Therefore, we can conclude that any layout of PG, (N) has some wire of

QN /O rt1
length at least % = Q(&). |

6.3 Upper Bounds

In this section we first present upper bounds obtained by traditional frameworks, namely
bisectors and bifurcators. We show that, given a bisector or a bifurcator for the factor
graph, we can obtain a bisector or a bifurcator for the product graph. Since these
frameworks are only applicable to networks with bounded vertex degree, we will assume
that the factor graph has bounded vertex degree and that the number of dimensions of
the product network is also bounded. These assumptions are not very restrictive if we
are dealing with factor networks that can grow without increasing the vertex degree.

Sherlekar and J&4Ja& [70, 71] investigated the use of separators and bifurcators to obtain
efficient layouts for unbounded-vertex-degree graphs. However, the kinds of separators
and bifurcators they use are so restrictive that it does not seem possible to obtain simple
general results for product graphs by using them.

Subsequently, we present another approach that is universally applicable and does
not have any restriction on the vertex degree or on the number of dimensions. This
method of obtaining efficient layouts for product networks is based on the existence of
efficient collinear layouts for the factor networks. We show that it is always possible to
find reasonably efficient collinear layouts for any network and present a specific technique
to do so.

6.3.1 Upper Bounds Based on Bisectors

The following theorem presents the basic result of this section.

Theorem 6.7 If G(N) has a f(x)-bisector, then PG,(N) has a O(zU=9/" f(2'/7))-

bisector.

CHAPTER 6. VLSI LAYOUT COMPLEXITY 58

Figure 6.2: Normal collinear layout for K(5).

Definition 6.7 The wiring width of a collinear layout is the number of rows used to
route the wires in the layout.

The value of the wiring width is always the width of the layout minus the maximum
vertex degree A.

Definition 6.8 The bandwidth of a collinear layout is the maximum distance, in number
of nodes, between any two connected nodes.

The maximum wire length is closely related to the bandwidth of a layout as we discuss
later. Figure 6.2 presents a normal collinear layout for K (5) with wiring width 6 and

bandwidth 4.

6.2 Lower Bounds

In this section we obtain lower bounds on the layout area and maximum wire length
required by any layout of PG, (N).

In [78], Thompson showed that the square of the bisection width is a lower bound
(within a constant factor) on the wire area required by any layout of a graph. Similarly,
Leighton [41] presented the crossing number as a lower bound on the wire area of any
layout of a graph. Then, we can use theorems 3.9 and 3.10 to prove the following theorem.

Theorem 6.5 [f the maximal congestion of G(N) is C then the layout area of PG, (N)
is at least Q(%)

This result emphasizes the importance of the maximal congestion as a parameter
of a graph. Previously, the two approaches to obtain lower bounds on the layout area,
bisection width and crossing number, were considered independent from each other. Here,
we have shown the maximal congestion as a link between both approaches, which allow
to obtain tight lower bounds on the area. In fact, in many cases we do not need the other

CHAPTER 6. VLSI LAYOUT COMPLEXITY 57

Definition 6.3 A n-node graph has a «-special bifurcator, 0 < o« < 1, if it has a
O(mazx{\/n,n®})-bifurcator such that no more than O((n/2")*) edges are removed in
each partition at the ith step of the partition process, where 1 = 0 initially.

Note that when o = 1/2 we have the definition of \/n-bifurcator, but for a # 1/2 the
partition process defined is more restrictive than the one implied in Definition 6.2. We
now define a subclass of graphs with a-special bitfurcators. This subclass was originally
considered in [9].

Definition 6.4 A graph has a a-type B bifurcator if it has a a-special bifurcator, where
a>1/2.

From the value of the bifurcator of a graph, there have been presented the following
results in [9].

Theorem 6.3 A n-node graph with a F-bifurcator can be laid out in an area of O(F?
log &
loglog%)'

log? %) with maximum wire length of O(F

Theorem 6.4 A n-node graph with a a-type B bifurcator can be laid out in an area of
O(n**) with mazimum wire length of O(n®).

Again, the bifurcator framework is restricted to be used with bounded degree net-
works.

6.1.4 Collinear Layouts

The last approach to obtain layouts for homogeneous product networks we investigate is
based on the existence of efficient collinear layouts of the factor graph. A VLSI layout
is called collinear if all the nodes are placed along a straight line. We will use collinear
layouts of the factor graph to generate layouts for the product graph.

To be able to use them, we impose several restrictions on the collinear layouts. We
assume that the nodes are aligned horizontally.

Definition 6.5 A collinear layout is seminormal if all the nodes in the layout are placed
at the bottom rows of the layout, a node u occupies A rows and A, columns, and all the
wires are laid down above the row A.

Definition 6.6 A collinear layout is normal if it is seminormal, all the nodes are adja-
cent, and all the wires are laid down as two vertical sections connected by a horizontal

section.

For these two classes of layouts we can define two new parameters.

CHAPTER 6. VLSI LAYOUT COMPLEXITY 56

Definition 6.1 Let f(x) be a monotonically non-decreasing function. A n-node graph
has a f(x)-bisector either if it has only one node or if by removing at most f(n) of its
edges it can be divided into two subgraphs with the same number of nodes (within one),
both with f(x)-bisectors.

In general, separators need not bisect the graph at each stage. Our definition is more
restrictive, for instance, than the definition of separator used by Leiserson [44]. However,
Ullman [80] showed how to obtain a bisector (he calls it strong separator) from separators
as defined by Leiserson.

The separator framework is restricted to lay out graphs with bounded vertex degree.
This is an important restriction on the applicability of this framework.

We also present several results for graphs with given bisectors. The following result

can be found in [80].

Theorem 6.1 A n-node graph with a f(x)-bisector can be laid out in a square area whose

side is O(max{/n, e 20f(n/4)}).

The kind of bisectors most commonly considered are those of the form f(z) = O(z®).
For them the above summation takes a value O(y/n) if @ < 1/2, a value O(n®) if a > 1/2,
and a value O(y/nlogn) if a = 1/2. For graphs with these kind of bisectors it has been
shown that the above areas can be obtained with the following maximum wire length

[41].

Theorem 6.2 A n-node graph with a f(x)-bisector, where f(x) = O(x®), can be laid
out in an area of O(n) with mazimum wire length of O(\/nlogn) if « < 1/2, in an area
of O(n*®) with mazimum wire length of O(n®) if @ > 1/2, and in an area of O(nlog®n)
with mazimum wire length of O(y/nlogn/loglogn) if a = 1/2.

6.1.3 Bifurcators

Bifurcators appeared as an alternative to separators. They solve some of the problems
and restrictions of the separator framework.

Definition 6.2 A graph has a I'-bifurcator either if it has only one node or if by remov-
ing at most I of its edges it can be divided into two subgraphs, both with F[\/2-bifurcators.

The definition of bifurcator implies a way to iteratively partition the graph so that

in the ith step of this partition process (with i = 0 initially) no more than F/y/2'
edges are removed in each partition (at the ith step of the partition process we are
partitioning 2 disjoint graphs.) Special cases of graphs will be considered based on
additional restrictions imposed in this partition process.

CHAPTER 6. VLSI LAYOUT COMPLEXITY 55

Figure 6.1: Collinear layout for K (5).

node u with vertex degree ¢, is laid out as a rectangle with sides of length at least €2(6,).

Under this model, the wire area of a layout is the number of tiles that hold either a
section of a wire or a wire crossing. The length of a wire is the number of tiles traversed by
the wire from its source node to its destination node. For technological reasons [80], the
layout area is defined as the area of the smallest rectangle that contains all the allocated
tiles of the layout. This value is fully described with the length and the width of this
rectangle. We assume that the width of a layout is the length of the shorter side of the
rectangle and the length of the layout is the length of the longer side. We also assume
that the rectangle is oriented in the grid with the longer side horizontally placed.

Figure 6.1 shows a layout for the 5-node complete graph, K(5), with layout area of
77, wire area of 55, width of 7, length of 11, and length of the longest wire of 15.

The area of a layout strongly determines its fabrication cost. It has been shown that
the larger the area, the smaller the yield of the manufacturing process [80]. Furthermore,
the reduction of the yield is exponential with the area. Therefore it is interesting to have
layouts with the least possible area.

In the other side, we also try to reduce the length of the longest wire in the layout, since
it imposes a restriction on the speed of the system [80]. This is due to the propagation
time of signals from one extreme to the other of the wire, which at the processing speeds
of a VLSI system is not negligible.

Thompson [77, 78] showed that the square of the bisection width is a lower bound on
the wire area of any network. Leighton [41] presented the crossing number as an even
tighter bound for the wire area. These fact will be used to obtain lower bounds on the
area for our networks.

6.1.2 Separators

In this chapter we consider a special kind of separators, which we denote as “bisectors.”

Chapter 6

VLSI Layout Complexity

This chapter explores the VLSI layout complexity of homogeneous product networks.
Here, we obtain lower and upper bounds on the area and wire length of layouts for these
networks.

In the following section we present relevant background for this chapter. Then we
present the lower bounds obtained. Finally, we present upper bounds derived by using
two traditional frameworks, separators and bifurcators, and a new approach based on
collinear layouts.

6.1 Foundations

In this section we start by defining the VLSI layout model used. Then, we refer to
previous popular frameworks used to derive layouts under this model: separators and
bifurcators. Finally, we will present a special kind of layouts (collinear layouts) that will
be used in this research to obtain efficient layouts for product graphs.

6.1.1 The Thompson’s Grid Model
The VLSI layout model we use was defined by Thompson [77, 78]. In this model, the

layout area is divided into square “tiles” of unit area, placed in a grid fashion. Each tile
can hold either a section of wire, a node, or a wire crossing. The wires of the layout run
either horizontally or vertically on this grid. If two wires enter the same tile they must
have different directions and they cannot change direction in the tile.

Observe that since a node is assigned to a tile, the nodes are not allowed to have
more than 4 incident wires. When a node has a degree larger than 4, Thompson has
proposed to model it with a set of adjacent tiles whose perimeter is at least the desired
degree. Although the smallest area required to have a perimeter of ¢, for a node u has
only O(é,) tiles, it is much more realistic to assume that a node with vertex degree 6,
will require area of at least Q(6,) x 2(6,). In this dissertation we shall assume that any

o4

CHAPTER 5. ALGORITHMS 33

to the square of the number of nodes of the input graph. This is the best time complexity

known for any algorithm solving this problem.
In the n x n grid it is know an algorithm that finds the tree in O(n) time. If we

consider n = N'/2, our algorithm takes O(r?Nlog N) time, that is better for a large
enough value of r.

CHAPTER 5. ALGORITHMS 52

| Factor network | Sorting | Summation | Matrix mult. | Min. weight sp. tree |
L(N) O(r*N) * O(rN) * O(rN) * O(r*Nlog N)
T(N) O(*N)* | O(rlogN) * | O(rlogN) * O(r?log” N)
S(N) O(r?log” N) | O(rlog N) * | O(rlogN) * O(r?log” N)
D(N) O(r?log” N) | O(rlog N) * | O(rlogN) * O(r?log” N)
Q1 o(@r?) O(r) * O(r) * o(@r?)

Table 5.1: Time complexity of the presented algorithms in several networks.

From the results presented, it can be observed that the time taken by the sorting
algorithm in the grid and the product of complete binary trees with bounded number
of dimensions is O(N), which is optimal. In @, the algorithm takes O(r?) time steps,
reaching the asymptotic bound of the odd-even merge sorting algorithm in the hypercube.
Although there are asymptotically better sorting algorithms for the hypercube [19], they
are not practically useful for reasonable number (< 229) of keys.

In other networks our sorting algorithm improves the computation time taken by
alternative ways of sorting. For instance, in the product of de Bruijn or shuffle-exchange
graphs we could try to embed the N"-node instance of the pure factor graph and use the
sorting algorithm for the factor graph to sort in the product graph. If we use the odd-even
merge sorting algorithm in the factor graph, this algorithm will take O(r?log® N) steps
that have to be emulated by the product graph. Since the embedding has congestion Q(r),
the emulation will not have constant slowdown, and our algorithm will be preferable. If we
consider the number of dimensions bounded then both options present same asymptotic
complexity, but our algorithm has a smaller constant.

The values obtained for the summation algorithm are asymptotically optimal, since
they match the lower bound defined by the diameter of the respective networks.

For the same reason, the time complexities for matrix multiplication are asymptot-
ically optimal. In some cases we might be poorly using the amount of processors we
have. For instance, there are algorithm that can multiply larger matrices in the grid
PLs(N) than ours. However, in this case, we can always emulate this network with any
homogeneous product network if G(N) is connected.

For most of the studied network the matrix multiplication algorithm performs very
efficiently. The implementation in the product of complete binary trees performs as
efficiently as the algorithm for mesh of trees presented in [58], while it uses less processors
(4N" — 3N"/3 opposed to N”.) The implementation in the hypercube obtains the same
time complexity as the fastest algorithm for hypercubes (in fact both algorithms turn
out to be almost the same.) Again, for products of shuffle-exchange and de Bruijn the
algorithm outperforms the option of emulating the best algorithm for the factor network.

The presented complexities for the minimum-weight spanning tree problem are worst-
case values. In most cases we obtain that at most we need a number of steps proportional

CHAPTER 5. ALGORITHMS 51

For the other algorithms, if we take as node 0 the node in the center of L(N),
then broadcasting, point-to-point communication, summation, and search of the
minimum takes at most | N/2| 41 steps. Hence, the time to obtain the summation
of N7 values in PL,(N)is r|N/2]+1, the time to multiply two N"/3x N"/? matrices
is 2r|N/2]/3 + 1, and the time to obtain the minimum-weight spanning tree of a
N"/2-node graph is 4r?| N/2| logy/s N + 1.

Product of complete binary trees. For this network we can directly apply Corol-
lary 5.1 and obtain that PT,(N) can sort N” values in O(r?*N) time steps.

If the special node 0 is the root of T'(N), it can do all the required operations for
the other algorithms in log(N + 1) steps. We can obtain, then that the summa-
tion algorithm will take rlog(N + 1) — r + 1 time steps in PT,(N), the matrix
multiplication algorithm will take 2r(log(N + 1) — 1)/3 + 1 time steps, and the
minimum-weight spanning-tree algorithm will take 47%(log(N 4+ 1) — 1) log, /s N 41
time steps.

Product of de Bruijn and shuffle-exchange networks. We can sort in their two-
dimensional instances by using the embeddings of their respective factor networks,
which will be presented in Chapter 7 and have constant dilation and congestion for
bounded number of dimensions. Given the existence of algorithms to sort n keys
in any hypercubic network in O(log®n) time, we can sort by emulation N? keys in
a two-dimensional product network in O(log® N?) = O(log® N) time steps. Then,
our algorithm will take O(r?log® N) time steps in these networks. Again, if r is
bounded the expression simplifies to O(log® N).

The diameter of S(NV) is 2log N — 1 and the diameter of D(N) is log N. This value
plus one is the time that any of the operations required by the other algorithms
require. Then we obtain that their product take, respectively, r(2log N —1)+1 and
rlog N+1 time steps to obtain the summation of N” values, 2r(2log N—1)/3+1 and
2rlog N/3+1 time steps to multiply two matrices, and 4r?(2log N — 1) logy/s N+1
and 4r%log Nlogy/s N +1 to find the minimum-weight spanning tree of a graph.

Hypercube. From the above analysis of the grid, and given that for the hypercube
N = 2, the time to sort in @, with our algorithm is O(r?).

Similarly, the time to broadcast, communicate, perform a summation, or find the
minimum in the factor graph is 2 time steps. That yields r+1 time steps to perform
the summation, 2r/3 + 1 time steps to multiply matrices, and 4r? log,/52+ 1 time
steps to find the minimum-weight spanning tree of a graph in @,.

Table 5.1 summarizes the results derived in asymptotic form. The time complexities
of the sorting algorithm marked with “*” are optimal if the number of dimensions is
bounded. The time complexities of summations and matrix multiplications are optimal,
and are also marked with “*7.

CHAPTER 5. ALGORITHMS 30

e Send w(¢) and L'(7) to the column root (0,1).
And the value of P(¢) is obtained as follows.
e Multicast the values w(i) and L'(z) from the row roots (¢,0) to every (¢, j).

e Select nodes (¢,7) such that L(¢z) = L(j). These values were already in the nodes
from the above process.

e Compute the minimum weight of the values w(i) from the selected nodes in the
column root (0,7). Make P(j) equal to the associated value L'(7) received.

e Send P(y) to the row root (j,0).

The analysis of the time steps taken by the whole process follows. In the process of
obtaining L'(7) we need to do a multicast in a PG, /(N)-subgraph, the computation of
a minimum in a PG, ;(N)-subgraph, and the communication between column and row

roots. Therefore, this first process takes %(B(N) + M(N) + 2C(N)).
The computation of P(¢) is similar and takes same amount of time. Adding these
times with the pointer jumpings, the total time taken by the set of steps described above

r(B(N)+ M(N)+2C(N))+r(B(N)+3C(N)) =r(2B(N)+5C(N) + M(N))

It is shown in [42, pp. 336-338] that this set of steps is repeated at most logy/sn =
log,/s N"/? times. Therefore, the total time taken by the algorithms is:

2

% logy/s N(2B(N) + 5C(N) + M(N))

5.6 Application to Specific Networks

Here we obtain the time taken by the presented algorithms in several product networks.
These times are subsequently compiled in Table 5.1.

Since the concatenation of execution of several algorithms for the factor graph saves
us some steps in the computation, we will apply a small trick to obtain the actual value
of the time steps taken by an algorithm. We will consider in the formulas the value of
B(N), ¥(N),C(N), and M(N) one unit less than its actual value and we will add a unit
to the final result obtained.

Grid. Schnorr and Shamir [67] showed that it is possible to sort N? keys in a 2-
dimensional grid PLy(N) in O(N) time steps. This value of S2(N) implies that our
sorting algorithm will take O(r?N) time steps to sort N” keys in PL,(N). If we
consider the number of dimensions r bounded, this expression simplifies to O(N).

CHAPTER 5. ALGORITHMS 49

5.5.2 The Minimum-Weight Spanning-Tree Algorithm

We will present now the algorithm in detail. The logic and the terminology is similar to
that used in [42, pp. 325-338]. We will refer there for some of the details of the algorithm.
The algorithm works by grouping the nodes of the graph in sets, denoted as supern-
odes. Then, it iteratively searches the minimum-weight edge incident to every supernode,
adds those edges to the list of edges of the tree, and joins the supernodes connected by
these edges. Initially, the set of supernodes is simply the set of nodes of the graph.

In the minimum-weight spanning-tree algorithm we use an algorithm to find the
minimum value of a set of values placed in the nodes of a product graph PGy(N). This
problem is similar in structure to the summation problem, and the summation algorithm
can be easily modified to obtain an algorithm for this problem. Then, if there is an
algorithm to find the minimum in G(N) in M(N) time, we can find the minimum in
PGL(N) in kM(N) time.

In the physical implementation of the minimum-weight spanning-tree algorithm, each
node (¢, 7) holds the weight w; ;. Each (row and column) root (z,0) and (0,¢) has a value
L(7) that is the identifier of the supernode to which node ¢ belongs. This value is the
smallest label of the nodes of the supernode. Additionally, each root will manipulate
other values (for instance P(¢), L'(i), or P'(7).)

Initially, the value L(z) = ¢ and P'(i) = ¢. The algorithm repeats the following set
of steps for each node 7 until all the nodes belong to the same supernode (all the values
L(7) are equal.)

e If the supernode is “available”, obtain L'(:) and P(z7).
e Execute one step of pointer jumping to obtain P'(¢) = P(P(1)).

o If P'(+) =1 and P(¢) > ¢ then ¢ is the smallest label in the new supernode and we
make P(¢) = 1.
e Execute one step of pointer jumping to obtain P(L(7)) and make it the new value
L(17).
We need to detail the first step a little more. We say that a supernode is available if
and only if P(¢) =7 and P'(j) =1 = L(j) =, for all 5.
The value L'(¢) is obtained as follows.

e Multicast the value L(7) from (7,0) to every (¢,7) and from (0,¢) to every (y,¢), for
i,j=0,..,N/*—1.

e Select nodes (¢,7) such that L(:) # L(j). These are the two values received from
the row and column roots.

e Compute the minimum of the weights w(7) of the selected nodes (¢,7) and its
associated value L(j)in (4,0), for ¢ = 0,..., N"/2 — 1. Make L'(7) equal to the value
L(j) received.

CHAPTER 5. ALGORITHMS 48

with the algorithm described in Section 5.2.1. It is easy to see that these communications
follow edge-disjoint paths.
In the heart of the algorithm there is a process that we will call “pointer jumping.”

5.5.1 Pointer-Jumping Algorithm

Let the nodes (7,0) and (0,7) both contain values X(¢) and Y (¢). The pointer jumping
process computes each value Z(i) = X(Y(7)) and leaves it in both (¢,0) and (0,%),
for 1 = 0,...,N"/2 — 1. This is a key operation of the minimum-weight spanning-tree
algorithm.

The process is done in three basic steps.

1. Simultaneously, multicast the value X (¢) from (¢, 0) to each node (¢, k) and the value
Y(j) from (0,7) to each node (k,j), for each 7,7,k = 0,..., N/ — 1. To do so we
use the broadcasting algorithm presented in Section 5.2.2 in PG, j5(N)-subgraphs
of PG,(N). The two multicast operations are applied to different dimensions and,
hence, there will be no contention. Each of them is actually the broadcasting in
several disjoint copies of PG, 3(N).

2. Select the node (/,j) such that [= Y(j), for each j = 0,..., N"/2 — 1. The se-
lected node (/,j) sends the value received from the row root to the column root
(0,4), for each j = 0,..., N'/> — 1. This can be done with multiple point-to-point
communications in disjoint PG, j5(N)-subgraphs of PG,(N).

3. Finally, each column root (0,) sends the obtained value Z(j) to its corresponding
row root (j,0), for each j =0,..., N"/2 — 1.

The time taken by the pointer-jumping algorithm can be obtained very simply. If
the time to broadcast in G(N) from the node 0 is denoted as B(/N), then step 1 takes
5B(N), since it is a multicasting in PG, /3(IV) subgraphs.

If C(N) is the maximum time taken by a point-to-point communication algorithm
between the node 0 and any other node in G(N), from the point-to-point algorithm
presented in Section 5.2.2 we see that the point-to-point communication time between a
root (0,4) and any other node (k,¢) of its column is at most $C(IV). Similarly, the time
of a point-to-point communication between a root of a row and a root of a column is at
most rC(N).

Therefore, step 2 takes time ZC(N) and step 3 takes time rC(NN). The total time
taken by this algorithm is, then,

gB(N) + gC(N) +rC(N) = g(B(N) +3C(N))

CHAPTER 5. ALGORITHMS 47

After this process, each node (i, k,j) contains the values a;) and by ;, and it can
compute the product of these values. All it remains to do is to add these values to obtain
¢; ;. This is done by using the summation algorithm described in the previous section, to
add all the products held in nodes (i, k, j), for k = 0,..., N"/> — 1, into the nodes (3,0, 5),
for 4,7 = 0,..., N'/?> — 1. This process is done by applying the summation algorithm to
disjoint copies of PG, /3(N), subgraphs of PG,(N).

At the end of this process the product has been computed. The element ¢; ; of C' is
held in node (4,0, j).

The total time taken by the execution of the algorithm depends on the time required
by a broadcasting in G(N) and a summation in G(N). Let B(N) be the time to broadcast
in G(N) from the node 0, and ¥(V) the time to obtain the summation in G(N) into
the node 0. From the above sections, we know that the time to broadcast from 0...0 in
PGL(N) is EB(N), and the time to obtain the summation into 0...0 is kX(N).

Therefore, to multicast the values of the matrices A and B to all the nodes takes
zB(N) time and to compute the elements of C' takes £X(V) time. The total time taken
by the algorithm is, hence,

S(B(N)+ Z(IV)).

Clearly, the algorithm can be used to multiply non-square matrices. The choice of
dividing the labels of the PG, (N)-nodes into three equal-length subtuples simplifies the
analysis, but is not mandatory. The division of the labels can be done in such a way that
it adapts the best to the specific dimensions of the matrices.

5.5 Minimum-Weight Spanning-Tree Algorithm

In this section we solve the problem of finding the minimum-weight spanning-tree in
a graph described by its weight matrix W. Let us assume the nodes of the graph are
labeled from 0 to a value n—1. The matrix W will have dimensions n X n and its element
w; ; 1s the weight of the edge connecting node ¢ to node j.

As we did in the previous section we assume that the set of nodes of G(N)is {0, ..., N—
1}. The maximum distance from a node to all the others is minimum for the node 0 and,
therefore, the broadcasting time in G/(V) from 0 is minimum.

We assume that the number of dimensions of the product network, r, is even. Then,
we divide each tuple of a node of PG, (N) into two subtuples of equal length, each seen
as a N-ary number. Hence, we see the nodes of PG, (N) as labeled with a pair of values
(¢,7), where i, j = 0,..., N"/2—1. Initially, node (z, j) holds the element w; ; of the weight
matrix W.

We call the node (i, 0) the “root” of “row” i, for i = 0, ..., N'/2 — 1. Similarly, we call
(0,4) the root of “column” j, for j = 0,..., N'/2 — 1. Tt will be very common to transfer
information between the root of the row ¢, (¢,0), and the root of the column ¢, (0,7), for
i =0,...,N"/> —1. This can be done with simultaneous point-to-point routings obtained

CHAPTER 5. ALGORITHMS 46

lems have a similar structure as the summation problem (obtaining the maximum, the
minimum, etc.) Algorithms for these problems can be obtained with straightforward
modifications of the summation algorithm presented here. For instance, in Section 5.5
we use an algorithm to obtain the minimum of a set of values that is assumed to have
the same structure as the presented summation algorithm.

5.4 Matrix-Multiplication Algorithm

This section is devoted to present an algorithm to perform the product of two n x n
matrices in a n>-node network. Let A and B be the matrices to be multiplied, then we
want to obtain an algorithm that computes a product matrix C'. If a;; are the elements
of matrix A, and by ; are the elements of matrix B, for ¢,k,5 = 0,...,n — 1, then the
element ¢; ; of (' is obtained as

n—1
Cij =Y aikby;
k=0

Let first introduce notation that will simplify the presentation. For the sake of sim-
plicity, we will assume that the set of vertices of the graph G(N) is {0,..., N — 1}. The
time taken by a broadcasting in G(N) is assumed to be minimum if started from node
0 and, similarly, the time taken by a summation is assumed to be minimum if the fi-
nal result is held in node 0. Then, the time taken by the broadcasting from, and the
computation of the summation into, the node 0...0 is minimum in PG, (N).

We also assume that the number of dimensions of the product graph PG, (N) is a
multiple of 3. Then, the label of each node of PG, (N) is a tuple of length multiple of 3,
where each symbol of the tuple is between 0 and N — 1.

We divide now each of the tuples into three subtuples of same length. Then, each
node is considered labeled with a triple of subtuples, each of length r/3. Fach subtuple
is a sequence of symbols between 0 and N — 1 and, therefore, can be considered as a
N-ary number that, in decimal, has a value between 0 and N*/% — 1.

Therefore, by the above process, we have each node of PG, (N) labeled with a triple
of values (i, k,j), where i, k,j € {0,..., N'/> —1}. Observe that two nodes with two of
the elements 7, k, 7, equal are in a same PG, /3(N)-subgraph of PG, (N).

Then, we assume that the element «;j of the matrix A is initially held in node
(7,k,0) and the element by ; of the matrix B is initially held in the node (0,k,y), for
ik, =0,..., N/3—1.

The algorithm starts by simultaneously multicasting in the appropriate PG, /3(N)
subgraphs the values of the elements of A and B. Then, a; is sent from node (1, k, 0)
to all the nodes (4, k,j), for j = 0,..., N"/* — 1. Simultaneously, the value by ; is sent
from node (0, k, j) to all the nodes (i, k, j), for ¢ = 0,..., N/ — 1. To do so we use the
broadcasting algorithm presented in Section 5.2.2. Since different dimensions are used in
each multicasting, no contention can be observed in the network.

CHAPTER 5. ALGORITHMS 45

5.2.2 Broadcasting Algorithm

Similarly, a broadcasting algorithm for PG, (N) can be simply derived from a broadcast-
ing algorithm for GG(N). The algorithm chooses an order in the dimensions and applies
the broadcasting in each of the G(N)-subgraphs of each dimension in that order. Then,
if we want to broadcast from the node x = x,...xy to all the nodes of PG, (N) by us-
ing the dimensions in descending order, we first broadcast from x to all the nodes in
its dimension-r G(N)-subgraph. Then, we broadcast from all the nodes of this G(N)-
subgraph to all the nodes in their dimension-(r — 1) G/(N)-subgraphs, and so on.

Again, if the broadcasting algorithm for G(N) takes optimal time, then this algorithm
also takes optimal time.

5.3 Summation Algorithm

Here we present an algorithm to compute the summation of a set of N” values in PG, (N).
Initially, each value is in a different node of the network. At the end of the execution
of the algorithm the value of the summation will be obtained in one given node of the
network.

We initially assume the existence of a summation algorithm for G(N). This algorithm
computes the summation of the N values held in the N nodes of the network in X(V)
time steps, and leaves the result in a given node u of G(N).

Our algorithm applies the algorithm for G(N) to the G(N)-subgraphs in each di-
mension in some order. After this process, the desired value will be held in the node
r = z,...r1, where ; = u for 2 = 1,...,r. Since we apply r times the summation algo-
rithm for G(N), the time taken by this algorithm is rX(N).

We can simply observe that the algorithm actually computes the desired summation.
If we consider the dimensions in ascending order, we first apply the summation algorithm
to all the dimension-1 G(N)-subgraphs. Then, after this step each node y,...ysu will
contain the summation of values of the corresponding dimension-1 G(N)-subgraph. We
can then apply the summation algorithm to each dimension-2 G(N)-subgraph in the uth
PGY(N) subgraph of PG,(N). In this step the summations obtained in the previous step
are added up. At the end of this step each node y,...ysuu will contain the summation of
the values of a different PG!*(N) subgraph.

We apply this process to each dimension. In the ith step we apply the summation
algorithm for G(N) to each dimension-i Gi(N)-subgraph of the (u,...,u)th PGL(N)
subgraph of PG, (N). At the end of this step each node y,...y;11u...u will contain the
summation of the values of a different PGL-(N) subgraph of PG, (N).

After r steps as presented, the summation of all the values will be obtained in the node
u...u. All the computation performed has been the execution r times of the summation
algorithm for G(N) and, therefore, the total execution time of the algorithm is r¥(N).

This algorithm will be used in the following section. Observe that several prob-

CHAPTER 5. ALGORITHMS 44

Third, it is always possible to obtain an algorithm for PG5(V) with complexity O(N),
given that G/(N) is connected. To do so we simply emulate the 2-dimensional grid in
PG5 (N) by embedding the linear array onto each G/(N) subgraph as shown in Theorem
3.15 of [42] . Since this embedding has constant dilation and congestion, the emulation
has constant slowdown [37]. Therefore, the O(N)-complexity algorithm presented by
Schnorr and Shamir [67] can be emulated by PGy(N) with complexity O(N). Hence,
any arbitrary N”-node r-dimensional product network can sort with complexity O(r?N).

The combination of these three results yields the proof of the corollary. []

This corollary will be used in Section 5.6 to obtain the time complexity of this algo-
rithm in several product networks.

5.2 Routing Algorithms

Many routing algorithms have been already presented for product networks. These algo-
rithms cover most of the routing needs of a network under the SIMD model of computa-
tion. Therefore, we will not present new routing algorithms in this section and we refer
the interested reader to the specific source (see Section 1.2.)

However, to simplify the reference, we briefly present here two of the simplest algo-
rithms, presented in [86]. These algorithms perform point-to-point communication and
broadcasting in the product network, respectively, and they will be used in the following
sections.

5.2.1 Point-to-Point Routing Algorithm

If we assume the existence of a point-to-point routing algorithm for G(N) the point-
to-point routing algorithm in PG, (N) from a node x to a node y simply applies the
algorithm for G/(NV) to each dimension in which and y differ, in some arbitrary order.
For instance, if + = x,...x;y and y = y,...y; differ in every symbol position and the
algorithm is applied to the dimensions in descending order, then the path from z to y
will be as follows:

T YTy 1] — oo — YpoYop — Y

Where the ith arrow represents the path defined by the algorithm for G(N) in the
corresponding dimension-i G(N)-subgraph from x; to y;, for i = 1,...,r.

It is easy to see that, if the algorithm for G(N) yields a shortest path, this algorithm
also yields the shortest path between any to nodes of PG, (N). This fact follows from
Observation 2.2, that implicitly states that the traversal of an edge in PG, (N) changes
only one of the symbol positions of the node labels.

CHAPTER 5. ALGORITHMS 43

Therefore, the value of My (N) can be recursively expressed as:
Mi(N) = My_1(N) +285:(N) + 4R(N)

with initial condition

M3(N) = 83(N)

that yields
Mi(N) =2(k = 2)S2(N) + 4(k — 2)R(N) 4+ S2(N)

We can now derive the value of S,(N).

Theorem 5.1 Sorting N” keys in PG.(N) takes S,(N) = (r — 1)2Sa(N) +2(r — 1)(r —
2)YR(N) time steps.

Proof: The time taken to sort N” keys in PG, (N) is the time taken to sort each 2-
dimensional subgraph PG!"~2(N) and then merge blocks of N sorted sequences into
increasing number of dimensions. The expression of this time is as follows:

S,(N) = S5(N) + Ms(N) + My(N) + oo+ M,_y (N) + M (N)

r

= (r — D)S3(N) + (282(N) + 4R(N)) > (i — 2)

= (r —1)’8(N) +2(r — 1)(r —2)R(N)

The following corollary presents the asymptotic complexity of the algorithm. Since
S2(N) may not be easy to obtain for an arbitrary network, the corollary uses upper
bounds on this parameter to obtain expressions of the complexity only dependent on

S(N).

Corollary 5.1 The time complexity of sorting N keys in PG.(N) is at most O(r?
min{Sy(N),S(N)log N, N}).

Proof: First, since the value S3(N) is never smaller than R(N), the time obtained in
Theorem 5.1 is S, (N) = O(r*Sz(N)).

Second, it is trivial to obtain a sorting algorithm for PG5 (N) that takes O(S(N)
log N) time steps, by simply generalizing the algorithm presented for the grid in [65] and
[66]. This yields that, at worse, our algorithm has complexity O(r*S(N)log N) for any
arbitrary network.

CHAPTER 5. ALGORITHMS 42

Step 2 can be simply implemented by selectively permuting the obtained subsequences
along dimension 1. There are several possibilities for this permutation that are valid. We
have presented one in the previous section. Following this option, the key in node z,...z37¢
will be routed to the node x,...x55((i4+7) mod N). It can be easily seen that this respects
the condition of each row having one subsequence from each of the original sequences
and one subsequence B; y_;. Now each PG}(N) subgraph contains one subsequence from
each original sequence.

The above routing has placed each subsequence in a different PGL*(N) subgraph,
each sorted in snakelike order. We can recursively merge these sequences into a sorted
sequence of N"7! keys. If the number of dimensions is r — 1 = 2, this step is done by
directly sorting with an algorithm for PG5 (V). In the proof of Corollary 5.1 we present
ways to obtain such an algorithm if it is not already available.

Step 4 is directly done by considering the dimension 1 of PG.(N) in the order.
No movement of data is involved in this step and we obtain a sequence sorted almost
completely.

The cleaning of the dirty area is done as described in above sections. We take each
2-dimensional subgraph PG2+"(N) and sort the keys in it using alternate orders in
consecutive subgraphs (order depends on whether ps(x) is either odd or even.) We then
perform two steps of odd-even transposition. In the first step we make the nodes with
ps(x) odd exchange, if appropriate, their key with the corresponding node (same node) in
the predecessor 2-dimensional subgraph and those with ps(z) even with the corresponding
node in the successor 2-dimensional subgraph. In the second step the nodes with ps(x)
odd exchange with the successor and those with ps(z) even exchange with the predecessor.
A final sorting on each of the 2-dimensional subgraph ends the merge process.

Analysis of Time Complexity

To analyze the time taken by the algorithm we will initially study the time taken by the
merge process in a k-dimensional network. This time will be denoted as My(N).

Lemma 5.3 Merging N sorted sequences of N*=1 keys each in PG1(N) takes M(N) =
2(k = 2)S2(N) + 4(k — 2)R(N) + S2(N) time steps.

Proof: The time taken by step 1 of the merge process is just the time to reverse the order
of the keys in a GG(N)-subgraph. This process can be done with a permutation routing in
G(N), that takes time R(N). Similarly, step 2 can be done with a permutation routing
along dimension 1.

Step 3 is a recursive call to the merge procedure for £ — 1 dimensions and, hence, will
take My_1(N) time. Step 4 does not take any computation time. Finally, step 5 takes
the time of one sorting in PG5(N), two permutation routings in G/(IV), and one more

sorting in PG(N).

CHAPTER 5. ALGORITHMS 41

In this section we assume G/(N) be a connected graph, with vertex set {0,1,..., N—1}
and arbitrary edge set. For an arbitrary factor graph G(N), vertex labels can define the
ascending order of data when sorted. However we need to define an order in the nodes
of PG,(N), which will determine the final location of the sorted keys. The order defined
is known as “snakelike” order. For one dimension it is simply the order defined in G(N),
from 0 to N — 1. Given an order for the nodes of PG/_1(N), the order for PGy(N) is
defined as follows: if u < v then any node in the uth subgraph PG%(N) precedes any
node in the vth subgraph PG§(N). If u = v then the uth subgraph PG5(N) has the
same order defined as PGy_1(N) if u is even, and reverse order if u is odd.

The order defined guarantees several properties:

e Any two consecutive nodes always belong to a common G/(N) subgraph.

o Let @ = x,..2;p120,2,_1...01, where 2; < N — 1, be a vertex of PG, (N) and let
pi(x) = >k=; Tk- Then, x precedes Ty ipr(@; + Day_g..2q if and only if piq(2)
is even.

e Two consecutive PG"~%-"(N) subgraphs of PG,(N), for k = 1,....,r — 1, have
reverse orders.

In the rest of this section we present the sorting algorithm for PG, (N). The heart
of the algorithm resides in the multiway-merge process that takes N sorted sequences,
placed in the N subgraphs PGJ(N) and combines them into one sorted sequence in
PGL(N). To do so, recursive calls to the merge process are used when necessary.

Once the merge process is available, the sorting is done by initially sorting sequences
of N? elements placed in the PGL+"~2(N) subgraphs and iteratively merging groups of
N sequences in larger sequences until only one sorted sequence remains. The reason for
starting the iteration with sequences of length N? instead of IV is in the nature of the
merge process, since sorting them is faster than applying the merge step once more.

Implementation of the Multiway-Merge Algorithm in PG, (N)

Now we present in detail the implementation of the multiway-merge algorithm in PG, (N).
The initial scenario is N sequences, of N"7! keys each, sorted in the N subgraphs
PGY(N).

Step 1 of the merge process is done as follows. Reverse the order of each dimension-2
G/(N)-subgraph such that ps(z) is odd. This makes all the dimension-2 G/(NV)-subgraphs
sorted in non-decreasing order. After this process each PGL(N) subgraph is a snakelike-
order sorted sequence of N-key sequences, each sorted in non-decreasing order. Then,
the sequence can be divided in N subsequences by just fixing the second dimension to a
value j, for j =0,..., N — 1. The sequence B; ; is then contained in the (¢, j)th subgraph
PGMH?(N) and is already sorted in snakelike order.

CHAPTER 5. ALGORITHMS 40

One of the odd-even transpositions will not affect this distribution, while the other
is going to move zeroes from the second sequence to the first and ones from the first to
the second. Depending on whether there are more zeroes than ones or vice-versa in these
two sequences, after these two steps H; is filled with zeroes or H;y; is filled with ones,
respectively (see Figure 5.6.(c).) Therefore, only one sequence contains zeroes and ones
combined. The last step of sorting will sort this sequence and the whole sequence J will

be sorted (see Figure 5.6.(d).)]

5.1.3 Sorting Algorithm

Using the above algorithm, and an algorithm to sort sequences of length N2, it is very
simple to obtain a sorting algorithm to sort a sequence of length N7, for r > 2.

First divide the sequence in subsequences of length N? and sort each subsequence
using the known algorithm. Then, iteratively apply the following process until only one
sequence remains:

e Group all the sorted sequences obtained in sets of N sequences.

o Merge the sequences in each set into a larger sorted sequence using the algorithm
shown in the previous section.

In the next section we show how to implement this algorithm in any homogeneous
product network and we study the time complexity of the resultant general sorting algo-
rithm.

5.1.4 Implementation in Homogeneous Product Networks

The purpose of this section is to obtain a general result of the form: “if the graph G(V)
can sort N keys in f(N) time, then PG, (N) can sort N” keys in g(N) time.” Once we
obtain such a general result, we will then be able to tune the general algorithm for specific
instances of product networks. Thus, it is reasonable to initially assume that there exists
a sorting algorithm for G/(IV). For example, since the hypercube), is nothing but the
r-dimensional product of 2-node linear arrays, the assumed sorting algorithm consists of
a single step of compare-exchange operation. For other factor graphs, such as products
of de Bruijn graphs, we can use the well-known Batcher’s algorithm to sort the N values.
In the rest of this paper, the time complexity of this sorting algorithm will be denoted as
S(N). Similarly, we assume the existence of a permutation routing algorithm that takes
R(N) time steps to execute any permutation in G(N).

Before the sorting algorithm starts, each node of PG, (N) holds one of the keys to
be sorted, and during and after the sorting only one key will be held in each node. The
time taken to sort in PG, (V) will be denoted S,(N).

CHAPTER 5. ALGORITHMS 39

for a window of keys of length at most (N — 1)N.

Proof: Let z; be the number of zeroes in sequence A;, for ¢ = 0,..., N — 1. The rest
of elements in A; are ones. Step 1 breaks each sequence A; into N subsequences B, ;,
J =0,...,N—1. Given the nature of this process, the number of zeroes in a subsequence
Bijis |z/N| 4 fi(zi), where f;(x) = 1 if and only if @ mod N > j. Observe that
fv-i(x) =0 for any .

After recombining the subsequences as defined in step 2, each row ¢, for: =0, ..., N—1,
has one subsequence from each of the original sequences. Also in each row there is a
sequence of the form B;y_1, whose associated f function has a value fy_1(z;) = 0.
Hence, the total number of zeroes in the sequences of one row is |z1/N| + |z2/N| + ...+
|zn/N| + gi, where g; is the summation of the values of f functions of the subsequences,
and therefore can vary from 0 to NV — 1. Step 3 places all these zeroes at the beginning
of a new sequence C}.

In step 4 we interleave the N sorted sequences into D by taking one key from each
sequence (; at the time. Any two sequences C; can differ in at most N — 1 zeroes, since
g; can only vary from 0 to N —1, for : =0, ..., N — 1. Since the interleaving starts taking
one key from the 'y and ends with C'ny_q, the worst case will occur when ¢go = 0 and
gn-1 = N — 1. In this case we will have a distance of (N — 1)N between the first 1 and
the last 0, which defines the unsorted (dirty) area in the sequence D. []

The worst case after step 4 is shown in Figure 5.5. In this figure, after z = |z1/N| +
|zo/N|+...4 |25 /N | columns of zeroes we see that Cy has go = 0, while the last sequence
Cn-1 has gy_1 = N — 1. That yields a dirty area that spans along N — 1 columns of N
keys each, as shown.

Now we can show how the last step actually cleans the dirty area in the sequence.

Lemma 5.2 The sequence J, obtained after the completion of step 5, is sorted.

Proof: We know that the dirty area of the sequence D, obtained in step 4, has at most
length (N — 1)N. If we divide the sequence D in consecutive subsequences of N? keys,
FE;, the dirty area can either fit in exactly one of these subsequences or be distributed
between two adjacent subsequences.

If the dirty area fits in one subsequence £, after the initial sorting and the odd-even
transpositions the sequence H; contains exactly the same keys than the sequence E;, for
J =0,..., N2, Then, the last sorting in each sequence H; and the final concatenation
yield a sorted sequence J.

However, if the dirty area is distributed between two adjacent subsequences F; and
Fit1, we have two subsequences with zeroes and ones combined. Figure 5.6.(a) presents
an example of this initial situation. After the first sorting, the zeroes are located in one
side in sequence F; and in the other side in sequence Fi;1 (see Figure 5.6.(b).)

CHAPTER 5. ALGORITHMS 38

T T T
1 [1
1 | |
1 I 1
1 [1
1 | |
1 | |
1 | |
| 1 |
| 1 |
1 | |
| 1 |
| 1 |
| 1 |
1 | |
| 1 |
| 1 |
| 1 |
1 | |
| 1 |
| 1 |
| 1 |
1 | |
| 1 |
| 1 |
| 1 |
1 | |

C L2 0 1 2 Co
LI I LI B LI I N

EEEE |REFRR HHHH 2
€) () (© (d)

Figure 5.6: Clearing of the dirty area.

This step is illustrated in Figure 5.6. In this figure we take groups of N adjacent
columns in Figure 5.5 and place them in single columns as initial situation. Then,
each column in Figure 5.6.(a) is one subsequence F;, for ¢ = 0,...., N""* — 1. In
the figure we present the dirty area divided between two columns. Figure 5.6.(b)
presents the sequences F; obtained after sorting the columns in alternate orders.
The situation after the steps of odd-even transposition is shown in Figure 5.6.(c),
and Figure 5.6.(d) presents the final sorted sequence.

We need to show that the described process actually merges the sequences. To do so
we use the zero-one principle which allows us to assume that the domain of keys to be
sorted is {0,1}, and to generalize the observed properties to any domain of keys.

The first property is stated as a lemma.

Lemma 5.1 The sequence D, obtained after the completion of step 4, is sorted except

CHAPTER 5. ALGORITHMS 37

order

V4 N-1

Figure 5.5: Sequence D obtained after interleaving. The order goes from left to right
taking each column from top to bottom. The shaded area is filled with zeroes and the
white area with ones. The boundary area has at most N — 1 columns, as shown.

sorted sequences from top to bottom in Figure 5.4.

We prove below that D is almost sorted, since there is a potential dirty area (window
of keys not sorted) of length at most N(N—1). This situation is shown in Figure 5.5,
where having completed step 3, the sorted sequences are interleaved by following
the vertical dimension one column at a time from left to right.

5. Clean the dirty area. To do so we start by dividing the whole sequence D =
(do,dy,...,dnr_1) into N"=% subsequences of N? consecutive keys each. If we denote
these subsequences as E;, for i = 0,..., N2 — 1, the ith subsequence has the form

B = {din>, dinay1, oo dinoyne_y).
Then, we sort the subsequences in alternate orders, i.e. FE; is transformed into a

sequence [}, where F; contains the keys of F; sorted in non-decreasing order if ¢ is
even or in non-increasing order if 7 is odd, for 1 = 0,..., N"72 — 1.

Now, we apply two steps of odd-even transposition between the sequences Fj, for
i = 0,...,N"72 —1. In the first step, each pair of sequences F; and Fjy,, for i
even, is transformed into two sequences G; = (min{fio, fir10}, min{fi1, fix11},
'7min{fi,N2—17 fi-l—l,N2—1}> and Giyy = (max{fio, fix10}, max{fi1, fiyi1},
max{ f; N2—1, fiy1,n2-1}). In the second step, each pair of sequences Gv; and G4y, for
i odd, is transformed into two sequences H; = (min{gio,gi+10}, min{gi1, git11},
'7min{gi,N2—17 9i+1,N2—1}> and Hipy = (max{gio, gix10}, mar{gii, Gix11},
mar{g; n2_1, Jiy1,N2-1})-
Finally, we sort each sequence H; in non-decreasing order, generating sequences
I, for t = 0,..., N2 — 1, and concatenate all these sequences into a single sorted
sequence J = (190, 20,1, -y L0N2=15 11,05 Ui 15 «ooy TLN2—15 «oey INT=2_1,0, ENT=2_11,
Z.Nr—2_17N2_1>.

CHAPTER 5. ALGORITHMS

B 0,0 B 0,1 B 0,2 B O,N-1
B 10 B 11 B 12 B 1,N-1
B 2,0 B 2,1 B 2,2 B 2,N-1
B N-1,0 B N-1,1 B N-1,2 B N-1,N-1

36

Figure 5.2: Situation after step 1: each sequence A;, 1 =0, ..., N —1, has been distributed

into NV subsequences B; ;, j = 0,..., N — 1. Each of the subsequences is still sorted.

B 0,0 B N-1,1 B N-2,2 B 1,N-1
B 10 B 0,1 B N-1,2 B 2,N-1
B 2,0 B 11 B 0,2 B 3,N-1
B N-1,0 B N-2,1 B N-3,2 B O,N-1

Figure 5.3: Situation after the recombination of subsequences done in step 2.

sorting algorithm for sequences of length N? can be used, because a recursive call
to the merge process would be more costly in time. The situation after this step is

illustrated with Figure 5.4.

4. Interleave the obtained sorted sequences C; = (¢; 0, ¢;1,

ey Cinr=1_1), for 1 =0,...,

N — 1, into one single sequence D by alternatively taking one key from each
sequence. Then, the sequence D will have the form (coo,¢10,..., cN=1,0,C01, €115

ey CNZ1 1y ees CONT=1-1, €1 N7=1_1, ..., CN—1 N—1_1). Lhis is equivalent to reading the

Figure 5.4: Situation after merging the subsequences in each row.

CHAPTER 5. ALGORITHMS 35

Figure 5.1: Initial situation before the merge process starts. Each sorted sequence is
represented as a horizontal block (a row.)

To show the correctness of the proofs we will use the zero-one principle due to Knuth
[36]. The zero-one principle states that if an algorithm based on compare-exchange
operations is able so sort any sequence of 0’s and 1’s, then it sorts any arbitrary sequence
of keys. Thus, we will assume that we are only dealing with sequences of zeroes and ones.

5.1.2 Multiway-Merge Algorithm

In this section we describe the algorithm to merge N sorted sequences, A; = (a; 0,1, ...,
a;nr-1-1), for ¢ = 0,...,N — 1, into a large sorted sequence. The initial situation is
pictured in Figure 5.1.

The merge process is implemented in the following steps:

1. Distribute the keys in each sorted sequence A; into N sorted subsequences B, ;, for
i=0,..,N—1and j =0,....,N — 1. Subsequence B;; has the form (a;;,a; j4n,
Ui 42N oo Qi jp(NT—2—1)N)s for 2 = 0,..., N =1 and j = 0,..., N — 1. Note that the
obtained subsequences are sorted, since all the keys in one subsequence B; ; come
from the same sorted sequence A; and are placed in the subsequence in the same
order. In Figure 5.2 we illustrate the situation after the completion of this process.
Each of the N rows contains N sorted subsequences.

2. Recombine the subsequences in the rows, so that each row has exactly one subse-
quence from each original sequence and exactly one subsequence of the form B; y_1.
This can be done, for example, by cyclicly rotating the jth column of subsequences
in Figure 5.2 by j positions, for j = 0,...., N — 1. As a results, the ¢th row, for : =
0,..., N—1, will contain the subsequences B; o, B(i—1) mod N,15+++> Bi—N+1) mod N.N-1-
The result of this process is illustrated in Figure 5.3.

3. Merge the N subsequences in each row ¢ into a single sorted sequence C;, for
t=0,..., N—1. This is done with a recursive call to the multiway-merge process if
the number of keys in the row, N"7!, is at least N3. If the number of keys is N? a

CHAPTER 5. ALGORITHMS 34

affect only in a small amount to the final result, and will not affect the asymptotic analysis
at any point. However, in order to obtain exact values when applying the algorithms to
concrete networks, we will consider this fact and count the steps accurately.

Finally, in many algorithms we will assume that a node can simultaneously manipulate
messages through all its communication links. This model of communication is known
as the multiport model, and will be assumed in the rest of this chapter.

5.1 Sorting Algorithm

In this section we develop an algorithm to merge N sorted sequences into a single sorted
sequence. We call this operation a “multiway merge.” From the multiway-merge oper-
ation we derive a sorting algorithm, and we show how to use it to obtain an efficient
sorting algorithm for any homogeneous product network. The obtained algorithms run
very efficiently on product networks since their underlying structure is very well-suited
for product networks.

We start by giving some specific definitions and notation for this section only. Then,
we present our multiway merge algorithm and show how to use it for sorting. We continue
by showing how to implement the multiway merge sorting algorithm in any homogeneous
product network and analyze its time complexity.

5.1.1 Definitions and Notation

A sorted sequence is defined as a sequence of keys (ag,a,...,a,-1) such that ¢y <
a; < ... < a,—1. The multiway-merge algorithm combines N sorted sequences A; =
(@i 0,1y ey @ig1), fori =0,..., N—1,into a single sorted sequence J = (jo, j1, +vs JuN-1)-

For simplicity, we assume n to be a power of N, N"~!, where r > 2.

In order to build an intuitive understanding of the basic idea of the merge operation,
we assume that the keys to be sorted are placed in a two dimensional area, as shown in
Figure 5.1. Then, in the proof we can meaningfully use the terms row and column when
referring to groups of keys. For instance, we initially assume that each sorted sequence
Aj fori=0,..., N —1, is in a different row (see Figure 5.1.)

To merge N sequences of N"7! keys each, we initially assume the existence of an
algorithm which can sort N? keys. We make no assumption in regards to the efficiency of
this algorithm as yet. We might note here that our assumption is not due to a limitation of
the proposed approach, because we can recursively apply the same algorithm to sequences
of length N? taking a new of number of sequences to be merged (for instance M = v/N)
until the sequence length reduces to O(1) keys which will then take constant time to
sort on every network. The purpose of this assumption is to maintain the generality of
discussions independent of the method used to implement this process. For instance, in
our networks we assume this operation as basic, and obtain the time complexity based
on the time of performing this sorting.

Chapter 5

Algorithms

In this chapter we present several algorithms that run efficiently in homogeneous product
networks. One of the most important properties of all these algorithms is that they only
depend on a few characteristics of the factor graph. All of them can be executed in any
homogeneous product network without modification.

We start by presenting a sorting algorithm based on Batcher’s odd-even merge sorting
algorithm. Here we do a non-trivial generalization of its odd-even merge to obtain an
algorithm very well-suited to product networks.

We follow by recalling two simple known routing algorithms, that will be used in other
algorithms developed here. Then, an algorithm to compute the summation of several
values is presented. This algorithm can be easily modified to solve other problems with
similar structure.

Then, we derive a matrix-multiplication algorithm that uses the broadcasting and
summation algorithms mentioned. Finally, we generate a minimum-weight spanning-tree
algorithm, that uses an algorithm to find the minimum of a set of values trivially derived
from the summation algorithm.

After the application of the algorithms generated to several product networks we find
that they perform very efficiently in most of the cases, reaching the asymptotic time
complexity of the best practical algorithms known.

One execution step in an algorithm involves the input of some values into each node
through the links incident to it, some computation done in the node, and the output of
some values through the node links. Of course, the number of values input or output in
one step is bounded, and the size of each is also bounded. Therefore, the time taken by
the step is considered constant.

In many of the algorithms we start with simple algorithms for the factor network and
apply them in order to compose the desired algorithm. Note that the last step of one
algorithm and the first of the following can be combined and counted as a single step in
the overall algorithm. In order to simplify the expressions we will not consider this fact
when obtaining the general expressions of the time complexity of the algorithm. This will

33

CHAPTER 4. EMBEDDING PROPERTIES 32

Corollary 4.4 PR, (N) is a subgraph of PD,(N), PC.(N), or PB,(N).

The same theorem can be used to show this corollary, from the existence of a hamil-
tonian path in the shuffle-exchange graph [25].

Corollary 4.5 PL,(N) is a subgraph of PS,(N).

Since we know that the cube-connected cycles, C'(N), is a subgraph of the wrapped
butterfly, B(/N), by using the same theorem, we obtain that PC,.(N) is a subgraph of
PB,(N).

There are embeddings between S(N) and D(N) with dilation 2 and congestion 2.
Then, the use of corollaries 4.1 and 4.2 yields the following.

Corollary 4.6 PS,.(N) can be embedded onto PD,(N), and vice-versa, with dilation 2

and congestion 2.

This corollary shows that the products of these networks are computationally equiva-
lent, the same way the factor networks are. Let us consider now the product of complete
binary trees, PT,(N). Corollary 4.3 gives us that the torus can be embedded onto this
network with dilation 3 and congestion 2. If we map the nodes of T'(N) into the nodes of
D(N + 1) following the labeling shown in Definition 2.8 and Figure 2.6, we see that the
former is a subgraph of the latter. Therefore, PT,.(N) trees is a subgraph of PD,(N +1).

Observe that embeddings imply other embeddings. For instance, this last mentioned
fact implies that PT,(N) can be embedded into PS,.(N + 1), since PD,(N + 1) can.

We want to note that sometimes it is interesting to work with instances of product
networks and consider them as factor graphs to obtain some results. This is very useful,
for instance, if we are dealing with the hypercube.

Corollary 4.7 PT.(N) can be embedded into the (rlog(N + 1))-dimensional hypercube

with dilation 2 and congestion 1.

This result is a direct consequence of the existence of a dilation-2 congestion-1 em-
bedding of the complete binary tree into the hypercube [31].

CHAPTER 4. EMBEDDING PROPERTIES 31
G e

b <> d

:]

Figure 4.1: Obtaining G'(Ng/) from G(Ng)

Since G'(Ng+) obtained this way is a subgraph of H(Ng), apply the above theorem. m

Corollary 4.2 [fG(Ng) can be embedded into H(Ng) with congestion ¢, then PG, (Ng)
can be embedded into PH,(Ng) with congestion c.

Proof: An embedding of G/(N¢) into H(Ng) with congestion cost ¢ directly induces the
claimed embedding for PG, (Ng) in PH,(Npy). []

Note that the expansion of the embedding between factor graphs is Ny /Ng. The
presented embeddings have, then, expansion (Ng/Ng)", that grows exponentially with
the number of dimensions. However, in most of the embeddings found in this research
the expansion of the embeddings between factor graphs is practically 1, and the resulting
expansion for product graphs is also practically 1.

The above results can be used to obtain very powerful results for any homogeneous
product graph. For instance, we can use the embedding of the N-node ring onto any V-
node connected graph presented in Theorem 3.15 of [42] to show the following corollary.

Corollary 4.3 If G(N) is connected, then the N"-node r-dimensional torus can be em-
bedded onto PG, (N) with dilation 3 and congestion 2.

Observe that this result presents that practically any product network can efficiently
emulate the torus. This gives an idea of the power that any product network has just by
belonging to this class.

4.2 Application to Specific Networks

We apply now the above results to prove embeddings between product networks. Many
others can be presented, but we do not attempt to make the list exhaustive. This
compilation simply shows the power of the above simple results.

Since the de Bruijn, cube-connected cycles, and wrapped butterfly graphs contain a
hamiltonian cycle, it is directly implied by Theorem 4.1 that they contain the torus as
subgraph.

Chapter 4

Embedding Properties

The embedding results of this research are among the most important results since they
show a way of emulating one network by another. In the context of product networks, the
utility of embedding results is further emphasized by the fact that many of the existing
popular architectures can be modeled as product networks.

We start by showing simple but powerful results. Subsequently, we apply them to
prove several embedding results involving specific homogeneous product networks.

4.1 General Results

The following is one of the most important results of this section.

Theorem 4.1 PG, (Ng) is a subgraph of PH,.(Ng) if and only if G(Ng) is a subgraph

Proof: The sufficient condition has been shown before (Lemma 3.3 in [42].) Therefore,
we only focus on the necessary condition. If G/(Ng) is not a subgraph of H(Ny), then
there must be at least one edge (u,v) in GG(Ng) which cannot be mapped to any edge in
H(Ng). Since PG, (Ng) = G(Ng) @ PG._1(Ng), we can write an edge of PG, (Ng) as
(ux,vx) where x is a vertex in PG,_1(Ng). Similarly, PH,(Nyg) = H(Ng)®@ PH,_1(Ng),
and the edge (ux,va) cannot exist in PH,(Ng) since (u,v) is not an edge in H(Ng). m

This theorem and its extensions have many significant implications. In particular,
the next two results have a wide variety of possible applications.

Corollary 4.1 If G(Ng) can be embedded into H(Np) with dilation d, then PG, (Ng)
can be embedded into PH,(Np) with dilation d.

Proof: Modify G(Ng) to obtain G'(Ngr), such that whenever an edge of G(Ng) is
mapped to a path of H(Ng), replace it for the path it is mapped to (see Figure 4.1.)

30

CHAPTER 3. STRUCTURAL PROPERTIES

29

‘ Factor netw. ‘ Nodes ‘ Edges Diameter ‘ Conn. o, A ‘
L(N) N | r(N—1)N""! r(N —1) r r, 2r
T(N) N7 r(N —1)N"1 | 2r(log(N + 1) — 1) r r, 3r
S(N) N™ 3rN" /2 r(2log N — 1) r 3r
D(N) N* 2r N’ rlog N 2r 4r
B(N) N” 2rN” O(rlog N) 4r 4r
C(N) N™ 3rN" /2 O(rlog N) 3r 3r

o 2" r2r 1 r r r
P(10) 10" 15r107t 2r 3r 3r
K(N) N™ | r(N—=1)N"/2 r (N=1r | (N=1Dr
‘ Factor netw. ‘ Partitionability ‘ Max. cong. ‘ Bis. width ‘ Cr. Number ‘
L(N) |IN/i],i=1,..,N O(N"+1) O(N"1) QN1
T(N) 200 =0,...,log(N+1) | N""YN2-1)/2| ON") QN1
S(N) - O(N"log N) | O(N'/logN) | Q25)
D(N) O(N"log N) | O(N"/logN) | Q(25%)
B(N), N = n2" 2. i=0,..,n O(N"log N) | O(N"/logN) | Q(25%)
C(N), N = n2" 2,i=0,..,n O(N"log N) | ©(N7/logN) Q(kfger)
Ql _ or gr—1 9(22(7"—1))
P(10) - 10" 107/2 Q(1020-1))
K(N) |IN/i],i=1,..,N N7t O(N"*1) QN2+

Table 3.3: Structural parameter of several homogeneous product networks obtained by
application of the presented results.

CHAPTER 3. STRUCTURAL PROPERTIES 28

width is 1 and the value B’ for the case N odd is also 1. We use these to obtain the rest
of the properties of the grid.

A complete binary tree T'(N), has N — 1 edges, diameter of 2(log(N + 1) — 1),
connectivity of 1, minimum vertex degree of 1, maximum vertex degree of 3, and it
is 2'-partitionable, for ¢ = 0, ...,log(N + 1). The maximal congestion is (N? —1)/2, the
bisection width is 1, and the value B’ is 1.

In the shuffle-exchange graph S(N), every vertex has a degree of 3, although some
edges are self loops. Any two nodes are connected by at least one path, although many
pairs of vertices are connected by up to three vertex disjoint paths. The diameter is
2log N — 1 and the bisection width is ©(N/log N). From the analysis conducted in [42]
to obtain its bisection width we can conclude that its maximal congestion is O(N log N).

Every vertex of the de Bruijn graph D(N) has degree 4. Every pair of nodes are con-
nected by at least two vertex disjoint paths (since de Bruijn graph contains a hamiltonian
cycle), although most pairs of vertices are connected by up to four vertex-disjoint paths.
The diameter is log NV and the bisection width is ©(/N/log N). The maximal congestion
is O(Nlog N). Neither this network nor the shuffle-exchange are partitionable.

We now consider the cube-connected cycles, C'(N), and the wrapped butterfly, B(N),
were N = n2". Both have diameter ©(log N), are 2-partitionable, for 7 = 0,...,n (n is
the number of levels), have bisection width ©(N/log N), and maximal congestion of
O(Nlog N). C(N) has vertex degree of 3 in each node and connectivity of 3, while the
wrapped butterfly B(N) has vertex degree and connectivity of 4.

The Petersen graph P(10) has 10 nodes and 15 edges. Its diameter is 2, connectivity
is 3, and vertex degree is 3. The bisection width is 5 and the maximal congestion is 10.

The complete graph K(N) has N — 1 edges, diameter of 1, connectivity of N — 1,
and vertex degree of N — 1, it is | N/i|-partitionable, for ¢ = 1,..., N, has bisection width
O(N?), and has maximal congestion of 2.

All these values have been used to compose Table 3.3 by direct application of the
general results presented in this chapter.

Note the interesting structural properties that each single product network presents.
If the factor network has logarithmic diameter the product network also has logarithmic
diameter. When the diameter is linear in the factor network (see the linear array), in the
product version it tends to be logarithmic for a large enough number of dimensions.

The connectivity of all the product networks is at least r. The vertex degree is also
a function of r. If we maintain the value of r bounded by a large constant number we
have the advantages of a network with bounded vertex degree and large connectivity.

It can be noted also that the bisection width of the networks is large if r is reasonably
large. The results presented allow us to obtain the exact value of the bisection width for
two of the cases (actually, for N even, we also obtain exact values for grids and products
of complete graphs.)

CHAPTER 3. STRUCTURAL PROPERTIES 27

‘ Property ‘ Value in PG.(N) ‘
Maximal congestion At least CN™!
Bisection width At most BN~ (N even)

At most B+ B2 Z[(N*+ 1)+ B’ /2> Z/(N' — 1) (N odd)
At least N"t1/2C (N even)
At least (N* — 1)/2CN"™1 (N odd)
Crossing number | At least (N" — 1)(N" —2)(N" — 3)/(20C*N"2?) — (rEN"~1)/2

Table 3.2: Advanced structural properties of PG, (V) obtained from the values of the
maximal congestion, C', the bisection width, B, and B’ of G(N).

We know from Theorem 3.6 that the maximal congestion of PG, (N) is at most C N"~*
and we have seen earlier in this chapter that it has r EN"~! edges. Using these, we obtain
the claimed lower bound on the crossing number of PG, (N). |

The bounds obtained with this theorem are the same for the hypercube as those
obtained in [76], but our result is obtained much simpler than those in [76]. For several
networks we show that the bounds we obtain are asymptotically tight, since we are
able to generate layouts for these networks with the same asymptotical layout area (see
Chapter 6.)

The results of this section have been collected in Table 3.2.

3.3 Application to Specific Networks

Here we apply all the obtained results to several specific networks, identified by their
factor graph. The results for the product networks are obtained from the properties of
their factor graphs. The results are summarized in Table 3.3.

We have shown that every product graph is N'-partitionable, for i = 0,r, then we
do not include this property in the table. Only specific partitionability characteristics
are included there. In order to simplify some entries, we also express some results in
asymptotic notation. Specifically, the bisection width and the crossing number are mostly
expressed in this notation in the table.

We start with the linear array, L(N). It has N — 1 edges, diameter of N — 1, con-
nectivity of 1, minimum vertex degree of 1, maximum vertex degree of 2, and it is
| N/i]-partitionable, for ¢« = 1,..., N (| N/¢] is the number of subarrays of 7 nodes that
can be obtained from the linear array.) These properties yield the first set of structural
properties of the grid. The maximal congestion is at most N?/2, and is found in the
central edges of the array once we map the directed complete graph edges. The bisection

CHAPTER 3. STRUCTURAL PROPERTIES 26

is f(1) = B. The solution of this recurrence yields the claim. []

However, to obtain lower bounds on the bisection width is not that easy. The value
of the bisection width of G/(N) does not carry enough information to be able to derive a
lower bound on the value of the bisection width of PG, (N). Therefore we need to use a
stronger parameter. This will be the the maximal congestion of G/(N).

The use of the maximal congestion allows us to derive the following result. The proof
technique is similar to that used in [42] to obtain lower bounds on the bisection width of
other networks.

Theorem 3.9 [fthe maximal congestion of G(N) is C, then PG,.(N) has bisection width

at least N;gl if N is even, and at least QNO;% if N is odd.

Proof: The bisection width of the N"-node directed complete graph is N7 /2 if N is
even, and (N* —1)/2 if N is odd. Since we can embed it onto PG, (N) with congestion

at most C'N"~!, the bisection width of PG,(N) has to be at least évjf,:/j = Nt /20 if
N is even or (N* —1)/2CN"~1 if N is odd, because otherwise we could bisect the em-
bedded directed complete graph by removing less edges than its bisection width, which

is a contradiction.]

Observe that the lower bound just presented and the upper bound presented in The-
orem 3.7 are the same (and therefore both tight) if B = N?/2C. However, when N is
odd we can not guarantee that the bounds obtained are tight. To obtain the exact value
of the bisection width of PG, (N) when N is odd is a difficult task, since it is not even
known for such a simple network as the multidimensional grid [42]. For PLy(N), when
N is odd, it is known that the lower bound obtained by Theorem 3.9 is not tight, while
the upper bound obtained by Theorem 3.8 is.

3.2.3 Crossing Number

We now investigate the crossing number of homogeneous product networks. Since we
only use the value of this parameter to derive lower bounds on the layout area, we only
derive lower bounds on its value. The method used is similar to the method introduced
in [41], and uses the maximal congestion. Again, we could not generate these bounds
from the value of the crossing number of G(N).

Theorem 3.10 [fG/(N) has E edges and its mazimal congestion is C, then the crossing

: N'1)(N"=2)(N"=3) _ yEN"-!
number of PG.(N) is at least (Q)SCQNTZ(Z)) >

Proof: From the results in [34, 35, 39] it was shown in [76] that if an n-node graph has e

edges and its maximal congestion is ¢ then its crossing number is at least n(n_l)g%j)(n_?’) —

€

5¢

CHAPTER 3. STRUCTURAL PROPERTIES 25

3.2.2 Bisection Width

In this section we obtain bounds on the bisection width of PG.(N). We start by pre-
senting upper bounds simply obtained from the value of the bisection width of G/(N).

Theorem 3.7 [f the bisection width of G(N) is B and N is even, then the bisection
width of PG,(N) is at most BN"™".

Proof: The bisection of each G(N)-subgraph in a given dimension ¢ bisects the whole
graph PGL(N). Let G(N) be divided into two subgraphs with vertex sets U and V| re-
spectively, when bisected. Then, the bisection of each dimension-i G(N)-subgraph divides
PG (N) into two subgraphs with nodes of the form a,...x;qux;_q1...x1 and x,...¢; 41021
...r1, respectively, where v € U, v € V, and z;, for y = 1,...,7 and j # ¢, is a node of
G(N). Since |U| = |V|, both graphs have the same number of nodes and PG, (N) has
been bisected. |

The upper bound on the bisection width of a product graph PG,.(N) when N is
odd is a little more complicated. When we bisect G/(/N) we obtain two subgraphs with a
difference of one in the number of nodes. Therefore, we can not use the method presented
above in this case.

Let us assume that the bisection of G(N) yields subgraphs with node sets U and V/,
and that |V| = |U|+ 1. We can define B’ to be the minimum number of edges that need
to be removed from G(N) to bisect it into two subgraphs with vertex sets V — {v} and
U U {v}, for some v € V. Clearly, if there are several ways to bisect G/(N) by removing
B edges, B’ can be taken as the minimum of the corresponding possible values.

With these assumptions we can show that.

Theorem 3.8 [f the bisection width of G(N) is B, N is odd, and B’ is as defined, then
the bisection width of PG,(N) is at most B+ 2572/ (N'+1) + %/ SITHNT = 1).

Proof: To bisect the product graph we apply an inductive process. PG, (N) is bisected
by choosing a dimension (say r) and first bisecting the vth PG (N) subgraph, where v
is the node of G(N) presented above. This partition divides the vth PG7(N) subgraph
into two subgraphs disconnected from each other in each dimension and connected to the
rest of PG,(N) by the rth dimension. One subgraph contains (N"~! 4 1)/2 nodes and
the other contains (N"~! —1)/2 nodes.

We can now bisect each dimension-r G/(N)-subgraph to finish the process. A G(N)-
subgraph that contains a node from the large subgraph of vth PGI(N) subgraph is
bisected by removing B edges, while the rest of the G(N)-subgraphs are bisected by
removing B’ edges. This bisects the graph PG, (N).

If we denote f(r) the number of edges removed to bisect PG, (N), from the above
process we obtain f(r) = f(r—1)+B(N""'+1)/2+ B/(N""*—1)/2. The initial condition

CHAPTER 3. STRUCTURAL PROPERTIES 24

an upper bound on it, we derive lower bounds on the bisection width and the crossing
number of the product graph.

These lower bounds will be applied in Chapter 6 to obtain lower bounds on the
VLSI layout area and maximum wire length for product networks. We can observe
that the bounds obtained from the bisection width and from the crossing number are
asymptotically the same. These two parameters are the two known approaches to this
problem, and no link between them was known. Therefore, the maximal congestion
appears to be such a link.

3.2.1 Maximal Congestion

In this section we study the maximal congestion of product graphs. Since we do not
really need the exact value of the maximal congestion, we will show how to obtain upper
bounds on the maximal congestion of PG, (N) given the value of the maximal congestion
of G(N).

To our knowledge, this is the first time the maximal congestion is explicitly identified
as an important structural property of a graph. In the following sections we will use
the maximal congestion to obtain lower bounds on properties of homogeneous product
graphs that, contrary to the above results, cannot be derived from the same property of
the factor graph.

Theorem 3.6 [f the maximal congestion of G(N) is C, then the maximal congestion of
PG, (N) is at most CN"".

Proof: We show a mapping of the edges of the N"-node directed complete graph into
paths of PG, (N). We first map the nodes of the directed complete graph onto the nodes
of PG,(N) one-to-one. Then, we map the directed edge from node = = z,...x1 to node
Y = Y,...4y1 to the path

T = YpTp_1-eeT] — oo — Y. YoT1 — Y

The ¢th arrow represents the path in the corresponding G(N)-subgraph from z; to y;, for
¢t = 1,...,7. By definition of maximal congestion, these paths imply at most congestion
C in the G(N) subgraph.

Let (z,...zi...21, Zp...20..21) be a dimension-i edge of PG, (N). If this edge is traversed
by a path from x to y as described, then it must be y, = z,, ..., y;11 = z;41 and
Tio1 = Zi—1, ..., 21 = z1. Since the edge (z;, z!) of G(N) is traversed by at most C' paths
between two nodes of G(N), there are at most C' possible combinations of the values of
x; and y;. Fach other z;, for y = ¢4+ 1,...,r, and y, for £k = 1,...,1 — 1, can take N
possible values. Therefore, the edge can be traversed by at most C N"™! paths.]

CHAPTER 3. STRUCTURAL PROPERTIES 23

| G PG|

Nodes N N

Edges I ErNTt
Diameter d rd
Connectivity K re
Min. vertex degree 1) ro
Max. vertex degree A rA

Partitionability - Nt for¢=0...r

k k"

Table 3.1: Structural properties of PG,.(N) obtained from similar properties of G/(N).

3.1.5 Partitionability

The ability to recursively partition a graph into distinct copies of its smaller versions is
another important property, since it allows assigning the parts of a recursive computation
to different subnetworks, or shows a way to share the system between many users.

As we already mentioned, product graphs contain a variety of subgraphs which are
isomorphic copies of product graphs with fewer dimensions. We have shown in Chapter 2
that by removing the edges belonging to k£ dimensions we obtain a set of disjoint copies
of PG,_;(N). Hence the next theorem follows.

Theorem 3.4 PG, (N) is Ni-partitionable, fori=0,....r.

Furthermore, if the factor graph G(N) is already partitionable into k disjoint isomor-
phic M-node graphs of its same family, by applying this partition to each G(N)-subgraph
in all the dimensions we obtain a partition of PG, (V) into k" disjoint subgraphs isomor-

phic to PG,.(M).
Theorem 3.5 [f G(N) is k-partitionable, then PG.(N) is k"-partitionable.

The structural results presented until this point have been compiled in Table 3.1. All
these results can be characterized by the fact that the properties of the product graph
involved are easily obtained from the same properties of the factor graph. In the rest of
the chapter we obtain non-trivial properties of product graphs.

3.2 Advanced Results

In this section we obtain properties that are not trivially derived from the value of the
same property in the factor graph. We initially study the maximal congestion and, from

CHAPTER 3. STRUCTURAL PROPERTIES 22

Theorem 3.1 [f G(N) has diameter d, then PG,.(N) has diameter rd.

The key to the proot of Theorem 3.1 is the observation that there exist at least one
pair of nodes in PG, (N) which differ in every symbol position and each differing symbol
pair correspond to a distance as much as the diameter of G(N). Finding such a pair of
nodes yields both a lower bound and an upper bound for the diameter of the product
graph.

3.1.3 Connectivity

The connectivity of a network has important implications on its communication band-
width and its fault tolerance. The connectivity of product networks was investigated in
[24] where a lower bound was obtained.

Theorem 3.2 [f G(N) has connectivity r, then PG,.(N) has connectivity at least rk.

The theorem can be simply proven with an inductive statement, where it is shown that
if PG._1(N) has connectivity (r — 1)x, then PG, (N) has connectivity (r — 1) + &. The
increased number of paths is due to the alternatives added by the introduced dimension.

3.1.4 Vertex Degree

The vertex degree is important mainly in two aspects of a network. First, the maximum
vertex degree has strong implications on the cost of the implementation of the network.
Second, the minimum vertex degree determines an upper bound on the connectivity of
the network.

The maximum vertex degree of product networks has been previously studied [24, 82,
86], while we are not aware of any result on the minimum vertex degree. We join results
on both properties in the following theorem.

Theorem 3.3 [f G(N) has maximum vertex degree A and minimum vertex degree 6,
then PGL(N) has mazimum vertex degree rA and minimum vertex degree r6.

Note from Figure 2.2 that each time we add a new dimension to the product network,
we add at least 6 and at most A to the vertex degrees. Then, there is a vertex x = z,...21
where each x;, for i = 1,...,r, corresponds to a vertex of G(N) with degree 6. This means
that = is a node with the minimum vertex degree of ré. Similarly, there is a vertex
Yy = Y,...y1 where each y;, for ¢« = 1,...,7, corresponds to a vertex of G(N) with degree A.
Then y must have the maximum vertex degree rA. Trivially, by construction, no node
can have vertex degree smaller than ré or larger than rA.

Chapter 3

Structural Properties

In this chapter we compile some known structural properties of product networks and
we add to the collection with new non-trivial results on other properties not studied
previously.

3.1 Direct Results

In this section we present general results on several structural properties of homogeneous
product networks. The properties presented here are directly derived from the value of
the same property in the factor graph.

3.1.1 Number of Nodes and Links

Among the first questions we ask about a new interconnection network is the number of
nodes and links in it. We can easily observe that, if G(/N) has N vertices and E edges,
then PG,(N) has N” vertices and ErN"~! edges. The statement about the number
of vertices follows directly from Definition 2.2. To compute the number of edges, it is
possible to observe in Figure 2.2 that PG, (N) contains all the edges of N copies of
PG,_{(N) plus the edges of N"™! copies of G(N) (since there are N"~! columns in the
figure.) Thus, we can derive a recurrence f(r) = Nf(r —1) + EN"~! for the number of
edges in PG,(N). The solution of this, with the initial condition f(1) = F, gives the
desired result.

3.1.2 Diameter

The diameter of a network is another important property. In general, computation of
exact diameter for a given graph may be very difficult, but for homogeneous product
graphs we are able to state simple rules to calculate the diameter. The next result has
been presented in several papers independently [4, 24, 82, 86].

21

CHAPTER 2. DEFINITIONS AND NOTATION 20

Figure 2.12: The 4-node complete graph, K(4).

number of dimensions. We denote the Petersen graph as P(10) and its r-dimensional
product as PP,.(10), which is obtained as PP,(10) = P(10) @ PP,_1(10).
Finally, we define the complete graph as follows.

Definition 2.14 The N-node complete graph, denoted K(N), is the graph where each
of its nodes is connected with an edge to all the other N — 1 nodes.

Figure 2.12 presents the 4-node complete graph K(4). Observe that the vertex degree
of K(N) increases with N.

The r-dimensional product of K(N) is denoted PK,(N), and obtained as PK,(N) =
K(N) ®@ PK,_1(N). Since the 2-node linear array, L(2), is isomorphic to K(2), the

hypercube can be considered as the multidimensional product of K(2).

CHAPTER 2. DEFINITIONS AND NOTATION 19

000

11

010

011

100

101

110

111

@

Figure 2.9: The 3-level butterfly and wrapped butterfly, B(24).

1 2 3

101
110

111

Figure 2.10: The 3-dimensional cube-connected cycles, C'(24).

Figure 2.11: The Petersen graph, P(10).

CHAPTER 2. DEFINITIONS AND NOTATION 18

001 011

000 010 101 11

100 110

Figure 2.8: The 8-node de Bruijn graph, D(8).

((u,2), (v,) is an edge of the butterfly if and only if j = ¢+ 1 and either (a) v = v
(straight edge) or (b) w and v differ only in the ith bit (cross edge.)

If we collapse the nodes (u,0) and (u,n) into one single node, for u =0,...,2" — 1, we
obtain the wrapped butterfly. Figure 2.9.(a) shows the 3-level butterfly and Figure 2.9.(b)
the 3-level wrapped butterfly.

As a rule, in the rest of the dissertation we only study the properties of the N = n2"-
node wrapped butterfly, which we denote as B(N). This decision is justifiable by the fact
of both networks being almost the same. For instance, it is known that both butterflies
can emulate each other with constant slowdown. Furthermore, observe that both have
asymptotically the same number of nodes ©@(n2"), since the n-level butterfly has (n+41)2"
nodes and the n-level wrapped butterfly has n2" nodes. Most of the results obtained for
the butterfly are expressed in asymptotical notation and, hence, are applicable to both
networks.

The r-dimensional product of (wrapped) butterflies is denoted as PB,(N), and can
be obtained as PB,(N) = B(N) @ PB,_1(N).

Definition 2.13 The n-dimensional cube-connected cycles is the graph obtained from
the hypercube (), by replacing each node of the hypercube with a n-node cycle, so that
each node of the cycle is connected to one of the edges incident to the original node.

The n-dimensional cube-connected cycles has N = n2" nodes and will be denoted
C(N). Figure 2.10 presents the 3-dimensional cube-connected cycles, C'(24). It is easy
to see that the cube-connected cycles and the butterfly are very similar. In fact, the
n-dimensional cube-connected cycles is a subgraph of the n-level wrapped butterfly (in
Figure 2.9.(b) the darker edges represent the edges of the 3-dimensional cube-connected
cycles.) Similarly, there is a constant-congestion constant-dilation embedding of the
wrapped butterfly onto the cube-connected cycles.

The r-dimensional product of C'(N) is denoted PC,(N) and obtained as PC,(N) =
C(N)@ PC,_1(N).

The next network to be considered is the Petersen graph, shown in Figure 2.11. It
is a fixed-size graph and, therefore, its product version can only grow by changing the

CHAPTER 2. DEFINITIONS AND NOTATION 17
C—@ U @-0O—
$-oF OOy
0 g
-0 U [-0O®

b p
ogoiroy

L obodos

Figure 2.6: The 2-dimensional mesh of 4-leaf trees.

010 011

Figure 2.7: The 8-node shuffle-exchange graph, S(8).

The r-dimensional product of N-node shuffle-exchange graphs will be denoted PS,(N),
and it is obtained as PS,(N) = S(N) @ PS,_1(N).

Definition 2.11 The N-node de Bruijn graph, denoted D(N), where N = 2" is the
graph with vertex set 0,...,N —1 (in binary), and whose nodes u, v, and w are connected
by edges (u,v) and (u,w) if v can be obtained from u by a cyclic left shift and w differs
from v in the rightmost bit only.

Note that, although for simplicity of definition we use directed edges to describe the
graphs S(N) and D(N), once the construction in done the resulting graph is considered
undirected.

An 8-node de Bruijn graph is shown in Figure 2.8. Observe that, whenever (u,v) is
a shuffle-edge in S(NV), it is also an edge in D(N). Additionally, whenever (u,v,w) is a
path in S(NV) such that (u,v) is a shuffle edge and (v,w) is an exchange edge, (u,w) is
an edge in D(N).

The r-dimensional product of N-node de Bruijn graphs will be denoted PD,(N), and
it is obtained as PD,(N)= D(N) @ PD,_1(N).

Definition 2.12 The n-level butterfly is the graph with vertex set (u,t), where v is the
level of the node, 0 < ¢ < n, and u is the row of the node, 0 < u < 2" — 1 in binary.

CHAPTER 2. DEFINITIONS AND NOTATION 16

Figure 2.4: The 3-dimensional hypercube, @)s.

001

011
010

100 101 110 111

Figure 2.5: The 7-node complete binary tree, T'(7).

1, is the root of the tree. Figure 2.5 presents the 7-node complete binary tree, which has
3 levels and 4 leaves.
The r-dimensional product of T'(N), using the defined notation, will be denoted as

PT.(N). It can be obtained as PT,(N) = T(N)® PT,_1(N). In Figure 1.1 we have
presented the 2-dimensional product of 7-node complete binary trees, PT5(7).

Definition 2.9 The r-dimensional N"-leaf mesh of trees, or r-dimensional mesh of N -
leaf trees, is the graph obtained from the N’ -node r-dimensional grid by substituting the
linear connections along each dimension by N-leaf complete binary trees. The leaves of
the trees are the original nodes of the grid, and additional nodes are introduced to obtain
the internal nodes of the trees.

Figure 2.6 presents the 2-dimensional 16-leaf mesh of trees (or 2-dimensional mesh of
4-leaf trees.) In this figure the nodes of the original grid are shown as dark nodes and
the additional nodes introduced are shown as empty nodes.

Definition 2.10 The N-node shuffle-exchange graph, denoted S(N), where N = 2", is
the graph with vertex set 0,...,N — 1 (in binary), and whose nodes u and v are connected
by an edge (u,v) if either (a) u and v differ in the rightmost bit only (denoted as a

“exchange” edge) or (b) v can be obtained from u by a cyclic left shift (denoted as a
“shuffle” edge.)

An 8-node shuffle-exchange graph is shown in Figure 2.7. In this figure shuffle edges
are shown as solid lines and exchange edges are shown as dotted lines.

CHAPTER 2. DEFINITIONS AND NOTATION 15

Figure 2.3: The 25-node 2-dimensional grid, PLz(5), and the 25-node 2-dimensional
torus, PRy(5), respectively.

2.4 Networks of Interest

We start by defining several networks which will be often referred to in the dissertation
and non-product networks whose r-dimensional products will be studied

Definition 2.7 The N"-node r-dimensional grid (resp. torus) is the graph whose vertices
comprise all the r-tuples © = x,...xy, such that ; € {0,.... N — 1}, fori=1,...,r, and
whose edges connect any pair of nodes v and y if and only if x and y differ in evactly
one index position i and x; = y; + 1 (resp. ;= (y; + 1) mod N.)

As can be observed, the N"-node r-dimensional torus is the r-dimensional product
of the N-node ring and the N"-node r-dimensional grid is the r-dimensional product of
the N-node linear array. Clearly, the N"-node r-dimensional grid is a subgraph of the
N7"-node r-dimensional torus.

We will denote the N-node linear array as L(/N), and the N-node ring (or cycle) as
R(N). Then, by using the product notation, the graph PL,(N) (resp. PR,(N)) is the
N"-node r-dimensional grid (resp. torus.) From Definition 2.2 they can be obtained as
PL.(N)=L(N)®PL,_1(N)and PR,(N) = R(N)® PR,_1(N), respectively.

The r-dimensional hypercube is simply the 2"-node r-dimensional grid, PL,(2). For
the sake of brevity, we often denote the r dimensional hypercube as (),, whose factor
graph is ();.

Figure 2.3 presents the 25-node 2-dimensional grid, PLy(5), and the 25-node 2-
dimensional torus, PRy(5). Figure 2.4 presents the 3-dimensional hypercube (or 8-node
3-dimensional grid), @s.

Definition 2.8 The N-node complete binary tree, denoted T(N), where N = 2" — 1, is
the graph whose vertices comprise the set {1,..., N} and whose edges connect each vertex
u < 271 with the vertices 2u and 2u + 1.

T(N) has h levels of nodes, where the 7th level contains the nodes 2= to 2/ — 1. The
nodes at level h are called the “leaves” of the tree, and the single node at level 1, labeled

CHAPTER 2. DEFINITIONS AND NOTATION 14

In order to obtain lower bounds on the value of these structural properties, we intro-
duce a new structural property that is of great interest for several results in our work.

Definition 2.5 The maximal congestion of a N-node graph, denoted C, is the congestion
for any embedding of the N-node directed complete graph onto it.

The definitions of embedding and congestion of an embedding are given in the next
section. The maximal congestion is an intrinsic parameter of a graph just like the chro-
matic number, crossing number, etc. are intrinsic parameters of a graph. Although it
looks somehow strange and difficult to obtain, for all the studied networks it has been
enough to have a tight upper bound of its value. Such a bound can be simply obtained
for an arbitrary network by applying a routing algorithm between each pair of nodes and
counting the congestion of each edge of the network.

2.3 Embedding Properties
We start by giving a formal definition of embedding:

Definition 2.6 An embedding of a “quest” graph G(N¢) into a “host” graph H(Ny) is
a mapping [of the vertices of GG into the vertices of H and a mapping g of the edges of
G into paths in H, such that if (u,v) is an edge of G, then g((u,v)) is a path connecting
flu) and f(v) in H.

The main cost measures used in embedding efficiency are:

e The load of the embedding is the maximum number of vertices of the guest graph
mapped to any vertex of the host graph.

o The dilation of an embedding is the maximum path length in the host graph rep-
resenting an edge of the guest graph.

e The congestion of an embedding is the maximum number of paths (that correspond
to the edges of the guest graph) that share any edge of the host graph.

e The expansion of an embedding is the ratio Ny /Ng of the host and guest graphs
sizes.

It has been shown in [37] that if G can be embedded into H with load [, dilation d,
and congestion ¢, H can emulate ¢ steps of a computation running on G in O(l + d + ¢)t
steps. If the values [, d, and ¢ are constant, the slowdown introduced by this emulation
is also constant. We consider an embedding efficient if the cost measures are bounded,
i.e. they are O(1).

CHAPTER 2. DEFINITIONS AND NOTATION 13

This notation can be extended, since by removing the edges of k different dimensions
in PG, (N) we obtain N* disjoint copies of PG, _;(N). If we remove the edges in dimen-
sions i1, ..., i, we denote the PG, _;(N) subgraph containing the node & = x,...x1, as the

(23, ..., 2;,)th PGi-=ix(N) subgraph of PG, (N).

2.2 Structural Properties

In this section we define several structural properties and establish their notation for the
rest of the document.

Let the distance between two nodes in a network be the minimum number of edges
that need to be traversed to go from one node to the other, then the diameter of a
network is the maximum distance between any pair of nodes of the network, and it will
be denoted as d. The diameter of a network is an upper bound on the time that any
node-to-node communication in the network will take.

The connectivity of a network is the minimum number of vertex-disjoint paths con-
necting any two nodes of the network, and will be denoted as . This value is the same
as the minimum number of nodes to be removed from the network to disconnect it. The
connectivity of a network is related with the fault-tolerance in the sense that, if the con-
nectivity of the network is «, then the network can tolerate up to x — 1 faults in nodes
and edges.

The vertex degree of a node is the number of edges incident to it. We are specially
interested on the maximum vertex degree of a network, ¢.e. the maximum of the vertex
degrees of its nodes, denoted as A. This value determines its maximum connectivity
and has implications in its VLSI layout. We will also study the minimum vertex degree,
denoted as 6. The vertex degree of an arbitrary node u will be denoted as ¢,

A graph is said to be k-partitionable if it contains as subgraphs £ disjoint isomorphic
copies of a graph of its same family. The partitionability properties of a network are
very closely related to the scalability of the network, or the ease of increasing the size
of a network to another network of the same family. The partitionability of a network
is very useful when implementing recursive algorithms, when working with different size
problems, or when sharing the network between several users.

The above properties for a product graph are trivially obtained from the same prop-
erties of the factor graph. However, other structural properties are more difficult to
be derived and have never been studied before. We concentrate on two such structural
properties of product networks: the bisection width and the crossing number.

Definition 2.3 The bisection width of a graph, denoted B, is the minimum number of
edges that have to be removed from it to obtain two disjoint subgraphs with the same
number of nodes (within one.)

Definition 2.4 The crossing number of a graph, denoted ¢, is the minimum number of
edge crossings of any drawing of the graph in the plane.

CHAPTER 2. DEFINITIONS AND NOTATION 12

00 01 02 10 11 12 20 21 22

1
(b) (©

Figure 2.2: Recursive construction of multi-dimensional product networks.

From the intuitive description of the construction of G @ H presented above, the
construction of PG,(N) from PG,_1(N) and G(N) is intuitively described in several
simple steps: First, place the vertices of PG,_1(N) along a straight line. Draw N copies
of this drawing of PG,._1(N) at the same vertical level in parallel columns. Associate
a different vertex u of G(N) to each copy of PG,_1(N) and extend the vertex labels of
each node = to ux. Finally, connect two nodes ux and vz in the same column if and
only if (u,v) is an edge in G(N). Figure 2.2 shows how to obtain the 3-dimensional
homogeneous product of the 3-node ring in two applications of this process.

From the definition, the edges of PG, (N) can be characterized as follows.

Observation 2.2 Ifx andy are in the form x = x,...x1 and y = y,...y,, where x;,y; are
nodes of G(N), fori =1,...,r, then (x,y) is an edge in PG.(N) if and only if v and y
differ in exactly one symbol position i, and the differing symbols (x;,y;) define an edge
in G(N).

We say that an edge (x,y) belongs to dimension ¢ if the nodes incident to it differ
only in the ¢th index position. A G(N)-subgraph of PG, (N) is said to be a dimension-¢
subgraph if any two nodes in the subgraph differ only in the ¢th index position.

Observe that PG, (N) contains N disjoint copies of PG,_1(N), each with a different
node of G(N) associated. These copies can be obtained by removing the dimension-r
edges from PG, (N). Similarly, from Observation 2.1 a similar set of disjoint subgraphs
can be obtained by removing all the edges of any dimension ¢ from PG, (N). We use
the notation PG%(N) to refer to any of the disjoint subgraphs obtained by removing
the dimension-i edges of PG, (N). Since each of the resulting subgraphs has a different
node u of G(N) associated, we can meaningfully talk about the uth PG’ (N) subgraph
of PG,(N). For every node x of the uth PG%(N) subgraph of PG, (N) we have that

T, = U.

CHAPTER 2. DEFINITIONS AND NOTATION 11

At a more intuitive level, the construction of G @ H from G and H can be described
as follows. First, place the vertices of H along a straight line as shown in Figure 2.1.
Then, draw |U| copies of H such that the vertices with identical labels fall in the same
column. Next, extend the vertex labels by associating a different label v € U to each
copy of H and changing each vertex label v € V of the copy to uv. Finally, connect the
columns in the interconnection pattern of the labeled graph &, such that uv is connected
to u'v if and only if (u,u’) is an edge in G.

From the symmetry in this definition, note that the product operator is commutative
and associative:

Observation 2.1 G1®@Gy is isomorphic to GG, and G1@(G2@Gs) = (G10G,)@Gs.

Observe that G4 @ G5 and G5 @ (7 are not the same graph since, although in both of
them each vertex is a pair of symbols, the order in the vertices of one is reverse than in
the vertices of the other. However, if G; and (5 are the same graph, then both product
graphs are the same.

Note that, by construction, G® H contains |U| disjoint copies of H as subgraphs, and
each copy has a different label v € U associated. Similarly, from the above observation,
G @ H has |V| disjoint copies of G, each with a different label v € V' associated.

We say that a graph is a product graph if it can be obtained from a set of factor
graphs by the application of the cartesian product operation. If all the factor graphs
are isomorphic we have a homogeneous product graph. Otherwise, the product graph is
heterogeneous.

It will often be important to indicate the number of vertices, so we use G(N) to
denote the N-node graph (. The r-dimensional product of G(N) is denoted PG, (N),
with the subscript r representing the number of dimensions.

Applying this notation, the formal definition of r-dimensional homogeneous product
graph is given as follows:

Definition 2.2 Given a graph G(N), its r-dimensional homogeneous product, denoted
PGL(N), is

1. a single vertex without any edges and no labels when r = 0,
2. PG.(N)=G(N)® PG,_1(N), when r > 0.

In general, we let x.y, z denote the vertices of homogeneous product graphs obtained
from G(N). For the r-dimensional product graph PG, (N), the vertex labels z,y, z are
tuples of r symbols where each symbol is drawn from the set of vertices of G(N). We use
u,v,w to denote single vertices of G(N). When the vertex of G(N) is part of the label
of a node = of PG.(N), it is denoted as x;, where the subindex 7 indicates its position
in the label. For example, x is in the form = = «x,...x;...x1, where x;, for : = 1,...,r,1s a
vertex of G(N).

Chapter 2

Definitions and Notation

In this chapter we present definitions and notation that will be used in the rest of the
dissertation. In order to keep this chapter brief and to locate specific information faster,
those definitions that are relevant to only one chapter have been placed in the specific
chapter.

2.1 Homogeneous Product Networks

As a reminder to the reader, we start this section with the definition of the cartesian
product, which is illustrated in Figure 2.1.

Definition 2.1 The cartesian product of two “factor” graphs G = (U, F) and H =
(V, F) is the graph G @ H whose vertex set is U x V and whose edge set contains all the
edges (uv,u'v') such that {u,u'} C U, {v,0'} CV, and either v =u' and (v,v’') € F, or
v="2o"and (u,u') € E.

Product of Hand H

G b Product of G and H t

b y

H t a X
z

X y z t X y z t

Figure 2.1: Definition of cartesian product.

10

CHAPTER 1. INTRODUCTION 9

network by combining collinear layouts for the factor graph.
After applying all these results to several networks we are able to obtain optimal-area
layouts for all of them, with maximum wire lengths close to optimal.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 contains formal definitions
and notation that will be used in the rest of the document. Those definitions and notation
that are relevant to only one of the chapters have been placed in that specific chapter for
locality reasons.

The following chapters present the results of our program of research. Chapter 3
presents the obtained results in the study of structural properties of product networks.
Chapter 4 presents the results in embedding a product graph into another. Chapter 5
presents general algorithms for product networks. Chapter 6 presents the results in VLSI
complexity obtained.

In Chapter 7 we concentrate on three specific instances of product networks and
present further results for them.

Finally, in Chapter 8 we summarize conclusions of the work described here.

CHAPTER 1. INTRODUCTION 8

yields the same time complexity as the implementation in the mesh of trees, which is the
fastest known.

1.2.5 VLSI Complexity
The VLSI layout model used in this research has been defined by Thompson [77, 78].

In this model the layout area is divided into square unit-area tiles where the nodes and
wires are placed.

Thompson showed that the square of the bisection width is a lower bound on the area
required by a network under this model. Similarly, Leighton [41] presented the crossing
number of a graph as a lower bound on the area. We use these facts to derive lower
bounds on VLSI complexity for product networks from the value of the bisection width
and the crossing number. They are derived by using the maximal congestion, a new
structural property of the factor network we present.

To obtain upper bounds we first use two traditional frameworks: separators and
bifurcators.

Separators were initially used by Lipton and Tarjan [46, 47] to study planar graphs.
Subsequently, they have been found to be useful to derive area-efficient layouts for arbi-
trary graphs by Floyd and Ullman [27], Leiserson [43, 44], and Valiant [81]. Furthermore,
Bhatt and Leiserson [11] showed that they can be used to obtain layouts with short wires.
All these results have been compiled by Leighton [41] and Ullman [80].

Bifurcators appeared as an alternative to separators, since they solve some of the
restrictions presented by the separator framework. The initial papers defining and using
bifurcators are due to Leighton [40] and Bhatt and Leiserson [10, 11], and these results
have been compiled and improved by Bhatt and Leighton [9].

In this dissertation we show how to derive separators and bifurcators for the product
graph from separators and bifurcators of the factor graph. Then, the results of the above
references allow to obtain the desired upper bounds.

However, both separators and bifurcators are restricted by definition to networks with
bounded degree. Sherlekar and JaJ4a [70, 72, 73] tried to solve this problem by defining
stronger kinds of separators and bifurcators. However, they are so restrictive that we
could not use them for our networks.

The last approach we investigate is based on the existence of efficient collinear layouts
(layouts with all the nodes in one line) of the factor graph. Leiserson [44] showed how
to obtain collinear layouts for a network with a given separator. Similarly, in [9] an
upper bound is presented on the area of collinear layouts of bounded-degree networks.
We also refer to graph-theory papers where labeling of graphs are studied. The problem
of obtaining efficient collinear layouts is equivalent to the problem of finding a labeling
of the graph with small bandwidth and small cutwidth [15, 16].

Besides these methods, we show how to obtain efficient collinear layouts for the factor
graph from a regular layout. Then, we present how to obtain a layout for the product

CHAPTER 1. INTRODUCTION 7

matrices, and finding the minimum-weight spanning tree of a graph. These algorithms
are easily modified to sove other problems with similar structure. For instance, it is trivial
to modify the minimum-weight spanning-tree algorithm for determining the connected
components, transitive closure, and shortest paths of graphs.

Our sorting algorithm is based on the odd-even merge sorting algorithm due to
Batcher [2]. In this reference, Batcher presented two efficient sorting networks. Algo-
rithms derived from these networks have been presented for a number of different parallel
architectures, like the shuffle-exchange [75], the grid [50, 79], the cube-connected cycles
[59], and the mesh of trees [51].

One of Batcher’s sorting networks has, as main components, subnetworks that sort
bitonic sequences. Sorting algorithms based on this method are generally called “bitonic
sorters.” A bitonic sequence is the concatenation of a non-decreasing sequence of keys
with a non-increasing sequence of keys, or the rotation of such a sequence. Several
papers have been devoted to generalizing bitonic sorters, generalizing Batcher’s network
[3, 48, 49]. Recently, Lee and Batcher [38] presented a new network to merge and sort &
bitonic sequences.

The main components of the other sorting network proposed by Batcher are subnet-
works that merge two sorted sequences into a single sorted sequence, denoted odd-even
merge networks. To our knowledge, no result on generalizing the odd-even merge network
to merge more than two sorted sequences exists.

In this dissertation we first develop a sorting algorithm for homogeneous product net-
works based on merging N sorted sequences into a single sorted sequence (we denote this
operation multiway merge.) When we apply the sorting algorithm to specific networks
we obtain optimal time complexity for some of them, and same complexity as Batcher’s
algorithm in the rest.

We continue by developing an algorithm to compute the summation of several val-
ues initially in the nodes of the network. The algorithm is based on the existence of
an algorithm to compute summations in the factor network. If this basic algorithm is
optimal, the derived algorithm is also optimal. The algorithm is easily adapted to similar
problems. For instance, in the minimum-weight spanning-tree algorithm mentioned later
we use an algorithm to obtain the minimum of a set of values that is structurally similar
to the summation algorithm.

We develop a matrix-multiplication algorithm based on the algorithm presented by
Preparata and Vuillemin [58] for the mesh of trees and its implementation by emulation
in the hypercube. In this algorithm we use the broadcasting algorithm from [86] and the
summation algorithm presented before. We implement the algorithm in several networks
and for all of them it yields optimal time complexity.

The last algorithm we present computes the minimum-weight spanning tree of a graph.
As we mentioned, this algorithm can be simply modified to solve similar problems. The
algorithm is derived from algorithms developed by Hirschberg, Chandra, and Sarwate [33]
and Shiloach and Vishkin [74]. When implemented in several networks, the algorithm

CHAPTER 1. INTRODUCTION 6

of the network to the other in one step. As Thompson [78] pointed out, the exact value
of the bisection width of a graph is, in general, very difficult to obtain.

The crossing number was originally identified as an important parameter of an inter-
connection network by Leighton [41]. He showed that it defines a lower bound on the
VLSI layout area of the network. Like the bisection width, it is not easy to obtain the
exact value of this parameter, in general. For instance, there are not known exact values
even for well-known networks like the hypercube or the cube-connected cycles [76].

In this dissertation we define a new structural property of graphs, which we call the
mazximal congestion, and we use the value of this property for the factor graphs to derive
lower bounds on the value of the bisection width and the crossing number. Also upper
bounds on the bisection width are derived from the bisection width of the factor graph.
The application of these results to several networks shows that the obtained bounds are
tight.

1.2.3 Embedding Properties

In the literature, it has been customary to formalize the notion of emulation with the
notion of embedding [7, 61]. This comes from the property shown by Koch et al [37]
that an efficient emulation between networks can be obtained from an efficient embed-
ding. Therefore, to show that a network can efficiently emulate another network it is
enough to show that the later can be efficiently embedded into the former. In fact,
several researchers compared the computational power of interconnection networks by
embedding-based emulations [1, 5, 6, 7, 29].

Simple results involving some cost measures of embeddings between product graphs
have been presented in [42] and [86]. We strengthen these results and obtain new ones,
which allow to derive embedding properties of the product networks from those of their
factor graphs.

In general, the problem of finding efficient embedding is not simple. For instance,
several papers have been published just on embedding the complete binary tree into the
hypercube [8, 13, 14, 22, 23, 31, 45]. The inherent difficulty of embedding problems aside,
it is very interesting that we can obtain efficient embeddings for the product graphs based
on embeddings for the simpler factor graphs. In this context, any previous embedding
result from the literature can be useful. For instance, we use the embedding proposed by
Heckman et al. [32] to obtain an optimal-dilation embedding of the product of complete
binary trees onto the grid.

1.2.4 Algorithms

General algorithms have been presented for broadcasting, point-to-point communication,
off-line permutation, and fault-tolerant routing in product networks [4, 24, 56, 86]. We
increase this collection with algorithms for sorting, computing summations, multiplying

CHAPTER 1. INTRODUCTION 3

detail these contributions in the following sections.

Examples of recently proposed heterogeneous (i.e. not homogeneous) product net-
works are the hyper-de Bruijn network proposed by Ganesan and Pradhan [28], the
hyper-Petersen network proposed by Das and Banerjee [20], the banyan-hypercube net-
work proposed by Youssef and Narahari [84], and the folded Petersen cube proposed by
Ohring and Das [53]. All of them combine the hypercube with another factor network.
They show that the resulting network has some advantages over the hypercube. Along
these lines, Youssef [85, 86] combined the hypercube with several other networks and
analyzed some of their properties.

Also, a few homogeneous product networks have been recently proposed. Rosenberg
[61] introduced the two-dimensional product of de Bruijn graphs (which he calls the
product-shuffle network) as a parallel architecture and has analyzed several of its compu-
tational properties'. He showed that this network contains rings, grids, complete binary
trees, and meshes of trees as subgraphs. It can also emulate butterflies, shuffle-exchange,
and de Bruijn graphs with constant slowdown. Panwar and Patnaik [57] proposed the
two-dimensional product of shuffle-exchange graphs (which they call the modified shuffle-
exchange network) as an alternative to the pure shuffle-exchange graph in solving linear
systems. Ohring and Das [54] proposed the folded Petersen network, which is the multi-
dimensional product of the Petersen graph.

Most of the general results obtained in this dissertation are applied to the above net-
works and to other homogeneous product networks never previously studied. We specially
concentrate in the study of multidimensional products of complete binary trees, shuffle-
exchange graphs, and de Bruijn graphs, and show that they are powertul interconnection
networks.

1.2.2 Structural Properties

Several of the above mentioned references have explored some structural properties of
product networks [4, 24, 82, 86]. These properties are trivially obtained from properties
of the factor graphs. The properties covered by these references are the diameter, the
connectivity, the vertex degree, and the partitionability of product networks.

However, other structural properties are more difficult to be derived and have never
been studied before. In this dissertation we concentrate on two such structural properties
of product networks: the bisection width and the crossing number.

The importance of the bisection width of a networks was pointed out by Thompson
[77, 78], who showed that it implies an upper bound on the speed of certain computations
in the network and a lower bound on the layout area of the network. In general, the
bisection width gives an idea of how much information can be transferred from one side

!Rosenberg does not restrict the factor de Bruijn graphs to have same number of nodes. Hence, these
networks are not strictly homogeneous.

CHAPTER 1. INTRODUCTION 4

1.2 Related Work

In this section we present work conducted by other researchers which, in one form or
another, is relevant to our research. We also briefly present our contribution in each
specific area.

Since we attempt to perform a comprehensive study of the different aspects of homo-
geneous product networks, references in many different areas have been collected here.
We organize them in five main sections, following a structure similar to the document
itself, in order to simplify the cross reference. The first subsection presents references
about the cartesian product operation and about product networks as parallel archi-
tectures. In the rest of the subsections we refer to publications that influenced us in
obtaining properties of homogeneous product networks in specific aspects of the study:
structural properties, embedding properties, algorithms, and VLSI complexity.

1.2.1 Product Networks

The cartesian product operation is a very well-known operation in graph theory. The
cartesian product combines two “factor” graphs into a “product” graph. Harary [30]
has cited the works of Shapiro [69] and Sabidusi [63, 64] as early studies of the graph-
theoretic properties of the cartesian product and product graphs. For instance, Sabidusi
[64] showed that any graph has a decomposition into a unique set of “prime” factor
graphs. Several other authors also studied the product operation from a graph-theory
viewpoint [17, 52, 82].

Referring to interconnection networks, many widely-used networks are instances of
product graphs, obtained by the multiple applications of the cartesian product operation.
Examples of these are the grid, the torus, the hypercube, and the generalized hypercube
[12]. This fact has been already used, for instance, to obtain and prove several properties
of the hypercube [42, 62, 87].

The product operation has been seen as a unifying framework to the study of specific
properties of interconnection networks by several authors. Youssef [86] compiled results
on the structural, routing, and embedding properties of product networks. Baumslag and
Annexstein [4] developed generalized off-line permutation routing algorithms for product
networks and used them to create a general strategy for finding efficient permutation
routes in arbitrary networks. El-Ghazawi and Youssef [24] studied the connectivity of
product networks with respect to the connectivity of the factor network, obtained a lower
bound on the connectivity of a product network, and developed fault-tolerant point-to-
point routing algorithms. Ohring and Hohndel [56] presented fault-tolerant routing algo-
rithms for broadcasting, gossiping, scattering, and total exchange, by finding spanning
trees of the product graph. For a set of specific product networks, (“)hring and Das [55]
presented dynamic embeddings for dynamically-evolving trees and grids.

In this dissertation we compile some of these results and develop many others. We

CHAPTER 1. INTRODUCTION 3

research in defining new interconnection networks exists for cost reasons. The ideal
interconnection pattern is the complete connection of each processor with each other.
However, the cost of this interconnection scheme is only affordable when the number of
processors is small. In general, research in designing new interconnection networks seeks
to reach a compromise between cost and power.

We mainly evaluate the implementation cost of a network from its vertex degree and
its VLSI layout complexity. The two VLSI layout parameters considered are the area
and the length of the longest wire, since they determine the cost of the layout and the
maximum speed of the system, respectively.

1.1 Applications

The proposed approach is specially suited to the study and implementation of special-
purpose parallel architectures. The framework presented allows to evaluate and meaning-
fully compare different candidate architectures to solve a concrete problem, and choose
the one that best fits the requirements and restrictions.

The most popular application of these special purpose architectures are embedded
systems. These are subsystems of a larger system which are in charge of performing
special tasks within the whole system. Examples are the Viterby decoder, based on the
de Bruijn graph, developed by the Caltech’s Jet Propulsion Laboratory to be used in
the Galileo mission to Jupiter [18], or the network for template matching that is being
developed in the University of South Florida [60].

On the other hand, emulation is one of the key operations in parallel architectures. In
this context, a parallel system may consist of a very large number of very simple processors
and specific interconnection schemes may be implemented by emulation. Therefore, the
physical interconnection network must have powerful and flexible emulation capabilities.
Most of the product networks that we present in this dissertation have this property and
they could be interesting candidates for the task.

However, the results obtained in this research are not restricted to special-purpose
SIMD architectures. Most of the properties derived are only dependent on the graph-
theoretical model of the interconnection network, and not on the computational model
of the system (e.g. SIMD, MIMD, etc.) Therefore, the obtained results on structural
properties, embedding capabilities, and VLSI complexity are valid even if we are trying to
design a general purpose architecture. Furthermore, although the presented algorithms
assume a SIMD model of computation, they can still run on a general purpose parallel
machine if it is appropriately programmed. Therefore, the results presented here are
also practically applicable to existing general purpose parallel systems, such as the Intel
Paragon and the Maspar whose interconnection networks are based on the grid, and the
NCube and the iPSC/860 whose interconnection networks are based on hypercube, since
these networks are instances of product networks.

CHAPTER 1. INTRODUCTION 2

000000 060600 000
000000 060600 000
000000 060600 000
000000 0606060 0600
000000 0606060 0600
o000 000 m.%%.??????? ?
000000 060600000 0000 OGO [2 o

Figure 1.1: Construction of the 2-dimensional product of complete binary trees.

most of the cases. Among the instances evaluated there are several homogeneous product
networks never previously proposed as interconnection networks. The evaluation of the
properties of these networks presents them as very powerful and interesting candidates
for future use as interconnection networks.

Surprisingly, to our knowledge, this is the first comprehensive study of the product
notation as a unifying framework for the evaluation of interconnection networks. No
previous reference has presented a collection of general results about product networks
like the ones we show here. The results obtained allow to fully evaluate a new product
network and compare its capabilities with other networks.

In this dissertation we study interconnection networks as “problem solvers.” We study
their powers as special-purpose architectures, implemented to solve specific computa-
tional problems. The whole network cooperates to efficiently perform this task under the
SIMD model. This focus relieves us from studying properties that are only meaningful
in the MIMD model of computation, like throughput, bandwidth, hot spots, etec.

With this in mind, the two main aspects to be evaluated in an interconnection network
are its power and its implementation cost. The power of a network itself comes from its
several properties. First, topological characteristics, like the diameter, bisection width,
or connectivity, say much about the potential of the network as a parallel architecture.

Second, given our view of networks, the power of a network is mainly shown by devel-
oping fast-running algorithms for the network. Although, in general, it is not possible to
use the running time of the algorithms to establish that a network is more powerful than
another, since the structure of one or the other might be specially suited for particular
problems, in some cases it gives a clear idea of the potential of the network.

Third, the power of a network can be also shown from its emulation capabilities.
Efficient emulations transfer all the power of a network into another, giving a way to
perform all the algorithms developed for the former in the later. A network H is consid-
ered to be at least as powerful as another network G if H can emulate any computation
of GG with constant slowdown. It is usual to formalize the notion of emulation with the
notion of embedding, and assume H to be at least as powerful as (G if there is an efficient
embedding of GG into H.

Besides the power, the cost is another important factor in a network. In fact, all

Chapter 1

Introduction

The interconnection network is one of the most important elements in a distributed-
memory parallel architecture. This is because the interconnection scheme strongly de-
termines the capabilities of a parallel architecture. For this reason, designing efficient
interconnection networks has been at the forefront of parallel computing research.

In this dissertation we propose the cartesian product operation (or product, for short)
as a unifying framework to study interconnection topologies. Several popular intercon-
nection networks fall in the class of product networks (e.g. hypercube, grid, torus) and
many others can be generated. The proposed framework will allow us to evaluate their
properties and make meaningful comparisons between them.

Simply, we obtain the r-dimensional product of the N-node graph G from the r-
dimensional N X ... x N grid by replacing the linear connections of the grid by the
interconnection pattern of (. For example, Figure 1.1 shows the construction of the 2-
dimensional product of 7-node complete binary trees. In general, different factor graphs
can be used in different dimensions and, hence, several different topologies can be gen-
erated. However, in this research we will concentrate on product networks with the
same interconnection scheme for each dimension, which we denote homogeneous product
networks, for which we can state stronger results.

The main results of this dissertation are expressed as rules that derive some property
of a homogeneous product network from properties of its factor network. The framework
allows a clean and simple notation to express and prove statements of the form “if ¢
has the property A, then the r-dimensional product of (G has the corresponding property
f(A).” The statements themselves are independent of the specific graph G and, therefore,
fully general. Specifically, the rules derived allow us to obtain structural properties, em-
bedding capabilities, and the VLSI layout complexity of homogeneous product networks.
We also develop general algorithms for several important problems, which are efficient
for any homogeneous product network.

The application of these results to specific instances of product networks yields either
exact values of the studied parameters or bounds on them, that are shown to be tight in

LIST OF FIGURES

6.3
6.4
6.5

6.6
6.7

6.8
6.9

6.10

6.11

7.1
7.2

7.3
Al

Transformation of a compact layout into a collinear layout.
Layout for the 3-dimensional hypercube.
Comparison of the area bounds obtained for PT3(N) and PT3(N), respec-
tively., . . e e
Comparison of the area bounds obtained for PS5(N) and PDs(N).

Comparison of the area bounds obtained for PBy(N) and PC3(N), and
PBy(N) and PCy(N), respectively.
Comparison of the maximum wire length bounds obtained for PL3(N). .
Comparison of the maximum wire length bounds obtained for PT5(N) and
PT5(N), respectively.o o
Comparison of the maximum wire length bounds obtained for PS5(N) and
PDs(N). o oo
Comparison of the maximum wire length bounds obtained for PBs(N)

and PCOs(N). ..o oo

Embedding meshes of trees into products of complete binary trees.
Embedding of the complete binary tree into the two-dimensional product
of complete binary trees. oL L
Extending the complete binary tree by connecting the leaves.

Embedding the (/45)-level complete binary tree into a subgraph of T7(2!—

72
72

72
74

74

74

75
77

List of Figures

1.1

2.1
2.2
2.3

2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

4.1

5.1

5.2

3.3
5.4
3.5

5.6

6.1
6.2

Construction of the 2-dimensional product of complete binary trees. . . .

Definition of cartesian product.
Recursive construction of multi-dimensional product networks.
The 25-node 2-dimensional grid, PLs(5), and the 25-node 2-dimensional
torus, PRy(5), respectively. o oo Lo
The 3-dimensional hypercube, Q3. 0L
The 7T-node complete binary tree, T'(7).
The 2-dimensional mesh of 4-leaf trees.
The 8-node shuffle-exchange graph, S(8).
The 8-node de Bruijn graph, D(8).
The 3-level butterfly and wrapped butterfly, B(24).
The 3-dimensional cube-connected cycles, C'(24)..
The Petersen graph, P(10).
The 4-node complete graph, K(4)..

Obtaining G'(Ngr) from G(Ng) . . . o oo o

Initial situation before the merge process starts. Each sorted sequence is
represented as a horizontal block (arow.)
Situation after step 1: each sequence A;, ¢+ = 0,...,N — 1, has been dis-
tributed into N subsequences B;;, 5 = 0,..., N — 1. Each of the subse-
quences is still sorted. L L L
Situation after the recombination of subsequences done in step 2.

Situation after merging the subsequences in each row.
Sequence D obtained after interleaving. The order goes from left to right
taking each column from top to bottom. The shaded area is filled with
zeroes and the white area with ones. The boundary area has at most N —1
columns, as shown.
Clearing of the dirty area. L .

Collinear layout for K'(5).
Normal collinear layout for K(5).

X

List of Tables

3.1
3.2

3.3

5.1

6.1
6.2
6.3

7.1

7.2

Structural properties of PG, (V) obtained from similar properties of G(N).

Advanced structural properties of PG, (N) obtained from the values of the
maximal congestion, C, the bisection width, B, and B’ of G(N).
Structural parameter of several homogeneous product networks obtained
by application of the presented results.

Time complexity of the presented algorithms in several networks.

Results on VLSI layout complexity obtained.

Bounds on the layout area obtained by application of the presented methods.

Bounds on the wire length obtained by application of the presented meth-
ods. . L e

Comparison of the properties of the product of complete binary trees,
shuffle-exchange, and de Bruijn graphs.
Embedding capabilities of the product of complete binary trees, shuffle-
exchange, and de Bruijn graphs.o

viii

23

27

29
52

70
70

70

88

CONTENTS

7.4 Discussions and Conclusions

8 Conclusions
Bibliography
Appendix
Proof of Theorem 7.1
Proof of Theorem 7.5
Abstract

Biographical Sketch

vii

87

91

93

101
101
104

108

109

CONTENTS

3.2.1 Maximal Congestiono
3.2.2 Bisection Width o oo
3.2.3 Crossing Number o o
3.3 Application to Specific Networks

4 Embedding Properties
4.1 General Results
4.2 Application to Specific Networks L.

5 Algorithms
5.1 Sorting Algorithm Lo
5.1.1 Definitions and Notation
5.1.2 Multiway-Merge Algorithm
5.1.3 Sorting Algorithm o o
5.1.4 Implementation in Homogeneous Product Networks
5.2 Routing Algorithms L
5.2.1 Point-to-Point Routing Algorithm
5.2.2 Broadcasting Algorithm oo
5.3 Summation Algorithm o Lo
5.4 Matrix-Multiplication Algorithm 0L
5.5 Minimum-Weight Spanning-Tree Algorithm
5.5.1 Pointer-Jumping Algorithm
5.5.2 The Minimum-Weight Spanning-Tree Algorithm
5.6 Application to Specific Networkso

6 VLSI Layout Complexity
6.1 Foundations
6.1.1 The Thompson’s Grid Model
6.1.2 Separators
6.1.3 Bifurcators L
6.1.4 Collinear Layouts L.
6.2 Lower Bounds
6.3 Upper Bounds
6.3.1 Upper Bounds Based on Bisectors
6.3.2 Upper Bounds Based on Bifurcators
6.3.3 Upper Bounds Based on Collinear Layouts
6.4 Application to Specific Networkso

7 Interesting Product Networks
7.1 Products of Complete Binary Trees
7.2 Products of Shuffle-Exchange Graphs
7.3 Products of de Bruijn Graphso

vi

24
25
26
27

30
30
31

33
34
34
35
40
40
44
44
45
45
46
47
48
49
30

54
o4
o4
)
56
57
38
39
39
62
64
71

Contents

Acknowledgements iv
Contents v
List of Tables vii
List of Figures viii
1 Introduction 1
1.1 Applications L 3
1.2 Related Work 4
1.2.1 Product Networks o 4

1.2.2 Structural Properties o000 5

1.2.3 Embedding Properties o oL 6

1.2.4 Algorithmso 6

1.2.5 VLSI Complexity o 8

1.3 Organization of the Dissertation 9

2 Definitions and Notation 10
2.1 Homogeneous Product Networks 10
2.2 Structural Properties oo o 13
2.3 Embedding Propertieso o 14
2.4 Networks of Interest Lo 15

3 Structural Properties 21
3.1 Direct Results 21
3.1.1 Number of Nodes and Links 21

3.1.2 Diameter Lo L 21

3.1.3 Connectivity 22

3.1.4 Vertex Degreeo 22

3.1.5 Partitionability oo 23

3.2 Advanced Results L 23

Acknowledgements

First, I would like to express my immense gratitude to my dissertation director, Dr.
Kemal Efe, for his constant guidance and support. Most of the ideas included in this
dissertation are the result of our intense discussions. Furthermore, he has always been a
friend, and that friendship, I am sure, will go far beyond the end of this dissertation.

[would also like to thank Dr. Subrata Dasgupta, Dr. Henry Chu, and Dr. Nian-Feng
Tzeng for being members of my committee and helping me to improve the quality of this
dissertation with their comments.

Finally, I would like to recognize the role of my family in the realization of this work.
Even from far away, they have been always there to help me, solve any problem that
could arise, and give me their support.

I dedicate this dissertation to my mother and the memory of my father.

v

Homogeneous Product Networks
for Processor Interconnection

Antonio Fernandez

APPROVED:

Kemal Efe, Chairman

Associate Professor of Computer
Science

Chee-Hung Henry Chu
Associate Professor of Computer
Engineering

Subrata Dasgupta
Professor of Computer Science

Nian-Feng Tzeng
Associate Professor of Computer
Engineering

Joan T. Cain

Dean, Graduate School

(©Antonio Fernandez
1994
All Rights Reserved

i

Homogeneous Product Networks
for Processor Interconnection

A Dissertation
Presented to
The Graduate Faculty of
The University of Southwestern Louisiana
In Partial Fulfillment of the

Requirements for the Degree
Doctor of Philosophy

Antonio Fernandez

Fall 1994

