
Applications porting and
development with IPv6

Dr. Tomás P. de Miguel
tmiguel@dit.upm.es
Department of Telematic Systems
Engineering (DIT)
Technical University of Madrid (UPM)

Eva M. Castro
eva@gsyc.escet.urjc.es
Systems and Communications Group
(GSyC)
Experimental Sciences and Technology
Department (ESCET)
Rey Juan Carlos University (URJC)

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (2)

Agenda

Transition to IPv6 is only a network issue

Transition to IPv6 implies application code

porting

Describe two code porting exercises

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (3)

IPv6 transition criteria

Incremental upgrade
Existing hosts can be upgraded at any time
Existing hosts can be upgraded at any order

Incremental development
New hosts can be installed at any time
New hosts can be installed in any place

Easy addressing
Continue to use existing address after existing
networks migration

Low start-up costs
Easy deployment of new networks

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (4)

Transition impact on upper layers

TCP/IP network architecture is not perfectly
layered
Applications identify destination node

Using the IP address
Using DNS name

In both cases application should be revised
IPv6 manages new IP addresses
Transport layer interface changes

During transition will be necessary to
support both IPv4 and IPv6 nodes.

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (5)

Application Level

TCP

IPv4 / IPv6 communications library

UDP UNIX . . .

Application Level

TCP

IPv4 / IPv6 communications library

UDP UNIX . . .

IP sockets interface

O.S. Kernel

Application Level

TCP

IP communications library

UDP UNIX . . .

Applications architecture

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (6)

Transition interaction problems
IP address management

IPv4 use 32 bit address

IPv6 use 128 bit address

Socket network programming interface
Socket data structures
Socket function calls

2001:

138 .4 .2 .10

32 bits

128 bits

720: 1500: 0001: 0000: 0000: 0000: A100

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (7)

Dual stack platform

IPv4 IPv6

Link layer

sockets IPv4

Application

sockets IPv6

IPv4 comm lib

Application

IPv6 comm lib

eth 0x0800 eth 0x86DD

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (8)

Dual stack node

Have both IPv6 and IPv4 addresses
Include resolver libraries capable of dealing
with A and AAAA/A6 records
When asking to DNS for a dual node, the
order of the answers would normally define
the protocol used
Recommendation

do not register IPv6 address in DNS till they are
configured and working in systems

Application uses IPv6 or IPv4 depending on
the answers received and their order

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (9)

Dual stack application

IPv4 IPv6

Link layer

Application

sockets IPv6

IPv4 and IPv6 comm lib

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (10)

Transition scenarios

Porting existing networks
1. All applications are IPv4 only

2. Provide two different applications

3. Dual IPv4 and IPv6 applications

Setup new networks IPv6 only
1. Dual IPv4 and IPv6 applications

2. Applications can be IPv6 only
If they are IP address independent

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (11)

IPv6 only application → IPv4 node

Dual stack host

Application uses sockets
INET6 API

It uses IPv6 addresses

IPv4-mapped IPv6 address
are used to represent an
IPv4 address in an INET6
socket

::FFFF:a.b.c.d
Example

::FFFF:138.4.2.10

IPv6 app

sockets IPv6

IPv4 IPv6

To
IPv6 node

To
IPv4 node

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (12)

Transition scenarios

IPv6tunneltranslatorFailIPv4/IPv6IPv6

IPv6?translator?IPv6

IPv6?translator?IPv6

translatorFailtunnelIPv4IPv4/IPv6IPv4

?Fail?IPv4IPv4

IPv6 netIPv4 netIPv6 netIPv4 netusing stack

to IPv6 nodeto IPv4 nodeFrom
application

IPv4/IPv6

?tunnel?FailIPv4

IPv6translatortranslatorIPv4IPv4/IPv6

?translator?IPv4IPv4

translator?tunnel?IPv6

? It has no sense

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (13)

Tunneling
It is a basic mechanism to transport IPv6
packets over IPv4 networks.
IPv6 packets are encapsulated on IPv4
packets to traverse non IPv6 capable
networks

Technique extensively used
MBONE
Multiprotocol (IPX, Appletalk) over IP
IP mobility

PayloadIPv4
header

IPv6
header Payload

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (14)

Tunneling
Configured tunnel

Tunnel to a router
Destination host any IPv6 address
Types:
Router-to-router
Host-to-router

Automatic tunnel
Tunnel to a concrete host
Destination host an IPv4-compatible address
Types:
Host-to-host
Router-to-host

Multicast tunneling

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (15)

Tunneling scenarios

A network

IPv6

C network D network

B network

IPv4
IPv4

IPv6

IPv4

Connect
IPv6 islands

Connect
host to
island

Connect
host to host

Connect
island
to host

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (16)

Tunneling (router to router)

A network

IPv6
B network

IPv4

IPv6

Configured tunnel
IPv6/IPv4 routers interconnected by an
IPv4 infrastructure
Hosts are IPv6 only

tunnel

IPv6
header Payload

IPv6
header Payload

IPv6
header Payload

IPv4
header

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (17)

Tunneling (host to router)

D network

B network

IPv4

IPv6

tunnel

Configured tunnel
It can be setup as
automatic tunnel

Hosts
From: dual stack
hosts
To: IPv6 only hosts

Hosts tunnel IPv6
packets to an
intermediary
IPv6/IPv4 router via
an IPv4
infrastructure

IPv6
header PayloadIPv4

header

IPv6
header Payload

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (18)

Automatic tunnels
How to obtain IPv6 address of an IPv4 end
point?
We can use IPv4-compatible IPv6 address

Example: 0:0:0:0:0:0:138.4.2.10 or ::138.4.2.10

IPv4-compatible addresses are assigned
exclusively to nodes that support automatic
tunneling

00000.............000000000 (96 bits)00000.............000000000 (96 bits) IPv4 Address (32 bits)IPv4 Address (32 bits)

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (19)

Tunneling (host to host)

C network D network

IPv4
IPv4

IPv4

Automatic tunnel
Dual stack IPv4/IPv6 hosts
Interconnected by an IPv4 infrastructure

tunnel

IPv6
header PayloadIPv4

header

138.4.2.10

From ::193.146.185.109
To ::138.4.2.10

193.146.185.109

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (20)

Tunneling (router to host)

A network

IPv6

C network

IPv4

tu
nn

el

Automatic tunnel
IPv4/IPv6 routers
IPv4/IPv6 hosts
The router translate
IPv6 address host can
use tunnels to reach
an IPv4/IPv6 host via
an IPv4 infrastructure

IPv6
header PayloadIPv4

header

IPv6
header Payload

138.4.2.10

To ::138.4.2.10

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (21)

Translators

Network level translators
SIIT (Stateless IP/ICMP Translator)
NAT-PT (Network Address Translation-
Protocol Translation)
BIS (Bump in the stack)

MBIS (Multicast extensions to BIS)

Transport level translators
Transport Relay Translator (TRT)

Application level translators
BIA (Bump in the API)

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (22)

NAT-PT (Network Address Translation – Protocol Translation)

It is a gateway, which translates an IPv6 into an
equivalent IPv4 address and vice versa.
The connection state is established when

First data packet traverses NAT-PT box
If IPv6 domain starts communication

First DNS response traverses NAT-PT box
IF IPv4 domain starts communication

Heavy mechanism for each packet
Address state
Protocol translation

Single failure point
Problems when the application transfers IP
addresses

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (23)

Bump in the stack(BIS) technique
BIS allows dual networks hosts to
communicate with IPv6 hosts using existing
IPv4 applications.

With IPv4 hosts using standard IPv4 stack
With IPv6 hosts using special translator stack

IPv4 only applications
uses IPv4 only sockets API.
manages only IPv4 address

It translates IPv4 packages into IPv6 ones
and vice versa using the IP conversion
mechanism SIIT.
BIS can co-exist with other translators.

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (24)

BIS dual stack structure

IPv4 apps

sockets IPv4

IPv4

BIS translator

Extension Name
Resolver

Address
mapper

Translator

IPv6

Extension Name Resolver
Redefine DNS requests
Looks for ‘A’ and ‘AAAA’
records
Detect IPv6 addresses

Address Mapper
Maintains a database
Translate IPv6 into IPv4
addresses

Translator
Translate IPv4 packages
into IPv6 ones.

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (25)

BIS operation (communication with an IPv4 host)

IPv4 apps

sockets IPv4

IPv4

Host
IPv4

BIS translator

Extension Name
Resolver

Address
mapper

Translator

IPv6

1. Application sends a query
to resolve an ‘A’ record for
the target host.

2. BIS Extension Name
Resolver creates another
query

‘A’ record
‘AAAA’ record

3. DNS returns an ‘A’ record
4. IPv4 stack is used without

any translation

IPv4 network

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (26)

BIS operation (from BIS node to IPv6 host)

IPv4 apps

sockets IPv4

IPv4

Host
IPv6

(server)

BIS translator

Extension
Name Resolver

Address
mapper

Translator

IPv6

1. Application sends a query to
resolve an ‘A’ record and BIS
creates a query with both ‘A’
and ‘AAAA’

2. DNS returns ‘AAAA’ record
3. BIS Address Mapper maps

IPv6 address into IPv4 one

4. Application sends an IPv4
packet

5. Translator transforms IPv4
into IPv6 packet and sends
to the network

Using mapped addresses

IPv6 network

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (27)

BIS operation (from IPv6 node to BIS node)

IPv4 apps

sockets IPv4

IPv4

Host
IPv6

(client)

BIS translator

Extension
Name Resolver

Address
mapper

Translator

IPv6

1. BIS node receives an IPv6
packet

2. The translator tries to
produce an IPv4 packet

Requesting mapped entries

3. If IPv6 source address is not
found

Selects an IPv4 address
from the spool

4. Translator tosses IPv4
packet up to the application

IPv6 network

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (28)

BIS limitations
It has the same limitations of other header
translation methods

Single failure point
Problems when the application transfers IP
addresses

Implementation is dependent upon network
interface driver.
This method is invalid when

Application manages network information.
Communication is not unicast
Application uses IPv4 options
Received IPv6 packets with options

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (29)

Bump in the API (BIA) technique

It allows IPv4 applications
communicate with IPv6 hosts

It works on dual stack hosts.
It works on IPv6 only hosts.

Inserts an API translator between the
socket API module and the TCP/IP
module
Translation is possible without header
translation

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (30)

BIA dual stack structure

IPv4 apps

sockets IPv4

IPv4

BIA translator

Extension Name
Resolver

Address
mapper

IPv6

Function
mapper

Extension Name Resolver
Redefine DNS requests
Looks for ‘A’ and ‘AAAA’
records
Detect IPv6 addresses

Address Mapper
Maintains a database
Translate IPv6 into IPv4
addresses

Function Mapper
Translate IPv4 sockets
function calls into IPv6 ones.

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (31)

BIA operation (from BIA node to IPv6 host)

Host
IPv4

1. Application sends a query
to resolve an ‘A’ record for
the target host.

2. BIA Extension Name
Resolver creates another
query

‘A’ record
‘AAAA’ record

3. DNS returns an ‘A’ record
4. IPv4 stack is used without

any translation

IPv4 network

IPv4 apps

sockets IPv4

IPv4

BIA translator

Extension Name
Resolver

Address
mapper

IPv6

Function
mapper

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (32)

BIA operation (communication with an IPv6 host)

Host
IPv6

(server)

1. Application sends a query to
resolve an ‘A’ record and BIS
creates a query with both ‘A’
and ‘AAAA’

2. DNS returns ‘AAAA’ record
3. BIA Address Mapper maps

IPv6 address into IPv4 one

4. Application sends an IPv4
packet

5. Function Mapper translates
IPv4 sockets function calls
into IPv6 ones

Using mapped addresses

IPv6 network

IPv4 apps

sockets IPv4

IPv4

BIA translator

Extension
Name Resolver

Address
mapper

IPv6

Function
mapper

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (33)

BIA operation (from IPv6 node to BIA node)

Host
IPv6

(client)

1. BIA Function mapper
receive a IPv6 packet

2. Function mapper request
IPv4 addresses to the
Address Mapper

Local address
Remote address

3. Invoke IPv4 socket function
to connect with application

IPv6 network

IPv4 apps

sockets IPv4

IPv4

BIA translator

Extension
Name Resolver

Address
mapper

IPv6

Function
mapper

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (34)

BIA limitations

It has the same limitations of other header
translation methods

Single failure point

Problems when the application transfers IP
addresses

This method is invalid when
Application manages network information.

Application uses IPv4 options

Received IPv6 packets with options

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (35)

Applications porting guidelines
1. Use existing IPv4 only application

Using translators
Valid only with limitations

2. Porting existing application
Applicable only if source code is available
Porting communications libraries

Example: Java net library

3. Developing new application
Independent of IP addresses
Dependent of IP addresses

Not recommended
Developing IPv4/IPv6 dual code

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (36)

Agenda

Transition to IPv6 is only a network issue

Transition to IPv6 implies application code

porting

1. Analyze existing programs

2. Rewrite source code

Describe two code porting exercises

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (37)

Analyzing existing programs

Application Transport Module (TM).

BSD sockets interface

Application
Level

O.S. Kernel

Communication
Library TCP UDP UNIX ...

App1 ...App2 Appn

TM TMTM

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (38)

Porting to IPv6

Communications library

Other application modules
(with IP address dependencies)

1. IP address parsers.

2. Use of special addresses.

3. Local IP address selection.

4. ADU Fragmentation.

5. Register systems based on IP addresses.

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (39)

1. IP address parsers

Compliant with IPv4/IPv6 address
format.

Separator: “.” for IPv4 and “:” for IPv6.

Ambiguity separating the address and
the service port number.

138.4.2.10:3333

Recommendations:
Use FQDN.
Use literal IP address (RFC 2373).
http://[2001:720:1500:1::a100]:80/index.html

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (40)

2. Use of special addresses

Special addresses are found hard coded
within the source instead of symbolic
names.

Symbolic Name (IPv4/IPv6) IPv4
Addr

IPv6
Addr

INADDR_ANY/IN6ADRR_ANY_INIT 0.0.0.0 ::

INADDR_LOOPBACK/
IN6_ADDR_LOOPBACK_INIT 127.0.0.1 ::1

INADDR_BROADCAST 255.255.255.255 not exist

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (41)

3. Local IP address selection

Source address selection (multihoming):
Unspecified address

(Default Address Selection).

Work in progress:

Draft-ietf-ipv6-default-addr-select.txt

Destination address selection:
Resolver returns a set of candidates

A selection algorithm is needed
based on the policy of “best choice”.

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (42)

4. ADU fragmentation

Path MTU Discovery

MTU5MTU1

MTU6 MTU7

MTU4

MTU3

Link Layer

Sender
Application

UDP

IPv6

Link Layer

Receiver
Application

UDP

IPv6

MTU2

MTU1 > MTU2 >Packet Size > MTU3

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (43)

5. Register Systems using IP addresses

Group communication is often related to a
group membership based on participant
registry system.

Problem:
IP address can change over time.

Solution:
FQDN.

Refresh IP address value.

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (44)

Porting guidelines
1. Porting the application networking part to

manage IPv6 addresses.
Using socket interface:

RFC 2553: Basic socket interface extensions for IPv6.
RFC 2292: Advanced sockets API for IPv6.

2. Reengineering the application to use new
features in addition to larger address space:

QoS: Flow labels and priorities.
Mobility.
Multihoming.
Anycast communication.
Security: authentication and encryption.
etc.

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (45)

IPv6 addresses are 128 bit long.

1. Data structures:
Socket address struct

3. Socket calls

2. Conversion functions between:
• String and bynary representation
• Name and address

Changes in the application networking partChanges in the application networking part

BSD socket interface extensions

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (46)

Family

Data

struct sockaddr {
sa_family_t sa_family;
char sa_data[14];

};

struct sockaddr {
sa_family_t sa_family;
char sa_data[14];

};

sockaddr

16 bits

AF_XXXX

Generic socket address

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (47)

Family

struct sockaddr_in {
sa_family_t sin_family;
in_port_t sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

struct in_addr {
uint32_t s_addr;

};

struct sockaddr_in {
sa_family_t sin_family;
in_port_t sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

struct in_addr {
uint32_t s_addr;

};

sockaddr_in

Port Number

IPv4 Address
(32 bits)

Unused

16 bits

AF_INET

IPv4 socket address structure

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (48)

IPv6 socket address structure

Family

struct sockaddr_in6 {
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr;
uint32_t sin6_scope_id;

};

struct in6_addr {
uint8_t s6_addr[16];

};

struct sockaddr_in6 {
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr;
uint32_t sin6_scope_id;

};

struct in6_addr {
uint8_t s6_addr[16];

};

sockaddr_in6

Port Number

Flow Info

IPv6 Address
(128 bits)

16 bits

AF_INET6

Scope ID

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (49)

Protocol independent structure

Family

struct sockaddr_storage {
sa_family_t sin6_family;
__ss_aligntype __ss_align;
char __ss_padding[_SS_PADSIZE];

};

struct sockaddr_storage {
sa_family_t sin6_family;
__ss_aligntype __ss_align;
char __ss_padding[_SS_PADSIZE];

};

sockaddr_storage

Align (32, 64 bits)

Padding

16 bits

AF_XXXX

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (50)

IPv6 addresses are 128 bit long.

1. Data structures:
Socket address struct

3. Socket calls

2. Conversion functions between:
• Hostname and address
• String and bynary representation

Changes in the application networking partChanges in the application networking part

BSD socket interface extensions

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (51)

RESOLVER: returns IP address structure.

Application
code

Resolver
code

Req Resp

Conf Files

Local
Name Server

UDP Req

UDP Resp

Application

Conversion functions

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (52)

Conversion: hostname & IP addr

IPv4 only IPv4 & IPv6

gethostbyname()

gethostbyaddr()

gethostbyname2()
getaddrinfo()

getnameinfo()

Protocol
Independent
Functions

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (53)

Gethostbyname

“hostname.domain”

“hostname.domain”

IPv6 address
(if not found,

IPv4-mapped IPv6
address = ::FFFF:x.x.x.x)

struct hostent *gethostbyname(const char *hostname);struct hostent *gethostbyname(const char *hostname);

* Query for a DNS A record

* Query for a DNS AAAA record, RES_USE_INET6 resolver
option is required:

IPv4 addressa.b.c.d

x:x:x:x:x:x:x:x

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (54)

“hostname.domain”

“hostname.domain”

IPv6 address

struct hostent *gethostbyname2(const char *hostname, int family);struct hostent *gethostbyname2(const char *hostname, int family);

* Query for a DNS A record, family=AF_INET is required:

* Query for a DNS AAAA record, family=AF_INET6 is required:

IPv4 address

RES_USE_INET6 IPv4-mapped IPv6
address

a.b.c.d

x:x:x:x:x:x:x:x

::FFFF:a.b.c.d

Gethostbyname2

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (55)

Getaddrinfo

int getaddrinfo (const char *hostname, const char *service,
const struct addrinfo *hints,
const struct addrinfo **result);

int getaddrinfo (const char *hostname, const char *service,
const struct addrinfo *hints,
const struct addrinfo **result);

* Protocol independent function.

* family
* socket type
* protocol
* ...

“hostname.domain”
+

IPv6 addr1 IPv6 addr2 IPv4 addr
AF_INET6 AF_INET6 AF_INET

result

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (56)

struct hostent *gethostbyaddr(const char *addr,
size_t len,
int family);

struct hostent *gethostbyaddr(const char *addr,
size_t len,
int family);

addr => in_addr
len => sizeof(in_addr)
family => AF_INET

addr => in6_addr
len => sizeof(in6_addr)
family => AF_INET6

“hostname.domain”

“hostname.domain”

* From IPv4 address:

* From IPv6 address:

::FFFF:a.b.c.d
::a.b.c.d

=> query in the domain for IPv4 address

a.b.c.d

x:x:x:x:x:x:x:x

Gethostbyaddr

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (57)

int getnameinfo (const struct sockaddr *sockaddr,
socklen_t addrlen,
char *host, size_t hostlen,
char *serv, size_t servlen, int flags);

int getnameinfo (const struct sockaddr *sockaddr,
socklen_t addrlen,
char *host, size_t hostlen,
char *serv, size_t servlen, int flags);

* Protocol independent function.

* From IPv4 address:

sockaddr => sockaddr_in
len => sizeof(sockaddr_in)

“hostname.domain”

* From IPv6 address:
sockaddr => sockaddr_in6
len => sizeof(sockaddr_in6)

“hostname.domain”

a.b.c.d

x:x:x:x:x:x:x:x

Getnameinfo

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (58)

Conversion: string & binary

Conversions between the text representation and the
binary value in network byte ordered (socket address
structure).

IPv4 only IPv4 & IPv6
inet_aton()
inet_addr()

inet_ntoa()

inet_pton()

inet_ntop()

String -> Binary

Binary -> String

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (59)

Conversion: string & binary

int inet_aton (const char *strptr,
struct in_addr *addrptr);

in_addr_t inet_addr (const char *strptr);

int inet_aton (const char *strptr,
struct in_addr *addrptr);

in_addr_t inet_addr (const char *strptr); /*deprecated*/

int inet_ntoa (struct in_addr inaddr
const char *strptr);

int inet_ntoa (struct in_addr inaddr
const char *strptr);

int inet_pton (int family, const char *strptr,
void *addrptr);

int inet_pton (int family, const char *strptr,
void *addrptr);

IPv4 only

IPv4 &
IPv6

int inet_ntop (int family, const char *strptr,
void *addrptr);

int inet_ntop (int family, const char *strptr,
void *addrptr);

IPv4 only

IPv4 &
IPv6

1. String to 32-bit network byte ordered

2. 32-bit network byte ordered to string

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (60)

IPv6 addresses are 128 bit long.

1. Data structures:
Socket address struct

3. Socket calls

2. Conversion functions between:
• Hostname and address
• String and bynary representation

Changes in the application networking partChanges in the application networking part

BSD socket interface extensions

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (61)

Socket calls (TCP)

socket()

Server

bind()

listen()

accept()

read()

write()

close()

socket()

connect()

write()

read()

close()

Client

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (62)

Socket calls (UDP)

socket()

Server

bind()

receivefrom()

sendto()

socket()

connect()

sendto()

receivefrom()

close()

Client

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (63)

* Address family, socket type and protocol in the socket call:

* A pointer to a sockaddr struct and its length are required in
some calls:

IPv4: • Casting (sockaddr_in *) to (sockaddr *)
• Length => sizeof(sockaddr_in)

IPv6: • Casting (sockaddr_in6 *) to (sockaddr *)
• Length => sizeof(sockaddr_in6)

int socket (int family, int type, int protocol);int socket (int family, int type, int protocol);

AF_INET
AF_INET6

TCP UDP IPv4
SOCK_STREAM SOCK_DGRAM SOCK_RAW

TCP UDP IPv6

type

protocol

family

Same socket calls IPv4 & IPv6

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (64)

IPv4/IPv6 Interoperability

Dual stack will be the mechanism used
during transition period.

Not all combinations between IPv4 o IPv6
only-nodes and dual stack nodes are
allowed to interact.

IPv4

TCP/UDP

Link layer

IPv6

TCP/UDP

Link layer

IPv4

TCP/UDP

Link layer

IPv6

IPv4-only node IPv6-only node Dual stack node

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (65)

Interoperability cases

IPv4 server at IPv4-only node.

IPv6 server at IPv6-only node.

IPv4 server at dual stack node.

IPv6 server at dual stack node.

IPv6-only server at dual stack node.

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (66)

IPv4/IPv6 clients.

IPv4

IPv4
client
IPv4
client

TCP/UDP

IPv4

IPv4
client
IPv4
client

TCP/UDP

IPv6

IPv6
client
IPv6
client

TCP/UDP

IPv6 IPv4

IPv6
client
IPv6
client

TCP/UDP

IPv6 IPv4

IPv4
server
IPv4

server

TCP/UDP

x.y.z.w x.y.z.w

::FFFF:x.y.z.w

x.y.z.w

IPv4

1.IPv4 server at IPv4-only node

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (67)

IPv4/IPv6 clients.

IPv4

IPv4
client
IPv4
client

TCP/UDP

IPv4

IPv4
client
IPv4
client

TCP/UDP

IPv6

IPv6
client
IPv6
client

TCP/UDP

IPv6 IPv4

IPv6
client
IPv6
client

TCP/UDP

IPv6 IPv6

IPv6
server
IPv6

server

TCP/UDP

x:x:x:x:x:x:x:x

x:x:x:x:x:x:x:x
x:x:x:x:x:x:x:x

IPv6

2.IPv6 server at IPv6-only node

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (68)

IPv4/IPv6 clients.

IPv4

IPv4
client
IPv4
client

TCP/UDP

IPv4

IPv4
client
IPv4
client

TCP/UDP

IPv6

IPv6
client
IPv6
client

TCP/UDP

IPv6 IPv4

IPv6
client
IPv6
client

TCP/UDP

IPv6

x.y.z.w x.y.z.w

::FFFF:x.y.z.w

IPv4

IPv4
server
IPv4

server

TCP/UDP

IPv6

x.y.z.w

x.y.z.w

IPv4

3.IPv4 server at dual stack node

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (69)

IPv4/IPv6 clients.

IPv4

IPv4
client
IPv4
client

TCP/UDP

IPv4

IPv4
client
IPv4
client

TCP/UDP

IPv6

IPv6
client
IPv6
client

TCP/UDP

IPv6 IPv4

IPv6
client
IPv6
client

TCP/UDP

IPv6
x.y.z.w x.y.z.w

IPv4

IPv6
server
IPv6

server

TCP/UDP

IPv6

x:x:x:x:x:x:x:x

x:x:x:x:x:x:x:xx:x:x:x:x:x:x:x ::FFFF:x.y.z.w
x:x:x:x:x:x:x:x

x.y.z.w

IPv6

IPv4

4.IPv6 server at dual stack node

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (70)

IPv4

IPv4
client
IPv4
client

TCP/UDP

IPv4

IPv4
client
IPv4
client

TCP/UDP

IPv6

IPv6
client
IPv6
client

TCP/UDP

IPv6 IPv4

IPv6
client
IPv6
client

TCP/UDP

IPv6 IPv4

TCP/UDP

IPv6

x:x:x:x:x:x:x:x

x:x:x:x:x:x:x:x
x:x:x:x:x:x:x:x x:x:x:x:x:x:x:x

IPv6

IPv6-
only

server

IPv6-
only

server

5. IPv6-only servers at dual stack

IPv4/IPv6 clients.

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (71)

Client server interoperability

* Network is dual if it is necessary

IPv4 server

IPv4 node Dual stack

IPv6 server

IPv6 node Dual stack

IPv4
node

Dual
stack

IPv6
node

Dual
stack

IPv4IPv4
client

IPv6
client

IPv4

IPv4 IPv4

IPv6IPv6

IPv6 IPv6

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (72)

Client server interoperability

* Network is dual if it is necessary

IPv4 server

IPv4 node Dual stack

IPv6 server

IPv6 node Dual stack

IPv4
node

Dual
stack

IPv6
node

Dual
stack

IPv4IPv4
client

IPv6
client

IPv4

IPv4

Fail

IPv4 FailIPv4

IPv4Fail

IPv6IPv6Fail

IPv4

IPv4 IPv6 IPv6

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (73)

Agenda

Transition to IPv6 is only a network issue
Transition to IPv6 implies application code
porting
Transition exercises

Simple Point to point : Daytime
Simple Multipoint: Daytime
Point to Multipoint : Isabel

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (74)

Daytime

A daytime service sends the current
date and time as a character string
without regard to the input (RFC 867).

IPv4

Daytime
client

Daytime
client

TCP/UDP

IPv4

Daytime
server

Daytime
server

TCP/UDP

INADDR_ANY:13

IPv4

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (75)

IPv4: Unicast Daytime Server

1. Creating server socket.

struct sockaddr_in serverAddr;

alen = sizeof(struct sockaddr_in);
socktype = SOCK_STREAM; /* SOCK_DGRAM */
serverAddr.sin_family = AF_INET;
serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);
serverAddr.sin_port = htons(DAYTIME_PORT);

serverfd = socket(PF_INET, socktype, 0);
bind(serverfd, (struct sockaddr *)&serverAddr, &alen);
listen(serverfd, LISTEN_QUEUE);

struct sockaddr_in serverAddr;

alen = sizeof(struct sockaddr_in);
socktype = SOCK_STREAM; /* SOCK_DGRAM */
serverAddr.sin_family = AF_INET;
serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);
serverAddr.sin_port = htons(DAYTIME_PORT);

serverfd = socket(PF_INET, socktype, 0);
bind(serverfd, (struct sockaddr *)&serverAddr, &alen);
listen(serverfd, LISTEN_QUEUE);

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (76)

IPv4: Unicast Daytime Server

2. Waiting for client connections
for (; ;) {

struct sockaddr_in clientAddr;
alen = sizeof(struct sockaddr_in);
connectedfd = accept(serverfd,

(struct sockaddr *)&clientAddr,
&alen);

clienthost = inet_ntoa(clientAddr.sin_addr);
port = ntohs(clientAddr.sin_port);
printf(“Request from host=[%s] port=[%d]\n”,

clienthost, port);
myGetTimeFunction(timeStr);
write(connectedfd, timeStr, strlen(timeStr));
close(connfd);

}

for (; ;) {
struct sockaddr_in clientAddr;
alen = sizeof(struct sockaddr_in);
connectedfd = accept(serverfd,

(struct sockaddr *)&clientAddr,
&alen);

clienthost = inet_ntoa(clientAddr.sin_addr);
port = ntohs(clientAddr.sin_port);
printf(“Request from host=[%s] port=[%d]\n”,

clienthost, port);
myGetTimeFunction(timeStr);
write(connectedfd, timeStr, strlen(timeStr));
close(connfd);

}

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (77)

IPv4: Unicast Daytime Client
struct sockaddr_in serverAddr;
struct hostent *phe;

alen = sizeof(struct sockaddr_in);
socktype = SOCK_STREAM; /* SOCK_DGRAM */
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons(DAYTIME_PORT);
phe = gethostbyname(hostname);
memcpy(&serverAddr.sin_addr, phe->h_addr, phe->h_length);

clientfd = socket(PF_INET, socktype, 0);
connect(clientfd, (struct sockaddr *)&serverAddr, &alen);

while (read(connectedfd, timeStr, sizeof(timeStr)) > 0)
printf("%s", timeStr);

close(connectedfd);

struct sockaddr_in serverAddr;
struct hostent *phe;

alen = sizeof(struct sockaddr_in);
socktype = SOCK_STREAM; /* SOCK_DGRAM */
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons(DAYTIME_PORT);
phe = gethostbyname(hostname);
memcpy(&serverAddr.sin_addr, phe->h_addr, phe->h_length);

clientfd = socket(PF_INET, socktype, 0);
connect(clientfd, (struct sockaddr *)&serverAddr, &alen);

while (read(connectedfd, timeStr, sizeof(timeStr)) > 0)
printf("%s", timeStr);

close(connectedfd);

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (78)

IPv6: Unicast Daytime Server

1. Obtaining server wildcard address
struct addrinfo hints, *res;

memset(0, &hints, sizeof(hints);
hints.ai_flags = AI_PASSIVE;
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM; /* SOCK_DGRAM */
getaddrinfo(NULL, DAYTIME_PORT, &hints, &res);

struct addrinfo hints, *res;

memset(0, &hints, sizeof(hints);
hints.ai_flags = AI_PASSIVE;
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM; /* SOCK_DGRAM */
getaddrinfo(NULL, DAYTIME_PORT, &hints, &res);

IN6_ADDR_ANY
AF_INET6

INADDR_ANY
AF_INET4

res

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (79)

IPv6: Unicast Daytime Server

2. Creating server socket.

serverfd = socket(res->family, res->ai_socktype,
res->ai_protocol);

bind(serverfd, res->ai_addr, res->ai_addrlen);

listen(serverfd, LISTEN_QUEUE);

freeaddrinfo(res);

serverfd = socket(res->family, res->ai_socktype,
res->ai_protocol);

bind(serverfd, res->ai_addr, res->ai_addrlen);

listen(serverfd, LISTEN_QUEUE);

freeaddrinfo(res);

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (80)

IPv6: Unicast Daytime Server

3. Waiting for client connections
for (; ;) {

struct sockaddr_storage clientAddr;
alen = sizeof(struct sockaddr_storage);
connectedfd = accept(serverfd,

(struct sockaddr *)&clientAddr,
&alen);

getnameinfo((struct sockaddr *)&clientAddr, alen,
clientHost, sizeof(clientHost),
clientPort, sizeof(clientPort),
NI_NUMERICHOST);

printf("Request from host=[%s] port=[%s]\n",
clienthost, clientservice);

myGetTimeFunction(timeStr);
write(connectedfd, timeStr, strlen(timeStr));
close(connfd);

}

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (81)

IPv6: Unicast Daytime Client

1. Obtaining server address

struct addrinfo hints, *res, *ressave;

memset(0, &hints, sizeof(hints);
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM; /* SOCK_DGRAM */
getaddrinfo(serverHost, DAYTIME_PORT, &hints, &res);

struct addrinfo hints, *res, *ressave;

memset(0, &hints, sizeof(hints);
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM; /* SOCK_DGRAM */
getaddrinfo(serverHost, DAYTIME_PORT, &hints, &res);

IPv6 addr1 IPv6 addr2 IPv4 addr
AF_INET6 AF_INET6 AF_INET

res

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (82)

ressave=res;
for (; res!=NULL; res=res->ai) {

clienfd = socket(res->family, res->ai_socktype,
res->ai_protocol);

if (clientfd <0)
continue;

if (connect(clientfd, res->ai_addr, res->ai_addrlen)==0)
break;

close(serverfd);
};
while (read(connectedfd, timeStr, sizeof(timeStr)) > 0)

printf("%s", timeStr);
close(connectedfd);
freeaddrinfo(ressave);

ressave=res;
for (; res!=NULL; res=res->ai) {

clienfd = socket(res->family, res->ai_socktype,
res->ai_protocol);

if (clientfd <0)
continue;

if (connect(clientfd, res->ai_addr, res->ai_addrlen)==0)
break;

close(serverfd);
};
while (read(connectedfd, timeStr, sizeof(timeStr)) > 0)

printf("%s", timeStr);
close(connectedfd);
freeaddrinfo(ressave);

2. Connecting server

IPv6: Unicast Daytime Client

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (83)

Agenda

Transition to IPv6 is only a network issue
Transition to IPv6 implies application code
porting
Transition exercises

Simple Point to point : Daytime
Simple Multipoint: Daytime
Point to Multipoint : Isabel

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (84)

Server:
Create socket
Join multicast group

Send time response

Multicast Daytime

Client:
Create socket
Join multicast group

Receive time response

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (85)

IPv4: Multicast Daytime

Creating socket
struct sockaddr_in mcastAddr;
struct hostent *phe;

alen = sizeof(struct sockaddr_in);
socktype = SOCK_DGRAM
mcastAddr.sin_family = AF_INET;
mcastAddr.sin_port = htons(DAYTIME_PORT);
phe = gethostbyname(multicastGroup);
memcpy(&mcastAddr.sin_addr, phe->h_addr, phe->h_length);

mcastfd = socket(PF_INET, socktype, 0);
bind(mcastfd, (struct sockaddr *)&mcastAddr, &alen);

struct sockaddr_in mcastAddr;
struct hostent *phe;

alen = sizeof(struct sockaddr_in);
socktype = SOCK_DGRAM
mcastAddr.sin_family = AF_INET;
mcastAddr.sin_port = htons(DAYTIME_PORT);
phe = gethostbyname(multicastGroup);
memcpy(&mcastAddr.sin_addr, phe->h_addr, phe->h_length);

mcastfd = socket(PF_INET, socktype, 0);
bind(mcastfd, (struct sockaddr *)&mcastAddr, &alen);

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (86)

IPv4: Multicast Daytime

Joining multicast group

struct ip_mreq mreq;

memcpy(&mreq.imr_multiaddr, mcastAddr)->sin_addr,
sizeof(struct in_addr));

mreq.imr_interface.s_addr= htonl(INADDR_ANY);

n = setsockopt(sockfd, IPPROTO_IP,IP_ADD_MEMBERSHIP,
&mreq, sizeof(mreq));

struct ip_mreq mreq;

memcpy(&mreq.imr_multiaddr, mcastAddr)->sin_addr,
sizeof(struct in_addr));

mreq.imr_interface.s_addr= htonl(INADDR_ANY);

n = setsockopt(sockfd, IPPROTO_IP,IP_ADD_MEMBERSHIP,
&mreq, sizeof(mreq));

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (87)

IPv4: Multicast Daytime Server

for (; ;) {

myGetTimeFunction(timeStr);

n = sendto(sockfd, timeStr, sizeof(timeStr), 0,

(struct sockaddr *)&mcastAddr,

sizeof(mcastAddr));

sleep(1000);

}

for (; ;) {

myGetTimeFunction(timeStr);

n = sendto(sockfd, timeStr, sizeof(timeStr), 0,

(struct sockaddr *)&mcastAddr,

sizeof(mcastAddr));

sleep(1000);

}

Sending time response.

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (88)

IPv4: Multicast Daytime Client

struct sockaddr_in serverAddr;

n = recvfrom(sockfd, buffer, sizeof(buffer), 0,

(struct sockaddr *)&serverAddr,

&addrlen);

printf("%s\n", buffer);

close(sockfd);

struct sockaddr_in serverAddr;

n = recvfrom(sockfd, buffer, sizeof(buffer), 0,

(struct sockaddr *)&serverAddr,

&addrlen);

printf("%s\n", buffer);

close(sockfd);

Receiving time response.

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (89)

IPv6: Multicast Daytime Server

struct addrinfo hints, *res;

memset(0, &hints, sizeof(hints);

hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_DGRAM;
getaddrinfo(multicastGroup, DAYTIME_PORT, &hints, &res);

mcastfd = socket(res->ai_family, res->ai_socktype,
res->ai_protocol);

bind(mcastfd, res->ai_addr, res->ai_addrlen);

struct addrinfo hints, *res;

memset(0, &hints, sizeof(hints);

hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_DGRAM;
getaddrinfo(multicastGroup, DAYTIME_PORT, &hints, &res);

mcastfd = socket(res->ai_family, res->ai_socktype,
res->ai_protocol);

bind(mcastfd, res->ai_addr, res->ai_addrlen);

Creating socket.

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (90)

IPv6: Multicast Daytime

Joining a multicast group (IPv4).

addr= res->ai_addr;
switch (addr->ai_family) {

case AF_INET: {
struct ip_mreq mreq;
memcpy(&mreq.imr_multiaddr,

((struct sockaddr_in *)addr)->sin_addr),
sizeof(struct in_addr));

mreq.imr_interface.s_addr= htonl(INADDR_ANY);
n = setsockopt(mcastfd, IPPROTO_IP,

IP_ADD_MEMBERSHIP,
&mreq, sizeof(mreq));

} break;

addr= res->ai_addr;
switch (addr->ai_family) {

case AF_INET: {
struct ip_mreq mreq;
memcpy(&mreq.imr_multiaddr,

((struct sockaddr_in *)addr)->sin_addr),
sizeof(struct in_addr));

mreq.imr_interface.s_addr= htonl(INADDR_ANY);
n = setsockopt(mcastfd, IPPROTO_IP,

IP_ADD_MEMBERSHIP,
&mreq, sizeof(mreq));

} break;

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (91)

IPv6: Multicast Daytime

Joining a multicast group (IPv6).

case AF_INET6: {
struct ipv6_mreq mreq6;
memcpy(&mreq6.ipv6mr_multiaddr,

&(((struct sockaddr_in6 *)addr)->sin6_addr),
sizeof(struct in6_addr));

mreq6.ipv6mr_interface= 0;

n = setsockopt(mcastfd, IPPROTO_IPV6,
IPV6_ADD_MEMBERSHIP, &mreq6,
sizeof(mreq6));

} break;
}
freeaddrinfo(res);

case AF_INET6: {
struct ipv6_mreq mreq6;
memcpy(&mreq6.ipv6mr_multiaddr,

&(((struct sockaddr_in6 *)addr)->sin6_addr),
sizeof(struct in6_addr));

mreq6.ipv6mr_interface= 0;

n = setsockopt(mcastfd, IPPROTO_IPV6,
IPV6_ADD_MEMBERSHIP, &mreq6,
sizeof(mreq6));

} break;
}
freeaddrinfo(res);

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (92)

IPv6: Multicast Daytime Server

for (; ;) {

myGetTimeFunction(timeStr);

n = sendto(sockfd, timeStr, sizeof(timeStr), 0,

(struct sockaddr *)&mcastAddr,

sizeof(mcastAddr));

sleep(1000);

}

for (; ;) {

myGetTimeFunction(timeStr);

n = sendto(sockfd, timeStr, sizeof(timeStr), 0,

(struct sockaddr *)&mcastAddr,

sizeof(mcastAddr));

sleep(1000);

}

Sending time response.

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (93)

IPv6: Multicast Daytime Client

struct sockaddr_storage serverAddr;

n = recvfrom(sockfd, buffer, sizeof(buffer), 0,
(struct sockaddr *)&serverAddr,
&addrlen);

printf("%s\n", buffer);

close(sockfd);

struct sockaddr_storage serverAddr;

n = recvfrom(sockfd, buffer, sizeof(buffer), 0,
(struct sockaddr *)&serverAddr,
&addrlen);

printf("%s\n", buffer);

close(sockfd);

Receiving time response.

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (94)

Agenda

Transition to IPv6 is only a network issue
Transition to IPv6 implies application code
porting
Transition exercises

Simple Point to point : Daytime
Simple Multipoint: Daytime
Point to Multipoint : Isabel

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (95)

ISABEL
Group collaboration tool for
Internet

Developed at UPM
http://isabel.dit.upm.es

To interconnect audiences and
groups

With a large number of
endpoints/users

Effective with up to 20 sites
Introduce innovative service
concepts:

Tele-meeting
Tele-training
Tele-conference

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (96)

ISABEL usage
EU RACE Summer Schools on ABC

ABC’93: 2 sites (Spain – Portugal)
ABC’94: 5 sites (Spain, Portugal, Switzerland)
ABC’95: 11 sites (Europe)
ABC’96: 20 sites (Europe & Canada)

Distributed Congress (97-00)
Global 360, Telecom I+D, Internet NG

Industrial usage
Telemeeting service
Ericsson, Vodafone, Telefónica, Portugal Telecom

Distributed courses
PHD & graduate courses performed

Between Madrid, Barcelona, Valencia, Murcia
Madrid Global IPv6 Summit 2002

First congress distributed over IPv6 with ISABEL

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (97)

IPv6 Summit 2002 Madrid

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (98)

ISABEL network architecture

multicast network

ISABEL
terminal

ISABEL
terminal

ISABEL
terminal

ISABEL
terminal

ISABEL
terminal ISABEL

terminal

flow
server

flow
server

MASTER
terminal

ISABEL
terminal

ISABEL
terminal

ISABEL
terminal

ISABEL
terminal

ISABEL
terminal

ISABEL
terminal

ISABEL
terminal

Interactive sites
MASTER manages control

Control: sites and interaction management
Point to point connections

FLOW SERVERS (MCU) distribute MM flows
Multipoint connections

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (99)

Audio Video Pointer ...

ISABEL application kernel

Unreliable
Flows

Reliable
Flows

WhiteboardEditorFtp

IPv4 Network

Multimedia transport Reliable transport

ISABEL application architecture

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (100)

ISABEL porting to IPv6

Audio Video Pointer ...

ISABEL application kernel

Unreliable
Flows

Reliable
Flows

WhiteboardEditorFtp

IPv4/IPv6 Network

Multimedia transport Reliable transport

Communication Library

Participant registry

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (101)

Isabel changes

Communication library.
Dual stack library
Private communications interface

Object Wrapper Facade Pattern technique

Participant System Registry.
Based on FQDN.

IP address parser.
IPv4 & IPv6 compliant.

Checking packets fragmentation
PMTU-D

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (102)

Study case: Isabel interoperability

IPv6IPv6IPv4IPv4

ISABEL MasterISABEL Master

IPv4IPv4

ISABEL
Interactive
ISABEL

Interactive

IPv6IPv6

ISABEL
Interactive
ISABEL

Interactive

Dual stack host

IPv4 host

IPv6 hostIPv4/IPv6
network

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (103)

UDP

ISABEL Master
(isabel6)

ISABEL Master
(isabel6)

IPv6IPv6 IPv4IPv4

Dual stack host

MM Flows
Application

control

TCP

UDP

ISABEL Interactive
(isabel6)

ISABEL Interactive
(isabel6)

IPv6IPv6

MM Flows
Application

control

TCP

UDP

ISABEL Interactive
(isabel4)

ISABEL Interactive
(isabel4)

IPv4IPv4

MM Flows
Application

control

TCP

IPv4 host

IPv6 host

Study case: Isabel interoperability

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (104)

IPv4 host IPv6 host

TCP

ISABEL Interactive
(isabel6)

ISABEL Interactive
(isabel6)

IPv6IPv6

UDPUDP

ISABEL Interactive
(isabel)

ISABEL Interactive
(isabel)

IPv4IPv4

TCP UDP

ISABEL Master
(isabel6)

ISABEL Master
(isabel6)

IPv4IPv4 IPv6IPv6

TCP

UDP

ISABEL MCU
(isabel6)

ISABEL MCU
(isabel6)

IPv4IPv4 IPv6IPv6

TCP

Dual stack host

Dual stack host

Study case: Isabel interoperability

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (105)

Conclusions of ISABEL porting

ISABEL was IP addresses dependant
Redesign was mandatory

Introduce dual stack architecture
Redesign leads to a more consistent architecture

Participants registry is not IP dependant
Amount of work invested was reasonable

Additional work has been done to take
advantages of IPv6

Security
Mobile IP

Work still needed: QoS

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (106)

Acknowledgements

This work has been mainly
funded by LONG Project
(http://www.ist-long.com)

January 2003, Bangalore India 3rd Global IPv6 Summit Workshop (107)

Questions?

Thanks for your attention
Any questions?

